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Abstract

Controlling robots with a high number of degrees-of-freedom is a big challenge in robotics.

Dexterous robot hands give robots the ability to generically grasp objects while poten-

tially being able to grasp a greater variety of things than a human could (e.g. by at-

taching special sticking fingertips). Having a robot designed like the human hand might

give users the ability to control the robot more intuitively. The objective of this thesis

is to implement a control interface for a Shadow C5 robot hand with 5 Fingers and 20

degrees-of-freedom and a robotic arm with seven degrees-of-freedom on an ubiquitous

tablet computer with a 10 inch screen running the Android R© operating system. To com-

municate with the robot, the Robot Operating System (ROS) is used while inverse kinemat-

ics are done using BioIK[22], an IK solver developed at the TAMS group at the University

of Hamburg.

Zusammenfassung

Roboter mit einer hohen Zahl an Freiheitsgraden zu steuern stellt eine große Heraus-

forderung dar. Der menschlichen Hand nachempfundene Roboterhände könnten Robo-

tern die Möglichkeit geben, universell Objekte auch vorab unbekannter Beschaffenheit zu

greifen. Hierbei kann die Anzahl der greifbaren Objekte bspw. durch Anbringen geeigne-

ter Instrumente (z.B. klebriger Fingerspitzen) größer sein als die des Menschen. Weiterhin

könnte ein Roboter, welcher menschlichen Extremitäten nachempfunden ist durch einen

Bediener intuitiver zu nutzen sein. Ziel dieser Bachelorarbeit ist es, eine Multitouch-

Schnittstelle zu einem Roboter bestehend aus einer Shadow C5 Roboterhand mit 20 Frei-

heitsgraden und einem Roboterarm mit sieben Freiheitsgraden zu entwickeln. Die Ent-

wicklung findet auf einem Android R©-Tablet mit einer Bildschirmdiagonale von 10 Zoll

statt. Zur Kommunikation mit dem Roboter wird das Robot Operating System (ROS) einge-

setzt. Um Probleme der inversen Kinematik (IK) zu lösen kommt BioIK[22] zum Einsatz,

ein Algorithmus, welcher im Arbeitsbreich TAMS der Universität Hamburg entwickelt

wurde.
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1 Introduction

1.1 Motivation

Figure 1.1: KuKa
LWR Arm with
Shadow C5 Hand
installation

Controlling dexterous robot hands is a big challenge of robotics, but

their usage has a variety of obvious advantages: The similarity to a

human hand enables it to grasp objects in nearly all positions and

poses the real human hand could. Especially for complex manipu-

lation tasks, where a simple robotic grasper with just a pair of pli-

ers is not sufficient, the larger amount of degrees-of-freedom comes

into action. Also, users might be able to better plan actions when

they are controlling a device similar to their own hands, meaning

the main task for them is to use a control interface to execute actions

they would otherwise execute with their own hands. Additionally,

the robotic hand potentially have advantages over the human hand,

such as, higher degrees-of-freedom, more strength or special finger-

tips adding more friction and by that enabling grasping a wider va-

riety (e.g. very sleek) different materials. This would give users the

ability to perform tasks as they would with their own hands but with

less effort or more effective.

1.2 Objectives

Within this thesis, a touch-interface for controlling such robotic hands

shall be developed, taking advantage of the multi-touch capabilities

of modern mobile tablet computers. The user shall be able to control

the position of the robotic hand (using the connected robotic arm) and

grasp objects with it. All actions shall be mapped to corresponding

multi-touch gestures the user can easily understand and learn.

The hardware used within this bachelor thesis is a Shadow Dexter-
ous Hand C5/C6 by the Shadow Robot Company. It has five fingers

controlled by electrical or pneumatic muscles using 20 degrees-of-freedom[6]. The hand

is connected to a robotic arm (KUKA Lightweight Robot) allowing it to also be moved in

space (See Figure 1.1 for an image of the installation).

As a control device an off-the-shelf android tablet will be used, as these devices have

become very widespread and - thanks to this - relatively affordable. With screen sizes
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of 10 inches and above combined with the capability to record more than 5 indepen-

dent touch pointers and a number of additional sensors (gyroscope, orientation, ...) and

feedback actuators (vibration, sound, ...) they make a good choice for a versatile control

device. In this thesis however, only visual feedback will be available to the user.

Specifically, development during this thesis will take place on a Samsung Galaxy Tab S3.

It has a screen size of 9.7 inches[23] with a resolution of 2048x1536 pixels accompanied

by a 2.15GHz Quad-Core processor. These properties give it the ability to also perform

some calculation-heavy tasks locally, giving the overall application a better performance.

The used Android tablet runs Android 7.0. One goal of this thesis is to make the control

application available to a broad variety of devices. Because of this, the application shall

run on Android down to Version 4.3 and up to the current 7.0.

A native Android application will be developed and run directly on the tablet. As a

programming language Java is chosen, as it is the language natively used on Android.

Multiple approaches to the problem will be implemented to give users and researchers

the ability to test and evaluate multiple methods against their usability, effectiveness and

user-friendliness.

1.3 Outline

After an overview of related and similar works to this thesis is given in Chapter 2, a brief

insight in the technology used during the development of this thesis will be described

and explained in Chapter 3 to give the reader a basis of knowledge to understand the

processes and decisions described later. Chapter 4 depicts the concepts and architectural

design process decisions made for later development. The implementation is then de-

scribed in detail within Chapter 5. Proposals for user studies and usability evaluations

are then made in Chapter 6, as they are not part of this thesis.
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2 Related Work

A lot of research is and was done in the field of remote-controlling robots with generic

devices. This is most probably the case due to them being ubiquitous and well-known

by common users. This is important as more and more robots have entered the personal

living spaces of users during the last two decades[10] which have to be controlled by

untrained persons with the least possible amount of learning. This leads to the need of

very easily understandable user interfaces and creates a limit in complexity the possible

controls.

One approach to reduce complexity in controlling a robot with a high amount of degrees-

of-freedom (DOF) is described in [3]. The researchers conducted a principal component

analysis (PCA) on different grasping hand poses. The calculated components can then be

used to control a device with e.g. 22 DOF by just 2-3 parameters. As this thesis is partly

based on this approach and the given research, more explanation can be found in Chapter

4. Apart from this analytical approach another part of this thesis is based on [26] where

researchers developed a method to directly map finger positions on a tablet computer to

those on a robotic hand. These are the two main approaches examined in this thesis.

Other ideas to teleoperate robots with generic devices are numerous. A similar ap-

proach is to control a mobile robot using an android device by tilting it[1]. The idea here

is to simulate a steering wheel of a car to move a car-like robot.

As the fields of virtual reality (VR) and augmented reality (AR) gain more and more

attention, different approaches to remotely control robots assisted by such VR systems

come up. Hashimoto et al. [15] developed a software called TouchMe, displaying a video

image of a robot, allowing to directly alter a robot model perfectly laid over the video

image using simple drag and drop actions on a touchscreen. Krupke et al. [16] took

the approach one step further by displaying the virtual environment on a head mounted

device (HMD, also referred as VR glasses). The HMD displays a virtual representation of

the manipulated device, allowing the controller to look at the scene from arbitrary angles.

Fine control was implemented by putting the controller’s hand into a virtual sphere and

recording hand movement while mapping it to movements of the controlled robot.
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3 Basics

3.1 ROS - The Robot Operating System

The Robot Operating System (ROS) is an open-source software framework providing a ro-

bust communication layer for distributed robot computing[17]. Despite the name it is

not an operating system in the traditional sense, as it does not provide or implement any

processing, scheduling or data access functionality. It is a set of programs and libraries

enabling developers to develop so-called nodes that communicate with each other using

the Publish-Subscribe-Pattern. This pattern allows multiple loosely-coupled nodes (appli-

cations) to exchange messages. This design allows a greater reuse of code since software

for robots is written very modular[9]. For example, on a robot with a laser scanner and

a motor, one node would decode the laser scanner data, publish the results to a specific

topic which is subscribed by a controller node, that processes the data and then pub-

lishes motor control messages to another topic, which is again subscribed by the motor

controller node. All nodes do not have to know each other. This makes it very easy to

reuse the code for either the laser scanner or the motor driver node in other configura-

tions (like multiple different robots) or exchange the controller node that processes the

data. Using wireless connections, it is also possible to move specific processing tasks to

external (off-board) nodes. This comes in handy for example in terms of image processing,

which is a task that usually overloads small on-board processing units built into robots.

The communication is organized by a program called ROS Core. All nodes connect

to this Core and tell it what they’d like to do (e.g. subscribing to topics, publishing to

topics etc.). To reduce communication overhead, the actual data exchange is then done in

a peer-to-peer manner, meaning the nodes directly exchange data with each other over

TCP/IP. This also means that all nodes have to be able to reach each other, which might

lead to problems when running ROS in bigger networks.

Sometimes, the publish-subscribe-pattern (and its inherent asynchrony) are not suffi-

cient, as some calculations, which might be too heavy to be executed locally, might still

have to be done synchronously. For this case, ROS introduces so-called services. These

are basically function calls that are offered by a node which may then be called by any

other node over the network. These calls are executed synchronously and directly return

a result.

Nodes have names seperated in so-called name spaces. an example node name is given

in Listing 3.1.
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Listing 3.1: An example ROS node name

1 /robot/hand/controller

where /robot/hand is the name space and controller the node name. Topics and services

do also have a specific name including a name space. This addressing scheme allows it to

have multiple equally-called nodes or topics (e.g. for multiple sensors of the same type)

by just putting them into different name spaces but preserving their names.

Numerous implementations of the ROS client libraries are available, the most common

ones are developed and used in C/C++ and Python[18]. For developing a ROS-enabled

Android application, an implementation of the ROS client library in Java is chosen.

3.1.1 Rosjava / Rosandroid

There is an implementation of the ROS client library published on GitHub1. It includes

support for all needed communication structures within ROS as well as the most common

message types exchanged with ROS nodes. rosjava is specifically designed to develop

ROS-enabled Android applications and is originally developed by Google[11].

The package rosandroid2 is an extension of rosjava. It offers functionalities to easily

include ROS support into an Android application by offering readily usable Activities3 to

connect the application to a ROS core or start an independent core within the application

itself. It also includes some basic user controls like a joystick control which we will not

make use of within this thesis.

rosandroid is designed for the newest versions of Android, which leads to the fact that

a small change has to be made in the code to make it compatible with older versions of

Android, too. These changes are described in Chapter 5.1.4.

3.1.2 Using Services in Rosjava

The implementation of how to consume (i.e. call) services is a little different in rosjava

than it is in roscpp4, which is why the main differences will be briefly be elaborated on

here. To call services, special ROS messages are exchanged. These so-called service mes-
sage types consist of a request and a response part. While in C++ one object containing

both the request and the response is passed to the service client which then fills out the

response part[21], in other implementations like rospy or rosjava these messages are sepa-

rated.

To create a service client in rosjava, an instance of

org.ros.node.service.ServiceClient

1https://github.com/rosjava/rosjava_core
2https://github.com/rosjava/android_core
3Activities are offering the user interface in Android applications
4roscpp is the C++ implementation of ROS

https://github.com/rosjava/rosjava_core
https://github.com/rosjava/android_core


6 3 Basics

is created within the onStart callback of the node, passing the name of the service node

and the service message types. Listing 3.2 demonstrates how such a start-up routine

could look like.

Listing 3.2: Example on how to connect to a ROS service in rosjava

1 @Override

2 public void onStart(ConnectedNode connectedNode) {

3 // ....

4 try {

5 ikService = connectedNode.newServiceClient("/bio_ik/get_bio_ik",

↪→ bio_ik_msgs.GetIK._TYPE);

6 } catch (ServiceNotFoundException e) {

7 ikService = null;

8 e.printStackTrace();

9 }

10 // ....

11 }

In rosjava no such method like Ros::waitForService() (in C++) is present5. As rosjava is

designed in a way that one application can implement multiple ROS nodes, a blocking

call to the above method would cause the rest of the application to stop working, which is

probably the reason why the developers of rosjava have decided not to implement it. In

rosandroid applications, a blocking wait-call would cast the user interface unresponsive

and thus unusable. Developers have to make sure that, in the time a node starts, the

service it wants to consume is already registered with the ROS Master.

Once the ServiceClient is created it can be used by creating a new request message.

Confusingly, request and response message types are separated in service calls, while the

combined message type is passed to the newServiceClient method. An example service

call is presented in Listing 3.3.

Listing 3.3: An example rosjava service call

1 bio_ik_msgs.GetIKRequest greq = ikService.newMessage();

2 IKRequest req = greq.getIkRequest();

3 // ... fill in the request parameters into the req object ...

4
5 ikService.call(greq, new ServiceResponseListener<GetIKResponse> {

6 @Override

7 public void onSuccess(GetIKResponse getikResponse) {

8 // Handle service response

9 }

10
11 @Override

12 public void onFailure(RemoteException e) {

5Albeit requested by multiple users, like in https://github.com/rosjava/rosjava_core/
issues/105

https://github.com/rosjava/rosjava_core/issues/105
https://github.com/rosjava/rosjava_core/issues/105
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13 // Handle service error

14 }

15 });

Two things are important to note here. Firstly, the messages exchanged are not IKRe-
quest and IKResponse as the names would suggest, but GetIKResponse and GetIKRequest,
which are created automatically by the rosjava message generator. The latter service mes-

sages then contain the corresponding former message types. This is one main difference

in calling ROS services between Java and C++ implementations. Secondly, the service

response is processed non-blocking, meaning it is asynchronously passed to the listener

object implementing the

org.ros.node.service.ServiceResponseListener

interface. Busy-waiting service calls are not implemented in rosjava, most probably for

the same reasons that busy-waiting for services to come up have not been implemented.

This asynchrony is the second main difference developers accustomed to roscpp have to

get used to when switching over to rosjava.

3.2 The Shadow C5 Robotic Hand

Figure 3.1: The Shadow C5 handThe Shadow C5 Robotic Hand was developed by the

Shadow Company. It is designed to be as similar to

a human hand as possible[6] in terms of force out-

put, movement speed and movement sensitivity. It has

24 degrees-of-freedom, all controlled by 48 pneumatic

muscles. These muscles, when pressurized, contract a

little, applying force to the elements of the mechanical

hand over imitated tendons. The developers tried to de-

sign the product as close to the average human forearm

as they could. It weighs about 4kg and has a maximum

movement speed of about half the speed at the joints a

human could reach. The pneumatic muscles work with

a pressure of 3.5 bar and having a maximum flow of 24

litres per minute, resulting in the need of a relatively powerful air compressor and air

pipe system installed near the hand. Joint angles of all joints (controllable as well as

non-controllable) are measured by hall-sensors at an accuracy of 0.2 degrees. A similar

robotic hand powered by electrical motors instead of pneumatic muscles is also present

at the TAMS group at the University of Hamburg. This thesis will, however, mainly work

with the pneumatic powered hand.
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Table 3.1: Topics used to send and receive joint states

/hand/joint_states The ROS hand proxy publishes the current measured joint states
it received from the hand server to this topic.

/hand/joint_goals The ROS hand proxy receives packages containing joint states
sent to this topic and passes it on to the hand server, causing the
hand to try to reach the sent joint angles.

3.2.1 Integration into ROS

Figure 3.2: Schematic overview to the
integration of the hand into a ROS
environment

The Shadow Robotic Hand possesses by default a

CAN-Bus (Controller Area Network) interface over

which it is controlled[6]. The CAN protocol has

been implemented using a parallel port on a dis-

tinct machine next to the robotic hand. To have

the ability to communicate with the hand over net-

work, a server application has been implemented

by members of the TAMS group at University of

Hamburg. Multiple applications have been devel-

oped to control the robotic hand without the inte-

gration of ROS. To make use of the features and ad-

vantages of a ROS environment, a ROS proxy was

implemented. It basically listens to a ROS topic

where it receives joint target states and publishes to

another ROS topic where it sends the current mea-

sured joint angles to. The ROS hand proxy node

communicates with the hand server over the line-

based protocol and converts all data it receives for

the corresponding other side. This set-up makes it easy to integrate the Shadow C6 hand

into a ROS environment. See Figure 3.2 for a schematic overview of how the robotic hand

is integrated into ROS.

The two important topics used throughout this thesis are denoted in Table 3.1. The

message type used for both of these topics is sensor_msgs/JointState. These messages con-

sist of the data fields denoted in Table 3.2. A few things are important to be considered

while using the data contained in these messages. First, how the data is interpreted is

application-specific. While the data fields contain arbitrary data it is important to know

that the set-up used in this thesis only has rotating joints, meaning the data in the po-

sition field is in radians. For other types of joints (e.g. linear joints) this could possibly

deviate. Second, the order of elements is not important, however it is very important to

maintain corresponding elements’ positions at the same index within the names and the

position fields. This means that e.g. the position for joint THJ1 must have the same index

in the position field as the string THJ1 in the names field. Finally it is important to note
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Table 3.2: Contents of the sensor_msgs/JointState message type

Field Description
header Header information including a time-stamp of when the message was sent

and a sequence number of the message
names Array of strings containing the joint names the other fields contain informa-

tion about
position Array of floats containing the position of each joint
velocity Array of floats containing information about the velocity at which each joint

is currently or shall be moving
effort Array of floats containing information about with how much efford (e.g.

force) a joint shall be or is moved

that the effort and velocity fields are currently not used for the set-up. When these rules

are followed it is easy to send joint states to the robot and observe its movement.

3.3 The Kuka Lightweight Robot Arm

Figure 3.3: The Kuka LWR robot
arm

The robotic arm used in the set-up is a Lightweight Robot
4+ by the German company KUKA Roboter Gmbh. It has

7 degrees-of-freedom, allowing it to operate in a space

as big as approximately 1.8m3[12]. All joints can be used

in ranges of ±170 or ±120 degrees. The robot is con-

trolled by a dedicated computer supplied with it. Con-

nected to the computer is an external control interface,

which allows basic operations of the robot.

3.3.1 Integration into ROS

To control the robot using ROS a special application has to be launched on the con-

trol computer of the robot. This application is called FRI (Fast Research Interface) and

is supplied by the KUKA company[13]. When this was successful, a special ROS node

has to be started on another computer within the same network. This node is called

ros_fri. Then messages can be sent to the robot by publishing messages of the type

ros_fri_msgs/RMLPositionInputParameters to the topic:

/lwr/jointPositionGoal

The contents of the message type are described in Table 3.3. When such a message

is received by the FRI application the robot will immediately start to move to the given

position. The arrays in the message all have to have the correct number of entries (i.e. 7,

one for each joint). If no value shall be set, a zero value has to be inserted anyway.
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Table 3.3: Contents of the RMLPositionInputParameters message type

Field Description
double[] target_position_vector Desired target positions of all joints in radians.
double[] target_velocity_vector Desired movement velocities of all joints.
double[] max_acceleration_vector Maximum allowed acceleration for all joints.
double[] max_velocity_vector Maximum movement velocity allowed for each

joint.

3.4 Inverse Kinematics

Inverse kinematics is one of the challenging fields in many applications like robotics or

computer animations[24]. To understand what inverse kinematics is, it is important to

look at a robot (or e.g. animated figures in video games) from two different points of

view. The normal viewer would describe the position and pose of a robot or effector in his

own coordinate system, usually in Cartesian coordinates. This position can be described

as an n-dimensional vector X. To describe movement of the robot, the viewer would then

tell a difference between the new and the old position vectors Xnew − X = ∆X. A robot,

however, often cannot move in Cartesian space, as its kinematic chain (i.e. the parts of

the robot connected by rotational or translational joints) can have m degrees-of-freedom

(DOF) with m > n. The position in the so-called joint-space is referred to as θ. To control

such a robot with a high number of DOF, the controller has to be aware of the current

position of the robot in Cartesian space X, the desired position change ∆X and the change

in joint-space ∆θ that has to be applied to the current position in joint space θ. θ is known

by the current state of the robot, finding X is done by applying forward-kinematics to θ:

X = f (θ)

Forward kinematics usually is a straight-forward process of beginning at the base of

the robot and iterating through all joints up to the end-effector to find its position. The

inverse kinematics to find the corresponding position in joint-space to reach the desired

position in Cartesian space

θ = f−1(X)

however is not as easy as the forward kinematics as with rising numbers of DOF no an-

alytical solution is possible and multiple (up to an infinite number) valid joint-positions

can exist - or even none at all[7].

Many approaches to this problem have come up during the years. Aristidou and

Lasenby give a good overview over the existing methods in their technical report[7].

3.4.1 BioIK

BioIK is the name of a newly developed algorithm for inverse kinematics by the TAMS

research group at the University of Hamburg[24]. BioIK is a multi-goal evolutionary
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Figure 3.4: Forward and inverse kinematics

Joint Space Cartesian 
Space

Forward Kinematics

Inverse Kinematics

algorithm. This means in particular, that it accepts goals for multiple end-effectors in a

kinematic chain whereas most other algorithms only accept one goal for one end-effector.

This makes the algorithm especially suitable for highly articulated robots and models like

humanoids[25]. Being an evolutionary algorithm means that solutions are created using

predecessors and applying random mutation to a solution. Solutions of the algorithm

are then classified by a fitness function, while good solutions remain within the so-called

genom and bad solutions are not used for further evolutions[22] - similar to the so-called

and name-giving real world evolution. Within this thesis BioIK is used to calculate joint

angles for given robot poses. The big advantage of BioIK is that it accepts multiple goals,

i.e. one goal for every fingertip, and calculates corresponding joint positions based on the

given goals.

Integration into ROS

Philipp Ruppel integrated BioIK into ROS during his Master Thesis[22]. He integrated

the BioIK solver into MoveIt!, which is a motion planning framework integrated into

ROS[5]. Using MoveIt! it is possible to plan motions and poses of robots from just cal-

culating a pose of a robot to plan full motion trajectories from one pose to another while

avoiding obstacles and collisions.

In addition to the functionality directly calling MoveIt! interfaces from C++, a ROS

service was implemented to get IK solutions from BioIK over a ROS service from arbitrary

nodes - especially from non-C++ nodes like ones written in Java (rosjava, rosandroid) or

Python (rospy)6. Having this BioIK ROS service available makes it relatively easy to get

IK solutions within nodes separated from MoveIt! which is why it will be used within

this thesis to request joint positions for given robot poses within the developed Android

application. The process of integrating the service into the application (i.e. requesting

joint angles for given robot poses) is described in Chapter 4.2.

6The implementation of the ROS BioIK Service can be found at https://gogs.
crossmodal-learning.org/philipp.ruppel/bio_ik_service

https://gogs.crossmodal-learning.org/philipp.ruppel/bio_ik_service
https://gogs.crossmodal-learning.org/philipp.ruppel/bio_ik_service
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4 Concepts

4.1 User Interface

4.1.1 Desired position of the Android Tablet

Figure 4.1: Example placement of the control de-
vice

The application (and thus the screens

within it) will be designed for the tablet to

be placed in front of the operator on a ta-

ble. The person should have clear sight on

the controlled robot. It seems sensible to

place the tablet on the table in front of the

robot while looking at it. Most interactions

with the application will be performed by

touch gestures using the right hand. For

better usability a housing or case can be

used to position the tablet at a slight angle

to the table.

Interaction with the application is done using the commonly known touch gestures

like

• Touch (short press on the screen)

• Long press (finger remains on a control for a longer period of time)

• 1-Finger-Movement

• 2-Fingered gestures (Pinch-Zoom, Rotation)

• 3-Fingered gestures (Rotation, Movement)

4.1.2 General Screen Layout

As a screen of a diagonal size of 10 inches (25.4cm) is very limited compared to the size

of the workspace of the robot, good considerations have to be made according to a well-

designed user interface. Since we are mainly operating the robot with touch gestures,

significant parts of the screen should be blank, as only few information can be displayed

while the user poses his hands above or on the screen. Figure 4.2 gives a first overview

of how the portions of the screen shall be distributed. The biggest part of the screen is
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Figure 4.2: A first overview of the screen space distribution

reserved for touch interactions by the user. Since multiple approaches to control the robot

shall be implemented, the method shall be selected and switched using a tabbed layout

with the tabs on the top, as they use the least space of the screen this way.

Interlock Button

On all screens where the robot can be remotely operated, a security interlock button shall

be displayed. For the actions on the screen to have effect on the robot (i.e. to be sent

to the controller) the button shall remain pressed. This implements the functionality

of a dead-man-switch, stopping all robot action once released. Although this is only

a software measure it should be a good solution against unwanted movements of the

robot as the button can easily be released when pressed with a single finger of the left

hand. Of course, this software measure does not replace hardware safety measures
like emergency switches, but only supports them.

4.1.3 Grasp Synergy Screens

As the control of grasp synergies allows multiple different types of synergies to be se-

lected, a drop-down selection of the synergy shall be displayed to the left side of the

screen. This keeps the right side of the screen clear for better operability by right-hand

users. Additionally, a cross of lines shall be displayed on the screen so the user knows

where the middle of the touch interaction area is. As described later, this is particularly

important in the approach with absolute synergy control (See Chapter 4.3.2). To give the

user some information about the state of a synergy, the values of significant amplitudes

applied to the synergy shall also be displayed on the left hand side of the screen. A but-



14 4 Concepts

Figure 4.3: Synergy control screen

ton to set the hand into the idle state of the synergy (i.e. all significant amplitudes set

to 0) is also sensible to be implemented. A sample of how this screen could look like is

demonstrated in Figure 4.3.

4.1.4 Direct Fingertip Mapping Screen

As there are no additional controls required to control the direct fingertip mapping, the

control screen looks mostly like the general touch interaction screen seen in Figure 4.2.

4.1.5 Single Axis/Joint Control

Figure 4.4: Axis control widget with
different status indicators

An interface shall be implemented to give users the

ability to control each joint of the robot individu-

ally. This is sensible for a variety of reasons. Firstly,

it might sometimes be required to move the robot

out of a specific state by moving just one axis and

not by applying multiple changes at once. Possible

scenarios for this use case could be a state where the

robot could harm users or the environment if un-

controlled or unpredictable movements occur. An

interface to control joints individually is also very

practical for testing purposes, for example if one

part of the robot is suspected to be broken.
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Figure 4.5: Axis control screen draft

Within this interface, the currently measured joint angle shall be displayed for each

joint, next to the currently set target value (printed in bold). This gives the user a good

insight of what state the robot should be in according to the program and what state

it actually is in. This shall be supported by a coloured indicator, giving a quick visual

feedback on the difference of the target and actual joint angles ∆α = |αactual − αtarget|. The

colours of the visual feedback shall be:

• Green for ∆α ≤ 0.5◦

• Yellow for 0.5◦ < ∆α ≤ 2.5◦

• Red for ∆α > 2.5◦

The buttons to move the axis shall be displayed right and left of the angle displays.

The visual feedback shall be shown as the background of the angle values. With all these

requirements put together, an axis control widget for a single joint or axis could look like

depicted in Figure 4.4. To each control widget, a heading will be added to unambiguously

denote which axis or joint will be controlled when using the corresponding buttons.

Multiple of these widgets shall be added to the axis control screen, one for each con-

trollable joint or axis. This will result in a screen containing 29 of these (22 for the hand,

7 for the robot arm). To get an idea of how the control screen for individual joint control

will look like, the reader is referred to Figure 4.5. Please note, however, that the number

of hinted joint control widgets does not resemble the actual number of controllable joints

for each part of the robot.
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4.2 Using the BioIK Service

The BioIK serivce (see Section 3.4.1) is used according Section 3.1.2. The important mes-

sage types are:

• GetIK The combined Request/Response service message type

• GetIKRequest The message type containing the request to the service

• GetIKResponse The message type containing the response of the service

• IKRequest The actual request data

• IKResponse The actual response data

In the process of getting joint data from the BioIK service, the message types IKRequest
and IKResponse are most important, because they contain the data needed on both sides.

As the used message types contain a large number of members, only those significant for

this thesis will be discussed within this section.

The IKRequest message contains information about the current robot state and about

the desired robot pose (see Table 4.1, pg. 17). The so-called goals used here are Position-
Goal, OrientationGoal and PoseGoal, which is basically a combination of the first two. All

goals contain a link name, which describes the end-effector that shall be brought to the

given position or orientation. A PoseGoal contains a Point message type, which is a vec-

tor in 3D space. The OrientationGoal consists of a Quaternion which encodes the desired

orientation of the end-effector in space. Lastly, the PoseGoal contains both, a Point and a

Quaternion, defining a distinct position and orientation in space. When provided with the

current state of the robot, the IK algorithm begins looking for solutions at this state, pos-

sibly speeding up the overall solving process. Different goals for multiple end-effectors

(called links) can be passed to the BioIK service which will then try to find a solution

fulfilling all of the given goals.

When the BioIK service has finished it returns a IKResponse (see Table 4.2, pg. 17) to the

caller. Within the response, a status (or error) code is given, indicating success or failure

of the algorithm. If the status code indicates 0 (meaning success), the RobotState field of

the message contains joint angles for all joints of the robot, representing a state in which

the goals passed to the service in the first place are reached. All angles for the joints (in

IKRequest as well as IKResponse) are given in radians.

4.3 Grasp Synergies

In their work Bernardino et al. [3] describe a way to record hand postures using a data

glove and the Shadow C5 robotic hand. The result of their research are data recorded for

8 different grasp postures of the human hand. Using Principal Component Analysis (PCA)
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Table 4.1: Important contents of the IKRequest message type

Field Description
string group_name The MoveGroup name of the robot. Fixed to

lwr_with_c5hand here
bool approximate If true, an approximate solution is returned when

no exact solution could be found by the IK solver
duration timeout The timeout after which the solver stops looking

for solutions. If no solution was found by then,
an approximate solution is returned if approxi-
mate is true, otherwise no solution is returned.
Fixed to one second here.

int32 attempts Number of attempts the solver shall take. Fixed
to 1 here.

string[] fixed_joints Names of the joints the IK solver shall not move
while looking for solutions.

bool avoid_collisions If true, the BioIK solver tries to find solutions
that do not collide with the environment (and the
robot itself).

RobotState robot_state The current state of the robot. Contains a
JointState message containing the current joint
angles of all joints. These values are taken as a
starting point while searching for solutions.

PositionGoal[] position_goals The positions of multiple end-effectors that shall
be reached with the IK solution.

PoseGoal[] pose_goals The poses of multiple end-effectors that shall be
reached with the IK solution. A pose goal is sim-
ilar to a position goal, but extends it by a desired
orientation.

OrientationGoal orientation_goals The orientations multiple end-effectors shall
have within the IK solution.

Table 4.2: Important contents of the IKResponse message type

field Description
MoveItErrorCodes error_code An error code stating if a solution was found or not.

0 indicates success, whereas all other values indicate
that no solution was found.

RobotState solution If error_code is 0, this field contains the found solu-
tion encoded in a JointState field with an angle for
every joint.
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the datasets for each posture were parametrized. This process resulted in a matrix

S = (s1, . . . , sM)

for each grasp posture with sm ∈ RN being the eigenvectors of the parametrized grasp

postures. For each posture s0 ∈ RN is the mean value of all recorded posture data sets,

defining the rest position of the hand within this posture. To get joint angles from these

synergy matrices, they have to be multiplied by a vector α = (α1, . . . , αN) containing the

so-called amplitudes for each parameter. For a given synergy matrix S, a synergy offset

s0 and amplitude vector α ∈ RN , the joint angles θ = (θ1, . . . , θN) are described as

θ = s0 + Sα (4.1)

Since S is sorted in such a way that changes to α1, α2 and α3 already cover approx. 80-

90% of the variance in the grasp postures recorded[3], we will only look onto these three

amplitudes when implementing the approach to grasping objects in this thesis.

s0 and S are provided by the above research and θn is given in degrees, αn is −50 ≤
αn ≤ 50. The goal is to find a good mapping between touch gestures and αn, so that the

grasp can be controlled intuitively.

4.3.1 Touch Gestures

To find solutions to map touch gestures to synergy amplitudes, we first generalize the

understanding of touch gestures.

Definition 1 p = (px, py) ∈ R2 is called a pointer on a touch screen, i.e. the coordinates of a
registered finger the user has laid onto the touch surface.

Definition 2 A set of pointers G = {p1, . . . , pn} with |G| ≥ 1 is called a gesture.

Although pointer positions on a touch screen are usually given in integer numbers,

pointers are defined in real space to make the following definitions possible. After having

defined gestures, we have a look at different properties of them. Firstly, the two most

basic properties of a gesture are defined, being the position and the size.

Definition 3 Let G be a gesture.

• The position c(G) of G is defined as

c(G) =
1
|G|

|G|

∑
i=1

pi pi ∈ G. (4.2)

• The size s(G) of G is

s(G) =
2
|G|

|G|

∑
i=1

d(c(G), pi) (4.3)
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with pi ∈ G and d(x, y) =
√
(y1 − x1)2 + (y2 − x2)2 for x, y ∈ R2 the euclidean dis-

tance between two pointers.

In other words: The position of a gesture is the center of mass of all pointers of a gesture.

The size is the doubled mean distance of all pointers to the position of a gesture. Before

defining the last property of a gesture, the orientation, we first have to define what the

thumb pointer of a gesture is.

Definition 4 The thumb pointer th(G) of a gesture G is defined as

th(G) =


p1 |G| = 1

pn with pn,y = max{pi,y : pi ∈ G} |G| = 2

pn with d(c(G), pn) = max{d(c(G), pi) : pi ∈ G} |G| > 2

(4.4)

The thumb pointer shall be evaluated and memorized whenever |G| changes, i.e. a pointer

is added or removed from a gesture. Note that the y coordinate is rising to the bottom, as

it is usual on digital screens. Having this in mind, the thumb pointer is the lowest pointer

in a 2-pointer gesture or the one furthest away from the position of a gesture with 3 or

more pointers. The last part of the definition is important, as the lowest pointer does

not necessarily remain the lowest when the gesture is rotated on the screen, so to have a

consistent definition of the orientation, the thumb pointer may only be evaluated when

pointers are added or removed from a gesture.

Definition 5 Let G be a gesture, by = (0,−1) ∈ R2. For v = c(G)− th(G), the orientation
o(G) is defined as

o(G) = sign(det(by v)) · arccos
(

v · by

|v| · |by|

)
. (4.5)

In other words the orientation of a gesture is the angle between the vector from the

thumb pointer to the position of a gesture and by, which is pointing upwards in screen

coordinates as, again, y is growing downwards. If the determinant of (v by) is negative,

the angle between by to v is counter-clockwise[4]. Using this, the values of o(G) range

from −π (which is 180◦counterclockwise) and π.

Example

The above definitions will be briefly elaborated with an example of a gesture with 3 point-

ers. Figure 4.6 shows the example gesture. First, the position of the gesture is calculated:

c(G) =
1
3

((
400

800

)
+

(
440

200

)
+

(
520

300

))
≈
(

453.3

433.2

)
The size of the gesture is
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Figure 4.6: Example gesture with 3 pointers
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s(G) =
2
3
(d(c(G), p1) + d(c(G), p2) + d(c(G), p3))

=
2
3
(|c(G)− p1|+ |c(G)− p2|+ |c(G)− p3|)

=
2
3

(∣∣∣∣∣
(

53.3

−376.8

)∣∣∣∣∣+
∣∣∣∣∣
(

13.3

233.2

)∣∣∣∣∣+
∣∣∣∣∣
(
−66.7

133.2

)∣∣∣∣∣
)

≈ 2
3
(380.6 + 233.6 + 147)

≈ 508.8

Figure 4.7 shows the example gesture extended with the position of the gesture and

a circle with the diameter of the gesture size around the position of the gesture. From

the above calculation it can be seen that p1 has the biggest distance to the position of

the gesture, that implicates th(G) = p1 as G has more than 2 pointers. With this we can

calculate the orientation of the gesture as follows.

o(G) = sign

(
det

(
0 53.3

−1 −376.8

))
· arccos


(

53.3

−376.8

)
·
(

0

−1

)
380.6 · 1


= 1 · arccos

(
376.8
380.6

)
≈ arccos (0.99002)

≈ 0.141398 ≈̂ 8.101◦

G has an angle relative to the y axis from about 8.1◦.
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Figure 4.7: Example gesture with center and size
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4.3.2 Absolute Approach

Within the absolute approach a solution shall be found to map the properties of one or

more gestures to the different degrees of freedom of the hand synergy and the arm. To

control the hand synergy, it is sensible to control all three significant amplitudes with just

one gesture, so the user does not have to change the pointer count of the gesture while

operating the hand. This is especially useful as it seems relatively difficult to position the

fingers at the exact same place after hacing used another gesture. However, to reproduce

a distinct position the pointers have to be placed at the exact same place on the screen.

It is c : G → R2, s : G → R and o : G → R, which means if both components of the

position are viewed separately it is possible to control as many as four DOF with just one

gesture. As, for the hand posture synergies, we only want to control 3 DOF, consider-

ations should be made which properties shall be taken into account for controlling the

synergies. It seems best to choose those properties having the biggest range in value:

• The y component of the gesture position has a range of slightly less than the screen

height

• The x component of the gesture position has a range of slightly less than the screen

width

• The orientation has a range of 2π.

• The gesture size has a range corresponding to the user’s finger span, which should

usually be around 2
3 of the screen width

In first tests, it turned out complicated to have the position of a gesture remain at

the same place in both axes while rotating it or changing its size, the x component of

the position is chosen as one DOF, since it is larger and thus it is possible to have more

granular control on the value of the amplitude.
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All mappings from gestures’ properties to DOF values shall be done linearly. A general

approach has to be found to create these linear functions for all DOF of the hand synergy

as well as the arm.

Linear DOF Mapping

There are multiple requirements for the function to find. Firstly, the linear equation shall

be defined by two points x, y ∈ R2 with x1 and y1 being in gesture property space and x2,

y2 being in the corresponding DOF space (amplitude or arm position). Secondly, the out-

put value shall be limited to the possible values of the DOF, for the synergy amplitudes

this will be −50 and 50.

A function lm : (x ∈ R2, y ∈ R2, vmin ∈ R, vmax ∈ R, p ∈ R) → R shall be found with

the parameters being the two points the linear equation spans in between, the minimum

and maximum output value and the value of the gesture property. It outputs the value

that can then directly be passed into the DOF value.

Finding the linear equation spanned between two points x, y ∈ R2 is relatively easy.

Beginning from the general linear equation

f (x) = m · x + b

it is well known that

m =
y2 − x2

y1 − x1

b = x2 −m · x1

= x2 −
y2 − x2

y1 − x1
· x1

To clip a value v to a minimum and maximum value vmin and vmax (with vmin ≤ vmax)

one min and a max operation have to be performed1:

clip(vmin, vmax, v) = max(vmin, min(v, vmax))

Combination of the linear equation and the clip function results in the function defined

below.

Definition 6 Let
lm : (R2, R2, R, R, R)→ R

be a function for linearly mapping a value p onto a linear function between two points x, y ∈ R2

1If it’s unknown which limiting value is greater, two min and max operations have to be performed:
clip(v1, v2, v) = max(min(v1, v2), min(v, max(v1, v2)))
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with the output limited between vmin, vmax ∈ R. Then lm is

lm(x, y, vmin, vmax, p) = clip
(

vmin, vmax,
(

p · y2 − x2

y1 − x1
+ x2 −

y2 − x2

y1 − x1
· x1

))
. (4.6)

Mappings

Let wscreen be the width of the screen in pixels, α ∈ RN the vector of amplitudes for a

selected synergy S, G a gesture with |G| = 2. The proposed mappings for later imple-

mentation are:

• α1 = lm ((1200, 50), (300,−50),−50, 50, s(G))

As the size of a gesture is the property easiest to manipulate (with 2 pointers by the

so-called pinch-zoom-movement) the amplitude with the biggest effect is assigned

to it. The values of 1200 and 300 are chosen as 1200 is the size of a gesture with

normally spanned fingers, and 300 is the size of a gesture when the pointers are

already relatively close. Values lower than 300 render the amplitude value of −50

unreachable, as pointers are perhaps not be able to be placed that close.

• α2 = lm ((wscreen · 0.25, 50), (wscreen · 0.75,−50),−50, 50, (c(G))1)

For the second significant amplitude the x component of the gesture position is

chosen. It is mapped between 1
4 and 3

4 of the width of the screen as the actual limits

cannot be reached with gesture positions due to all pointers having to be at (or

beyond) screen borders.

• α3 = lm
((
−π

2 , 50
)

,
(

π
2 ,−50

)
,−50, 50, o(G)

)
For the third significant amplitude the orientation is mapped from −90◦=̂− π

2 to

90◦=̂π
2 . Rotations to values greater or less than these have shown to be only possi-

ble when moving the tablet or changing the size and position of a gesture.

αi, i = {1, 2, 3} are evaluated simultaneously whenever the position of a pointer within

the gesture changes. Joint angle values are then calculated using (4.1) with S being the

currently selected synergy. Once the joint values are calculated they can be published to

the ROS nodes of the Shadow C5 hand.

4.3.3 Relative Approach

Within the relative approach, the values of the significant amplitudes shall not depend

on the actual properties of a gesture but on the change each property experiences. This

makes it necessary to store the current value of the amplitudes and initialize them, e.g.

with 0. Whenever a gesture changes, the difference of the properties is evaluated and

mapped to a difference of the amplitude which is then applied.
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Definition 7 Let G be a gesture. G(t) describes the state of the gesture (i.e. the position of the
pointers within the gesture) at time t. Then

ci(G) = c(G(t0 + i · ∆t)) . (4.7)

Accordingly, si(G) and oi(G) are defined.

Definition 8 Let G be a gesture. At the time i it is

∆c(G) = ci(G)− ci−1(G) . (4.8)

Again, ∆s(G) and ∆o(G) are defined accordingly.

With the above definitions we can describe the change of G between two time steps

and the change of the gesture’s properties between two time steps. The touch pointers

are evaluated by the Android operating system periodically, so while a touch pointer is

present on the screen, periodic updates are sent to the application. As we do not know

the time steps, ∆t may be small, in particular it may be 0 without affecting the validity of

following calculations.

Next, a rate of change of the output value has to be declared. This rate is given in
value change

property change . If, for example, the value of an amplitude shall change by cv = 25 every

cp = 1000 pixels the gesture is moved in one direction, the value would be cv
cp

= 25
1000 =

0.025. For reasons of simplicity, cv and cp shall be passed to the relative change function

defined below.

Definition 9 Let rm : (R, R, R, R, R, R) → R be the relative mapping function that alters
the value vold by the changed parameter ∆p at the rate of change cv

cp
while clipping the output

between vmin and vmax with vmin ≤ vmax. Then

rm(cv, cp, vmin, vmax, vold, ∆p) = clip(vmin, vmax, vold +
cv

cp
· ∆p) . (4.9)

Updating the output value upon a changing gesture takes two steps, for example with

amplitude α1:

α1,new = rm(50, 1200,−50, 50, α1, ∆s(G))

α1 = α1,new

For α2 and α3 the calls to rm are accordingly:

α2,new = rm(50, 1200,−50, 50, α2, (∆c(G))1)

α3,new = rm(40, π,−50, 50, α3, ∆o(G))
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Whether these values are well chosen and usable has to be evaluated during tests.

When all amplitudes have been calculated the process of calculating the joint angles and

publishing them is the same as in Section 4.3.2.

4.3.4 Arm Control

Figure 4.8: The coordinate system rel-
ative to the arm

Controlling the arm with touch gestures is not as

easy as controlling the grasp synergies since the

arm’s joint angles have to be calculated using the

BioIK service. The objective is to give the user

the opportunity to control the position of the palm

of the robotic hand in Cartesian coordinates. To

achieve this, it is important to know the orienta-

tion of the coordinate system around the arm as

well as safe coordinates, where the robot arm can

move without causing any danger to its environ-

ment. Figure 4.8 gives a good insight in the coordi-

nate system used. Potentially, an arbitrary coordi-

nate system could be used, but the BioIK service at

the point of writing only accepts coordinates in the so-called world coordinate system. It

has its origin on the floor below the base of the robot arm. Each square in the illustration

represents one meter in the real set-up. The shown model is assumed to be sufficiently

exact to use it as a simulation for the real robot with its surroundings. It is important to

keep in mind that the y-coordinate is counter-intuitively rising to the back, which means

it is falling in the direction to the front. Also, from the perspective of the robot, the x axis

is oriented to the left.

Table 4.3: Position limits for
the palm of the robot’s hand

Axis Min. Max.

x −0.2 0.4

y −1.2 −0.8

z 1.05 1.17

In order to prevent damages to the robot or its environ-

ment, a bounding box has to be found where the actions of

the robot do not cause any unwanted movements which can

occur since the shortest way from position x to position y
may be short in cartesian space, but still long in joint coordi-

nates. It is important to keep in mind that for close points,

the BioIK service might output extremely different joint po-

sitions, as it assumes the new solution more fitting than the

old one. This, however, results in a quite small work space for the robot compared to the

overall table size. For the first approach, the limits for all 3 axes assumed safe are denoted

in Table 4.3.

To map touch interactions to positions of the palm of the hand the same functions as in

Sections 4.3.2 and 4.3.3 are used with the clipping borders set to the safe axes’ limits. As a

starting point, the x-axis is mapped to the x-position of a three-pointer gesture, the z-axis

to the y-position of a three-pointer gesture. As before, only half of each screen dimension
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will be mapped, leaving out a quarter on each end to make it easier to reach all limits.

The y-axis will later be mapped to another property of the three-pointer gesture or the

position of a four-pointer gesture. Once the desired palm position was calculated it is

passed to the BioIK service first, the resulting joint angles returned by the service are

then passed to the robot.

4.4 Direct Fingertip Mapping

As Toh et al. [26] state in their work, dexterous grasping and telemanipulation tasks fre-

quently focus on precise control of fingertips in a plane surface. They directly map fin-

gertip positions from the touchscreen to a plane in the working space. As this approach

seems interesting it shall also be implemented within this thesis.

Heavy use of the BioIK service is made for this, as not only the position of the palm will

be given to the service as a goal, but potentially up to 5 positions for each fingertip will

be passed. For the first approach only 3 fingertips shall be usable by the functionality. To

find out which positions in three-dimensional space shall be passed for the fingertips, we

first have to define a plane the fingertips shall be placed on in three-dimensional space.

This is done using the parametrized form to represent a plane

~E =~b + t · ~e1 + s · ~e2

with~b being the base vector of the plane and ~e1, ~e2 determining the orientation of the

plane from the base. It is |~e1| = |~e2| = 1 and ~e1 · ~e2 = 0, which means that on the surface a

new two-dimensional coordinate system is created with its origin in~b. By assigning the x
and y coordinates of a point to t and s, points from a two-dimensional coordinate system

can then easily be mapped into three dimensions.

As one unit in the coordinate system of the robot represents one meter in the real world,

the coordinates of pointers on the screen shall be calculated in meters of distance to the

origin of the screen (which usually is the top-left corner). The position of a pointer is

known in pixels and the screen resolution is known in dots per inch (DPI). To transform

a pixel value p into meters on a screen with a resolution of r DPI, the calculation

pm =
p
r
· 2.54

100
(4.10)

has to be made, as an inch (in) is 2.54cm. The resulting values can then be passed into the

equation for the surface to get the corresponding points in the higher dimensional space.

These points have to be calculated for each fingertip on the screen, the resulting positions

shall then be sent to the BioIK service, resulting in joint angles for every joint on the robot

to reach these positions.

If the plane on which the fingertips are mapped shall be changed, only ~e1 and ~e2 have

to be changed in a way that they span another plane, e.g. a tilted one. Also, to move the
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Figure 4.9: Comparison of the coordinate systems between which shall be mapped. Left: Tablet,
Right: Arm coordinate system

fingertips in space (e.g. to drag an object in one place and put it to another) no more work

has to be done than changing~b.

For first tests, the vectors defining the plane are chosen as

~b =

 0.1

−1.1

1.2

 .

This value is relatively straight ahead of the arm and about 15-20cm above the table.

This point represents the top-left corner of the touchscreen. Fingertips are mapped using

this point as a base in the coordinate system where one unit is one meter. This following

two spanning vectors are chosen accordingly.

~e1 =

−1

0

0

 ~e2 =

0

1

0


The x value rises to the left for the coordinate system of the robot, but to the right

for the screen of the tablet, which is why the first component of ~e1 is negative. The y
coordinate of the robot’s coordinate system rises to the bottom, so does the y coordinate

of the touch screen, the corresponding component in ~e2 is therefore positive (See Figure

4.9 for a visual comparison of the coordinate systems).

4.5 Software Architecture

Within this section the software architectural design will be discussed. The goal is to

create a software design which is easily extensible by further work, making the software

a basis for future research. To accomplish this, well-known design patterns are used. The
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Figure 4.10: General Model-View-Controller separation

three most commonly used patterns in the software are:

• Model-View-Controller (MVC)

• Observer

• Singleton

The use of all three is described by examples from the overall software design. Eile-

brecht and Starke [8] give a good overview over existing patterns and their use-cases and

implementation in their book, which is where the information about patterns used in the

following sections was mainly taken from.
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4.5.1 Model-View-Controller (MVC)

Model-View-Controller is a pattern widely used in applications where a set of data (e.g.

data from a database) shall be displayed and modified from within multiple interfaces

(so-called views)[8]. To accomplish this, a Controller is set in between the data (Model) and

the interface implementation (View). This separation of concerns makes it easy to extend

or replace one of the three modules without directly affecting the others. A controller

gets data from the Model, prepares it for display and passes it on to the View, where

the concrete display of the data is then defined. The Controller gets feedback from the

view, which may then be converted into actions affecting the Model again. Within the

developed app design, all three modules can be found, although not always a single

class can be assigned for one module. Figure 4.10 gives a rough overview of how the

different functionalities are distributed between classes.

Model

The Model, which in this case is the data about the robot and its joints, is accessed using

the AxisManager. The actual communication is done within the C5LwrNode class, encap-

sulating all ROS-specific calls and hiding away the actual communication layer from the

rest of the application. Having chosen this design, it is relatively easy to replace either

the joint data management or the communication layer to the robot.

The AxisManager offers functionality to get or set information for each axis of the robot.

It gives interface methods to

• Get or set the current angle

• Enable or disable continuous movement

of each joint. It is lockable, meaning that - when locked - no axis updates are accepted

by callers, stopping all movements of the robot independent from other controllers. This

functionality is important for the safety interlock button described in Section 4.1.2.

Angle representation within the AxisManager is in degrees, whereas the communica-

tion with ROS takes place in radians. Conversion between those two has to be made in

all actions. To make this conversion functionality exchangable, an interface is declared

called ValueConverter, allowing to define and assign each joint a different converter. The

only implementation used in this application, however, is the AngleRadianConverter, con-

verting angles from degrees to radians and vice versa.

The C5LwrNode class is a rosjava node offering all ROS-specific interfaces to the ap-

plication. Joint angles are received by the node and passed to the AxisManager over an

implementation of the Observer-Pattern (see Section 4.5.2). It also receives joint angles

over the observer pattern (by AxisManager), passing them on to the robot over ROS. Ad-

ditionally the BioIK service calls are implemented within the node. This on the one hand

creates the need for controller classes to call more than only the AxisManager, but encap-

sulates all ROS specific calls to one class, which was assumed as the smaller drawback



30 4 Concepts

here. The conglomerate of AxisManager, C5LwrNode and all helper classes represents the

Model within the software design.

View

The View modules are represented by classes implementing the View class from Android.

They display data either directly from the AxisManager, like the axis control page (Axis-
ControlFragment) or states of e.g. touch gestures, like GestureView, which is used in the

pages implementing the grasp synergy control functionality. The type of display is very

different, specific implementations are described in section 5.2 in a more detailed manner.

As the most important feedback to the user should be the action of the operated robot

itself, the view modules are not as elaborated and specifically designed as the other two.

As seen in Figure 4.10, the view usually consists of a single class, whereas Model and

Controller are deeper partitioned and described.

Controller

Multiple types of controllers exist in the application. There are controllers that take ges-

tures as an input and provide joint angles as an output (SynergyProxies, AbsoluteSyner-
gyProxy and RelativeSynergyProxy for absolute and relative synergy control) and ones that

take gestures as an input and output joint angles for the arm, but by using the ROS func-

tionality offered by the C5LwrNode (CartesianArmManager). As these classes are coupled

relatively strong, they can be seen as one controller divided into multiple sub-controllers.

Also, the touch parsing functionality used by both synergy approaches is encapsulated

into its own class (GestureParsing), taking touch input data from the View and outputting

gesture information.

For the direct fingertip mapping approach, the number of classes is small compared to

the other approaches. The DfmtProxy takes care of parsing the touch data provided by

its corresponding View (FingertipView), requesting joint angles from the C5LwrNode and

passing them on to the AxisManager.

4.5.2 Observer

Multiple classes have to exchange data between each other and have to be able to re-

port data changes at arbitrary times. To prevent the occurrence of circular dependencies

between classes a variation of the Observer-Pattern is used within the application. The

Observer-Pattern is used to give loosely coupled classes the ability to unidirectionally give

notifications to each other about data changes[8].

There are two main uses of the Observer-Pattern: SynergyProxyBase (The base class for

the absolute and relative synergy proxies) implements the GestureObserver interface to

get notified about gesture changes from the GestureParser. Figure 4.11 shows the depen-

dencies between the different classes and interfaces within this pattern as used here.
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Figure 4.11: Observer-Pattern for GestureParser

Figure 4.12: Observer-Pattern for AxisManager and C5LwrNode
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AxisManager and C5LwrNode have to exchange joint data between each other in both

directions. To accomplish this, both implement the RobotJointDataReceiver interface (see

Figure 4.12. The design here is relatively far away from the original observer pattern, as

both classes do not know of each other. However, the common interface is used to notify

each other about changes in the joint angles (either to send them to the robot or as they

are received from it). The connection between both classes is made in the entry point of

the Android application, MainActivity. As MainActivity manages the overall application

set-up, it is the most suitable point to do so. If one or both of the classes were exchanged

in later development, the only place that had to be changed to alter the connection would

also be MainActivity.

Aside from the original Observer pattern described in [8] multiple interfaces are de-

scribed for observers to directly pass data to them. Following the conservative approach,

observers would just be notified about changes, giving them the necessity to fetch them

from the observed object on their own.

4.5.3 Singleton

As several classes exist of which only one instance is needed (and sensible to be created)

within all of the functionality of the application, the Singleton-Pattern is used to ensure

that only one instance exists. The singleton pattern is implemented by creating a private

constructor which is called from a static method on the desired class. The created in-

stance is saved into a static field and then returned on all subsequent calls. An example

implementation of the pattern (as taken from [8]) can be found in Listing 4.1.

The Observer-Pattern is implemented by the following classes:

• AxisManager, as it is important that all axis actions (and especially the safety in-

terlock) are existent and performed just once over all of the application. Multiple

instances of the AxisManager may interfere with each other and thus cause unpre-

dictable behaviour of the overall set-up.

• CartesianArmManager, as it holds the current position of the arm in Cartesian co-

ordinates. For the same reasons as with AxisManager, having multiple instances

(and states) of this class available in the application would not be sensible – or even

dangerous!

Only one instance exists during the runtime of other classes, too, like the C5LwrNode.

As for the above classes, having multiple instances available could cause unexpected and

unwanted behaviour and thus it has to be ensured only one instance is created. However,

with the node implementation ensuring this is not as easy as using the Singleton-Pattern,

because multiple parameters have to be passed to the class on creation. In this case,

MainActivity, as the main entry point for the application, takes care of the node’s instance,

passing it to all classes that need access to it. The same applies for all the user interface

specific classes (mainly the Fragment classes, offering the different tabbed views). Here,
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no singleton pattern can be used by Android’s restrictions, so MainActivity takes care of

these, too.

Listing 4.1: Example implementation of the Observer-Pattern

1 class Singleton {

2 private static Singleton instance = null;

3
4 public static Singleton getInstance() {

5 if(instance == null) {

6 instance = new Singleton();

7 }

8
9 return instance;

10 }

11
12 private Singleton() { }

13 }
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5 Implementation

5.1 Preparations

5.1.1 Setting up a Virtual Machine

For all developments within this thesis a virtual machine was used. This makes it easy

to reproduce the environment within the labs at the TKRN group as well as having a

portable development solution isolated from the rest of the computer’s operating system.

As the ROS version called Kinetic is widely used within the set-ups around the robot, I

will also develop the application using this version. This reduces the risk of incompati-

bility issues during development. ROS Kinetic is available as packages for Ubuntu up to

version 16.04[19], which is why we install this version of Ubuntu within a new virtual

machine. Enough virtual hard disk space and memory is assigned to the virtual machine

(200GB HDD, 8 GB RAM) as well as 4 processing cores. This set-up should be sufficient

for all purposes during this thesis.

If the virtual machine shall run ROS nodes which have to be accessible by ROS nodes

outside the machine itself (i.e. the Android tablet running the control application) the

network interface of the virtual machine should be configured as a bridged network con-

nection. This lets the network’s DHCP (if present) assign the virtual machine its own IP

address reachable from the network. However, this was not possible within the univer-

sity’s network, as Oracle VirtualBox was not able to create a working bridged network

adapter using the computer’s Wi-Fi connection. During development within the lab an-

other computer directly connected to the university network was used to run roscore.

5.1.2 Setting up ROS

Installing ROS

Setting up ROS Kinetic within a fresh Ubuntu 16.04 installation is fairly simple. First,

the ROS Aptitude-repository has to be added to the packages sources file and the corre-

sponding key has to be added to the key storage to enable downloading the packages.

Aptitude is the package and dependency-manager used in Ubuntu. Once this is done,

the package ros-kinetic-desktop-full can be installed which will download and install all

available packages for ROS Kinetic.

The commands to install ROS are denoted in Listing 5.1. After these commands have

been executed in a terminal window ROS is readily installed.
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Listing 5.1: Commands for installing ROS[19]

1 sudo sh -c ’echo "deb http://packages.ros.org/ros/ubuntu $(

↪→ lsb_release -sc) main" > /etc/apt/sources.list.d/ros-latest.

↪→ list’

2 sudo apt-key adv --keyserver hkp://ha.pool.sks-keyservers.net:80 --

↪→ recv-key 421C365BD9FF1F717815A3895523BAEEB01FA116

3 sudo apt-get update

4 sudo apt-get install ros-kinetic-desktop-full

ROS is by default installed to /opt/ros/kinetic/. To make use of all available command

line tools provided by ROS it is important to load the file /opt/ros/kinetic/setup.bash into

the currently open (bash)-command-prompt. This is either temporarily done by issuing

Listing 5.2: Temporarily loading the ROS environment into bash

1 source /opt/ros/kinetic/setup.bash

or permanently by adding this line to the file ∼/.bashrc by executing the following

command:

Listing 5.3: Permamently installing the ROS environment into bash

1 echo "source /opt/ros/kinetic/setup.bash" >> ~/.bashrc

2 source ~/.bashrc

When this is done, ROS is completely set up on the development machine.

Setting up a Catkin Workspace

Catkin is a build system and workspace management utility provided with ROS. It sup-

ports developers to create, develop and build packages for ROS applications. To create

a catkin workspace within the current user’s home directory, issue the commands from

Listing 5.4 after setting up ROS and sourcing the setup.bash-file. The instructions to set

up catkin are taken from [20].

Listing 5.4: Setting up a catkin workspace

1 mkdir -p ~/catkin_ws/src

2 cd ~/catkin_ws/

3 catkin_make

4
5 source devel/setup.bash

ROS and catkin are now fully set up and can be used for further development.

5.1.3 Installing Android Studio

Android Studio is used as IDE during development of this thesis and should be installed

according to the official documentation1. It is sensible to add the bin directory within
1https://developer.android.com/studio/install.html

https://developer.android.com/studio/install.html
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Figure 5.1: Needed Android SDKs

Android Studio’s installation path to the PATH environment variable to make Android

Studio accessible by just typing studio.sh into a terminal window.

After Android Studio was installed successfully, it is important to select and install the

correct Android SDK versions as the project will compile with the Android 7 compiler to

work with Android 4. To do so, open The SDK Manager (Tools > Android > SDK Manager)

and select the SDKs according to Figure 5.1. When this is done, Android Studio is set up

to develop and compile the application.

5.1.4 Modifying and Compiling Rosandroid

Since the application developed in this thesis shall work on Android from versions be-

ginning at 4.0.3 we have to modify the rosandroid code on one little detail to make ev-

erything work fine. In the created catkin workspace, go to the src folder and clone the

rosjava and rosandroid repositories there:

Listing 5.5: Cloning the rosandroid and rosjava repositories

1 git clone https://github.com/rosjava/rosjava_core.git

2 git clone https://github.com/rosjava/android_core.git

3 git clone https://github.com/rosjava/rosjava_messages.git

Then line 38 in the file

android_core/android_10/src/org/ros/android/RosActivity.java

has to be replaced by

Listing 5.6: Change to make to RosActivity.java

38 public abstract class RosActivity extends android.support.v7.app.

↪→ AppCompatActivity {

This gives us the ability to use the already-built features in rosandroid like the auto-

matically displayed activity to connect to a ROS master and built-in node handling even
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in older Android versions. When changes are made, issue a catkin_make command in the

catkin workspace’s root directory. Rosjava and rosandroid will then be built from source

and deployed to a Maven2 repository from where the binaries will be loaded by Android

Studio on compile time.

5.1.5 Starting the Environment

To start up the development environment with the ROS master, the BioIK service and the

rviz! simulation of the robot, first the tams_cml3 and bio_ik_service4 packages has to be

cloned into the catkin workspace, as well as the tams_multitouch package, which has to

be copied into the workspace. After catkin_make was executed successfully, the programs

are ready to be started. The following commands have to be entered in this order, but

within different terminal sessions:

Listing 5.7: Commands to start up the development environment

1 roscore

2 roslaunch tams_multitouch demo.launch

3 roslaunch tams_f329 4_moveit.launch

4 rosrun bio_ik_service bio_ik_service

If interaction with the robot hardware is wanted, the corresponding programs and

nodes have to be started according to the file tam_cms/tams_f329/README.txt within the

catkin workspace.

5.2 User Interface

The user interface of the application was developed according to the considerations made

in Chapter 4. Additionally, it turned out during development, that a basic tele-operation

screen for the robot arm would be useful, that enables the user to bring the arm into a

defined home position as well as doing simple step-wise manipulation to the robotic arm

by moving the desired position of the hand palm by single small steps per button-press.

The screen’s layout and functionality is described in Section 5.2.4.

The safety interlock button on all screens is immplemented using a FloatingActionBut-
ton, a predefined control by Android which is designed to float in one corner of the screen

above the rest of the screen’s contents. To have the FloatingActionButton work in the ex-

pected way, all screen contents have to be embedded into a CoordinatorLayout container.

The icon of the button has a Play symbol in idle state, in activated state is shows a Pause
symbol until the button is released. The code to make the interlock button is described in

Listing 5.8. It has to be inserted into the overridden onStart() method in every Fragment

2Maven is a dependency and package management system for Java libraries.
3https://gogs.crossmodal-learning.org/norman.hendrich/tams_cml
4https://gogs.crossmodal-learning.org/philipp.ruppel/bio_ik_service

https://gogs.crossmodal-learning.org/norman.hendrich/tams_cml
https://gogs.crossmodal-learning.org/philipp.ruppel/bio_ik_service
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of the application, in which the functionality shall exist - i.e. every page with controls for

the robot.

Listing 5.8: Code for the interlock button

1 @Override

2 public void onStart() {

3 super.onStart();

4
5 final FloatingActionButton lockButton = ((FloatingActionButton)

↪→ getView().findViewById(R.id.lockButton));

6
7 lockButton.setOnTouchListener(new View.OnTouchListener() {

8 boolean locked = true;

9
10 @Override

11 public boolean onTouch(View view, MotionEvent motionEvent) {

12 switch(motionEvent.getAction())

13 {

14 case MotionEvent.ACTION_DOWN:

15 // Code to unlock robot operations

16 lockButton.setBackgroundTintList(ColorStateList.valueOf(

↪→ getResources().getColor(R.color.posOk)));

17 lockButton.setImageResource(android.R.drawable.

↪→ ic_media_pause);

18 break;

19
20 case MotionEvent.ACTION_UP:

21 // Code to lock robot operations

22 lockButton.setBackgroundTintList(ColorStateList.valueOf(

↪→ getResources().getColor(R.color.posNOk)));

23 lockButton.setImageResource(android.R.drawable.ic_media_play)

↪→ ;

24 break;

25 }

26 return true;

27 }

28 });

29
30 // ... more code for onStart()

31 }

F
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Figure 5.2: The synergy control screen

Figure 5.3: display of a two-pointer and a three-pointer gesture on the synergy screen
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5.2.1 Synergy Pages

The synergy pages are implemented as a mostly blank white page, with a small drop-

down control on the left to select the synergy that shall be controlled, as well as two

buttons to set all amplitudes to a known state (i.e. either all zero or all 50). The values

of all three controllable amplitudes are displayed in the upper left corner of the control

area. The screens for absolute and relative control look the same, which mode is active

can be seen in the upper bar with the tab controls. Two lines determine the middle of the

control area, which is important for the absolute approach, as the absolute placement of a

gesture is important. Figure 5.2 gives an impression of how the screen looks on the tablet

computer.

Figure 5.3 shows how a two-pointer and a three-pointer gesture is displayed on the

synergy pages. While each pointer is marked by a red circle, the center (i.e. the position)

of a gesture is displayed as a small black circle, with all pointers being connected to the

center by a black line. The orange circle gives an impression of the calculated size of

a gesture while the yellow line within the orange circle points in the direction of the

orientation which was calculated for a gesture. The calculated values are also displayed

in clear text next to the center of a gesture. This is done mainly for debugging purposes,

but may also give an interesting insight into the state of a gesture, for example for training

purposes. Note that the orientation is not given in degrees, but in radians.

5.2.2 Direct Fingertip Mapping (DFTM) Page

Figure 5.4 gives an overview of how the DFTM page looks like. It has even less contents

than the synergy pages, as no selection has to be made for the current implementation

of the DFTM approach. In later iterations it would be sensible to add controls to move

the base of the current workspace on which the fingertips are mapped. As this is not

implemented within this thesis, no such controls are displayed. In the same figure, an ex-

ample of how touch pointers are displayed is given for three points. Next to each pointer

the name of the link controlled by this pointer is displayed, as well as the coordinates in

screen coordinates (i.e. pixels) and world coordinates (i.e. centimeters), both originating

in the top-left corner of the white control area. As described more detailed in Section 5.6,

the pointers are assigned to the links they control in the order in which they are placed

on the screen. If a finger is lifted from the screen (i.e. the touch pointer is de-registered

by the Android operating system), one of the following two actions will be performed:

• If a pointer is removed from the screen and another pointer still is on the screen,

which was added later, the removed pointer is marked as not present. It is still

included in IK requests while its position does not change.

• If no such pointer exists, i.e. the lifted pointer was the last present pointer in order

of occurrence, it is removed and all pointers laid down after the current one but

marked as not present are also removed and not included in IK requests anymore.
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Figure 5.4: The DFTM screen with three pointers

A pointer which is marked as not present is displayed as an unfilled circle with a black

border (refer to Figure 5.5 for an example). Once the user places a finger within the black

circle, it is registered as this pointer again and the pointer is marked as present.

5.2.3 Axis Control Page

The axis control page consists of many single axis controls (one for each axis or joint avail-

able in the robot, see Figure 5.6), which – as defined earlier – possess two buttons, one to

increase and one to decrease the position of the axis or joint. Between those two buttons

the target value is displayed (on the top in bold), as well as the currently measured value

as received from the robot (in the bottom). The colour between the buttons indicates the

magnitude of difference between the target value and the currently measured value as

described in Section 4.1.5. Axis control widgets for axes that are not controllable (i.e. the

first one for every finger except the thumb) have their buttons greyed out and are thus

only there to display the current value of the axis.

Two extra buttons are placed on the screen, one labelled Stop and one All Zero. These

buttons are mapped to functionality explained in Section 5.4.6. The former sets all target

values to zero, while the latter copies all currently measured values into the target value,

causing the robot to stop all movements.
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Figure 5.5: The DFTM screen with three pointers, of which one is currently not laid on the screen

Figure 5.6: The axis control page
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Figure 5.7: The arm tele-op page

5.2.4 Arm Tele-Operation Page

As a last page, the arm tele-op page serves as a remote control to move the arm in Carte-

sian space. The functionality of the CartesianArmManager is described in Section 5.5.2. It

is important to note that the wording left, right, forward, backward are relative to the opera-

tors point of view, as standing in front of the robot. Each button press moves the palm of

the robot by one centimeter into the desired direction. A press on the Home button brings

the robot into a home position, which is located directly in front of the robot at the border

of the table approximately 20cm above the plate. This page was implemented for testing

reasons, but comes in handy when using the synergy approaches, as the arm should be

moved into the Home position first before using the gesture control. Doing this using this

page is easier than moving every joint on its own using the axis control page. Figure 5.7

gives an impression of the page.

5.3 ROS integration

Thanks to rosandroid it is easy to integrate ROS into an Android application. When the

libraries are included in the project the main thing to change is that the main activity has

to inherit from RosActivity instead of the plain Android Activity class.

Listing 5.9: Changes to MainActivity

1 public class MainActivity extends RosActivity {
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2 //...

3 }

Figure 5.8: The rosandroid master chooser activity

After this change was made,

the RosActivity implementation

handles multiple tasks, begin-

ning with showing a master
chooser activity, in which the user

can connect to a ROS master

node, to handling all connection

lifetime events of ROS parts. The

master chooser activity (see Figure

5.8) lets the user connect to an ex-

isting ROS master node. Addi-

tionally, it gives the Android ap-

plication the opportunity to cre-

ate a dedicated master node on

the device itself. As this could affect the overall performance of the application and a

significant amount of functionality has to be run on a more powerful machine, the ROS

master is started on a dedicated computer and the Android application connects to this

existing master node.

RosActivity is an abstract class. To implement it, the init() method has to be overriden

by inheriting classes. This method is called once the connection to the ROS master node

was established and custom nodes can be initialized and connected. All other initializa-

tion steps regarding the implemented ROS nodes should also be done here. As shown

in Listing 5.10, first an instance of the C5LwrNode is created and then assigned to all in-

stances that consume its functionality5 (AxisManager, CartesianArmManager, DfmtProxy).

After all this is done, the node is registered with the ROS master node. Details on the

initialization of the C5LwrNode node can be found below. In theory, multiple nodes can

be started and registered with the master within one application.

Listing 5.10: Initialization of the ROS connection

1 @Override

2 protected void init(NodeMainExecutor nodeMainExecutor) {

3 axisManager = AxisManager.getInstance();

4
5 node = new C5LwrNode("/joint_states", "/hand/joint_goals", "/lwr/

↪→ jointPositionGoal");

6 node.addJointDataListener(axisManager);

7

5Information on how to initialize ROS applications was taken from an official rosandroid example
found at https://github.com/rosjava/android_core/blob/kinetic/android_tutorial_
pubsub/src/org/ros/android/android_tutorial_pubsub/MainActivity.java

https://github.com/rosjava/android_core/blob/kinetic/android_tutorial_pubsub/src/org/ros/android/android_tutorial_pubsub/MainActivity.java
https://github.com/rosjava/android_core/blob/kinetic/android_tutorial_pubsub/src/org/ros/android/android_tutorial_pubsub/MainActivity.java
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8 axisManager.setRobotNode(node);

9 CartesianArmManager.getInstance().setNode(node);

10 DftmProxy.getInstance().setNode(node);

11
12 NodeConfiguration cfg = NodeConfiguration.newPublic(getRosHostname(),

↪→ getMasterUri());

13 nodeMainExecutor.execute(node, cfg);

14 }

5.3.1 The C5LwrNode Class

The class C5LwrNode inherits from AbstractNodeMain, which already offers the very basic

lifetime functionality of a ROS node. Some methods have to be implemented by the

developer, like getDefaultNodeName(), which determines the name of the ROS node as

it is registered with the ROS master. In the onStart() method, all start-up procedures

are implemented, like registering topic subscriptions as well as creating publishers and

service clients. Within the onShutdown() method, all resources created before (subscribers,

publishers, service clients) shall be closed and deleted to ensure a clean de-registration

from the ROS master and a clean shut-down of the application. The start-up code for the

ROS node can be seen in Listing 5.11.

Listing 5.11: Startup of the C5LwrNode

1 @Override

2 public GraphName getDefaultNodeName() {

3 return GraphName.of("ba_android/c5lwrnode");

4 }

5
6 @Override

7 public void onStart(ConnectedNode connectedNode) {

8 cNode = connectedNode;

9 handJointStatePub = connectedNode.newPublisher(handPublishTopic,

↪→ JointState._TYPE);

10 armJointStatePub = connectedNode.newPublisher(armPublishTopic,

↪→ RMLPositionInputParameters._TYPE);

11
12 jointStateSubsc = connectedNode.newSubscriber(subscribeTopic,

↪→ JointState._TYPE);

13 jointStateSubsc.addMessageListener(/* ... */);

14
15 try {

16 ikService = connectedNode.newServiceClient("/bio_ik/get_bio_ik",

↪→ bio_ik_msgs.GetIK._TYPE);

17 } catch (ServiceNotFoundException e) {

18 ikService = null;

19 e.printStackTrace();
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20 }

21 }

The methods that are used to offer the functionality of the C5LwrNode are denoted in

Listing 5.12. Because arm and hand joints have to be published to different topics, the

handleJointData() method calls either publishHand() oder publishArm(), depending on the

parameter jointType which is passed by the caller indicating the type of the joint data

given. The two methods to request IK solutions from the BioIK service are relatively

similar, as both initialize the request with the current robot state passed as a parameter

and add a MinimumDisplacementGoal to communicate to the IK solver that a solution is

desirable where the least possible movement in all axes is done. The number of attempts

is set to 1, the time-outs to find a solution are set to 10ms for the palm position and 500ms
for the fingertip positions. While for the palm only one PoseGoal is added, containing

the desired pose of the palm constructed by the x, y, z position and Quaternion rotation

as passed by the caller, in the method to get a solution for multiple fingertips one Posi-
tionGoal is added for each fingertip as well as an OrientationGoal to have the palm of the

robotic hand always point in the same direction. In GetIKJointsFingertips(), the fingertips
parameter contains a map with the link names (e.g. fftip, thtip...) as key values and the

desired 3-dimensional position of the link.

Listing 5.12: C5LwrNode interface

1 public class C5LwrNode extends org.ros.node.AbstractNodeMain implements

↪→ RobotJointDataReceiver {

2 private void publishHand(HashMap<String, Double> data);

3 private void publishArm(HashMap<String, Double> data);

4
5 @Override

6 public void handleJointData(int jointType, HashMap<String, Double>

↪→ data);

7
8 public void GetIkJointsPalm(Map<String, Double> currentState,

9 String[] lockedAxes,

10 double x, double y, double z,

11 double rotx, double roty, double rotz, double rotw,

12 ServiceResponseListener<GetIKResponse> hdl);

13
14 public void GetIKJointsFingertips(Map<String, Double> currentState,

15 Map<String, PointInSpace> fingertips,

16 ServiceResponseListener<GetIKResponse> hdl);

17 }
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5.4 The AxisManager

The most important and most central functionality of the overall application is offered by

the AxisManager class. It is responsible for holding the current joint angles for all joints

in memory, as well as the current target values along multiple other bits of information

about each axis or joint. Joints are more generically called axis within the AxisManager,

so this wording will be adopted in the rest of this section.

5.4.1 AxisInformation

All information about an axis is stored in a AxisInformationImpl object. This class im-

plements the AxisInformation interface, which is returned when axis information shall be

given to callers in a read-only manner. The AxisInformation interface is given in Listing

5.13. All the information stored about an axis is accessible here. In particular, this is:

• The identifier of an axis, i.e. a string literal containing the name at which The axis

or joint is known to the ROS nodes.

• The maximum speed the axis may move at.

• The target value to which the axis shall be currently moved.

• The value representing the axis’ current position.

• The value representing the axis’ current target value (see Section 5.4.4 for details).

• The minimum and maximum values the axis may have as position value.

• flags indicating whether the axis is enabled and moving.

• An integer representing the type of an axis. Allowed types are JointType.ARM and

JointType.HAND.

Listing 5.13: The AxisInformation interface

1 public interface AxisInformation {

2 String getIdentifier();

3
4 double getMaxSpeed();

5 double getTargetValue();

6
7 double getMaxValue();

8 double getMinValue();

9 double getCurrentTargetValue();

10 double getCurrentValue();

11 boolean isMoving();

12 double getSpeed();
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13 boolean isEnabled();

14 int getJointType();

15 }

All the information is held within the AxisManager, referenced by the axis identifier.

Manipulation of the data is only done through calls to the AxisManager, to give it full

control about what happens with all axes. The difference between AxisInformation and

the concrete implementation AxisInformationImpl is, that the implementation has a setter

function for every property. All calculations are done within the AxisManager itself.

5.4.2 AxisManager Timer Tick

The AxisManager is designed to work fully asynchronous. All information about axes’

target values is stored in the according AxisInformation object, but only processed from

within the main timer event used in AxisManager. The timer is set to a frequency of

fam = 10Hz. This value can easily be changed by altering the static constant field UP-
DATE_FREQ in the AxisManager task. An implementation of a timer is used which gives

the ability to schedule an event at a fixed rate. java.util.Timer is able to ensure the desired

frequency is reached in the long run by slightly alternating the delays between two exe-

cutions[27]. This is important to have axis movements and publishing done at the correct

speed and frequency. To use this functionality, the method scheduleAtFixedRate() on the

timer has to be used.

All calculations regarding axis movements (Section 5.4.4) are done within the timer

tick only. After all calculations have been done the current joint angles are all sent to the

C5LwrNode to be published over ROS (see Section 5.4.5).

5.4.3 Initialization

When the application starts or is resumed from a sleeping device (i.e. the screen went

off), the AxisManager is initialized. This means that it blocks all actions until it has re-

ceived a specific number of joint states from the C5LwrNode. This measure was imple-

mented to prevent the application from sending joint data to a non-existent robot and

to initialize the joint data within memory with the current state of the robot. After 20

samples (JointStates) have been received, the values are copied into the target values for

each axis. Initializing all joint target values with 0 is obviously not a good choice, as the

robot would then go to this position out of any state it is currently in, causing unwanted

movements and behaviour. During initialization a modal dialog is shown, blocking all

user interaction with the graphical user interface.

5.4.4 Axis Movements

The main task of the AxisManager is managing movement of all axes in a safe manner.

To accomplish this, it restricts the movement for each axis to the maximum speed stored
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within the AxisInformation. Two main modes are available for movement. The first one is

by enabling a constant movement of an axis at a specified speed. The second is by setting

target values, which the axis will then be moved to at a maximum speed defined on a

per-axis basis in the AxisInformation object.

Constant Movement

To set an axis to constant movement at a constant speed, the method

1 public boolean startMoving(String identifier, double speed);

on AxisManager can be called. The parameter identifier is filled with the string literal

identifying an axis, while speed indicates the speed at which the axis shall move. Since

only rotational joints are present it the used set-up, the speed (as well as the maximum

speed defined in AxisInformation) is denoted in degrees
s . The movement speed can be given

either positive or negative, depending on the direction the axis shall move in. With this

function call, only the information that the axis shall move is stored in AxisInformation,

actual movement takes place in the timer event, in which the movement speed in clipped

to the maximum speed defined for an axis and then divided by the frequency of the timer

tick fam. In each timer tick event, the position of an axis moving at speed v is altered by
v

fam
. When a constantly moving axis reaches its limit value, the moving-flag is not reset,

but as the position for an axis is clipped to its maximum and minimum values, no actual

movement is done any further. To cancel a constant movement of an axis, simply

1 public boolean stopMoving(String identifier);

has to be called with the string literal identifying the axis which shall be stopped.

Setting Target Values

The most common use-case in the application is that different parts of the program can

set target values for every axis. Instead of simply sending the values received by other

parts of the program to the robot over ROS, the axis manager implements a safety feature

limiting the movement speeds of an axis at a maximum speed. To accomplish this another

variable is introduced in AxisInformation, the current target value. While the target value of

an axis determines the desired position where the axis shall be at the end, the current
target value is the value which is actually sent to the robot. The current target value is

modified in the timer tick.

To change the target value of an axis, setTargetValue() has to be called. The signature of

the method is

Listing 5.14: Signature of setTargetValue()

1 public boolean setTargetValue(

2 String identifier,

3 double value,
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4 boolean force,

5 boolean notifyObservers

6 );

A call to this method sets the target value pt of the axis identified by identifier to value.

If force is true, the smooth movement mechanism described below is overridden and the

current target value pc is directly set to pt as well. Setting notifyObservers to true results

in the observers of AxisManager being notified about the new target value. As the notifi-

cation often has UI updates as a consequence, it is sensible to notify observers on setting

the last value only, not on changing of every value. For convenience, multiple overloads

of this method exist, setting either notifyObservers to a default of true, or notifyObservers to

true and force to false.

With pt being the target value as set in AxisInformation, pc the current target value, vmax

the maximum speed of an axis and fam the frequency of the main timer tick in AxisMan-
ager, the procedure to move an axis within the main timer tick is as follows:

First, ∆p is calculated, which is the maximum value change within one timer event,

thus

∆p =
vmax

fam
.

Second, the current target value is updated as follows:

pc,new =


pt |pt − pc| < ∆p
pc + ∆p |pt − pc| > ∆p ∧ pt > pc

pc − ∆p |pt − pc| > ∆p ∧ pt < pc

The calculated value pc,new is then stored into the AxisInformation for each axis.

5.4.5 Passing Axis Data to ROS

After each execution of the movement processes described in Section 5.4.4, the newly

calculated values are published to the ROS nodes controlling the robot arm and hand.

As angles for arm joints and hand joints have to be published to different ROS topics,

two calls have to be made. The interface RobotJointDataReceiver, which is implemented

by C5LwrNode, contains a method

1 void handleJointData(int type, HashMap<String, Double> data);

accepting the joint type as the first parameter. The ROS node implementation will choose

the topic to publish the data to by the given type identifier.

At the end of the timer event in AxisManager, first all current target values for arm joints

are taken from the list of AxisInformation. The angle values are converted to radians and

put into a Map, which has the axis identifier as the key and the angle of the correspond-

ing axis as value. handleJointData() is then called with JointType.ARM and the created

map. The same procedure is then executed for all AxisInformations with the type Joint-
Type.HAND.
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Figure 5.9: Enabling and disabling the AxisManager

5.4.6 Stopping Movement and Setting All Axes to Zero

Two extra functions are implemented in AxisManager. The first,

1 public void copyCurrentValuesToTarget();

takes all values currently stored as current value in AxisInformation and copies them into

the target value and current target value fields. This mainly takes the current robot state

and copies it into the target state, which causes all movements to stop. This is especially

useful when the robot cannot reach a position defined by the target position. This is for

example the case when all joints of the hand shall be set to 0◦, as some joints are not able

to completely reach this value. Copying the currently measured value into the target

value stops the robot from trying to reach the actual desired value and, by this, prevents

the hardware from being damaged by trying to reach a non-reachable position for too

long.

The second special method is

1 public boolean setAllZero(boolean force);

which sets all axis target values to 0. If force is true, the current target value is also set to

0. Extreme caution has to be used when calling this function! The robot will move all

joints to a position of 0 degrees either immediately (force is true) or smoothly. The shortest

way in joint space from the current state of the robot to~0 may cause damage to the robot

or its environment. This function was implemented to bring the robot to a known state

using the axis control page. If the corresponding button is pressed, it is called only after

the user has stated that he is aware of the possible dangers.

5.4.7 Enabling and Disabling

The AxisManager can be enabled or disabled. In the disabled state, all calls to setTarget-
Value() are discarded. Upon disabling the AxisManager, all current measured values of all

joints are copied to the current target value, causing the robot to stop all movements (see

Figure 5.9). The function used to enable and disable the AxisManager is

1 public void setLocked(boolean locked);

This function is designed to be called upon touch actions on the safety interlock button

on the user interface pages (see Section 4.1.2).
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5.5 Grasp Synergies

The grasp synergy approach is implemented according to the concepts described in Sec-

tion 4.3. The approaches are implemented using a gesture page for both relative and

absolute method. Relative and absolute approach are differentiable by the title of the

tabbed page selector, apart from that, the pages look the same.

5.5.1 Gesture Parsing

Gesture parsing is separated into multiple classes. The GestureParser class accepts touch

events redirected to it by the GestureViews on the pages for gesture control. It has a

method

1 public void handleTouchEvent(MotionEvent e);

which is called from within the onTouchEvent() handler of the user interface element. The

GestureParser is otherwise independent from the user interface element it is invoked by.

When a new pointer is encountered, it is either added to a already present gesture gesture

it fits or – if the pointer is too far away from any existent gesture – creates a new gesture.

If a pointer is removed from the screen, it is also deleted from the assigned gesture. If no

pointers are left within the gesture, it is also removed. If an event is received stating a

pointer has moved, the pointer location is updated in memory. Upon all of the described

actions, the observers of the GestureParser are notified. These observers implement the

GestureObserver interface, which is shown in Listing 5.15. It gives the GestureParser the

ability to notify observers about the addition or removal of a gesture, as well as the case

in which a pointer of the gesture has changed its position.

Listing 5.15: The GestureObserver interface

1 public interface GestureObserver {

2 void onGestureAdd(Gesture g);

3 void onGestureRemove(Gesture g);

4 void onGestureChanged(Gesture g);

5 }

If the pointer count of a gesture changes, the GestureParser calls the onGestureRemove()
method of observers, and then the onGestureAdd() method, both with the same Gesture
object.

When a gesture is added or its pointer count changes, it is marked as locked by the

GestureParser for the duration of one second. This indicates to dependent classes that the

gesture is new and the data should not yet be used for any control purposes, as the user

might still adjust finger positions. This also takes care of the fact that, to add a multi-

pointer gesture, the android system calls different events for each pointer subsequently:

The software first recognizes a one-pointer gesture, then a two-pointer gesture and finally

a three-pointer gesture, if three fingers were laid on the touchscreen. By ignoring gesture
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input for the first second of a new gesture, the user should have put all fingers onto the

screen and can then control the application. Having input by an unwanted gesture may

cause unexpected behaviour.

In the following the functionality of the three main material classes Location, Pointer
and Gesture is explained.

The Location Class

The Location class represents a two-dimensional vector within the program. It has two co-

ordinates, x and y, which can be accessed by getter methods. It also offers basic function-

ality to work with vectors, including addition, subtraction, multiplication with scalars

and the scalar-product. All functionality is implemented as expected by common sense.

When a mathematical operation is performed using two Location objects, the result is

returned as a new one, as a Location is immutable once it is created.

Listing 5.16: The public interface of the Location class

1 public class Location {

2 public Location(float x, float y);

3
4 public float getX();

5 public float getY();

6
7 public Location add(Location loc);

8 public Location substract(Location loc);

9 public Location multiply(float c);

10 public Location divide(float c);

11
12 public double scalarProduct(Location loc);

13
14 public double getVectorLength();

15 public double distanceTo(Location loc);

16 public double getAngleTo(Location loc);

17 public Location getTurned(double angleRad);

18 public boolean isSame(Location l2);

19 }

As visible in Listing 5.16, multiple advanced operations are also available on Locations.

getVectorLength() returns the length of the vector calculated using the Pythagorean theo-

rem. getDistanceTo() is implemented very similar, as it basically calculates the length of

the differential vector between the Location it is invoked on and the passed second Lo-
cation. Although this could be done by one substract() operation and then performing

getVectorLength() on the result, the calculation is directly implemented here for perfor-

mance reasons.

Listing 5.17: Implementation of getVectorLength() and getDistanceTo()
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1 public double getVectorLength() {

2 return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2));

3 }

4
5 public double distanceTo(Location loc) {

6 return (float)Math.sqrt(Math.pow(loc.x - this.x, 2) + Math.pow(loc.y

↪→ - this.y, 2));

7 }

getAngleTo() returns the angle between the Location it is invoked on and the one passed

as a parameter (Please note that this represents the calculation as defined in Equation

4.5 implemented for arbitrary vectors). The output of this method ranges from −π to π,

with positive angles meaning a clockwise rotation from the invoked Location to the one

passed as a parameter. The reader is referred to Listing 5.18 for the implementation of

getAngleTo(). In Line 4 the determinant of the two combined vectors is calculated and the

result is multiplied with −1 if the determinant is negative.

Listing 5.18: Implementation of getAngleTo()

1 public double getAngleTo(Location loc) {

2 double val = Math.acos(scalarProduct(loc) / (getVectorLength() * loc.

↪→ getVectorLength()));

3
4 if(x * loc.getY() - y * loc.getX() < 0) {

5 val *= -1;

6 }

7
8 return val;

9 }

Lastly, getTurned() returns the current Location rotated by an angle of angleRad. The

angle may range from −π to π, with positive angles meaning a clockwise rotation. is-
Same() is a numerical comparison of the two vectors. Note that floating point numbers

are compared here, on which equality comparisons are problematic. This function is used

to check for exactly the same values, meaning probably the same Location objects.

The Pointer Class

Pointers are the contents of Gestures. They contain of a Location, representing their coor-

dinates on the touch-screen and an id, which is their touch-pointer-id as assigned by the

Android operating system. This class was basically introduced to semantically separate

the pointer id from the location. The id is needed to identify a pointer within the motion

event raised by the operating system. A method is provided to update the location of a

pointer, in which a new Location object is created.

Listing 5.19: The Pointer class
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1 public class Pointer {

2 public Pointer(int id, float x, float y);

3
4 public int getId();

5
6 public Location getLocation();

7 public void setLocation(float x, float y);

8 }

The Gesture Class

The Gesture class represents a gesture as defined in Section 4.3.1. It is basically a set of

Pointers with a set of properties. Its public interface is denoted in Listing 5.20.

Listing 5.20: Public interface of the Gesture class

1 public class Gesture {

2 public boolean isLocked();

3 public void setLocked(boolean locked);

4
5 public void addPointer(Pointer p);

6 public void removePointer(Pointer p);

7 public int getPointerCount();

8
9 public boolean catchesPointer(Pointer p);

10 public float getCatchRadius();

11 public float getDistanceToCenter(Pointer p);

12
13 public Location getCenter();

14 public float getSize();

15 public double getOrientation();

16 }

The first two methods set and query the locked state of a gesture, followed by three

methods to add and remove pointers, as well as querying the number of currently avail-

able pointers in a gesture. Whenever a pointer is added to or removed from a gesture, the

thumb pointer is evaluated according to the rules defined in Section 4.3.1. catchesPointer()
determines whether a new Pointer can be added to the gesture. This is done by checking

whether the Pointer is within a distance of 2.5x the size of the gesture around its center.

If only one pointer is present in a gesture no size is available. In that case, a size of 1200

is taken as the catch radius. getCenter(), getSize() and getOrientation() represent c(G), s(G)

and o(G) as defined in Section 4.3.1.
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5.5.2 Arm Control

The PointInSpace Class

The PointInSpace class implements functionality as a vector in three dimensions, offering

basic operations like adding other PointInSpace instances and multiplying with scalars.

It is not as elaborated as the Location class, but extending the functionality according to

Location could easily be done if needed.

Listing 5.21: The public interface of PointInSpace

1 public class PointInSpace {

2 public PointInSpace(double x, double y, double z);

3
4 public double getX();

5 public double getY();

6 public double getZ();

7
8 public PointInSpace add(PointInSpace pw);

9 public PointInSpace multiply(double v);

10 }

The CartesianArmManager Class

The functionality to move the arm (or better: the palm of the robotic hand) in Cartesian

space is provided by the CartesianArmManager. It accepts positions for the palm and

manages the querying of the BioIK service asynchronously in the background. Once it

has received a result from the IK service it is forwarded to the AxisManager instance. The

CartesianArmManager holds a list of all joints that shall not be affected by it, i.e. all joints

of the Shadow C5 hand, thus placement of the palm is only managed by moving joints

belonging to the Kuka robot arm. It also only updates joints in the AxisManager that it

shall affect, leaving control of all the other joints to different parts of the software.

Listing 5.22: The public interface of CartesianArmManager

1 public class CartesianArmManager implements ServiceResponseListener<

↪→ bio_ik_msgs.GetIKResponse> {

2 public static final double Y_MIN = -1.2;

3 public static final double Y_MAX = -0.8;

4 public static final double X_MIN = -0.2;

5 public static final double X_MAX = 0.4;

6 public static final double Z_MIN = 1.05;

7 public static final double Z_MAX = 1.17;

8
9 public static final int MAX_AXIS_CHANGE = 15;

10
11 public static CartesianArmManager getInstance();
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12
13 public void setNode(C5LwrNode node);

14
15
16 public boolean goHome();

17 public boolean movePalm(PointInSpace offset);

18 public boolean movePalmTo(PointInSpace position);

19
20 public PointInSpace getPosition();

21
22 public void stop();

23 }

Figure 5.10: State diagram for the CartesianAr-
mManager update loop

Whenever a new target position for the

palm is set using goHome(), movePalm()
or movePalmTo(), the IK-loop within the

CartesianArmManager is started. It tries to

get solutions from the BioIK service as fast

as it can, initiating a new request as soon

as one result was received until either no

new position was requested or stop() was

called. Once one of these two cases oc-

cur, the loop is stopped and restarted only

when a new position is set. Whenever the

loop starts a new request, it uses the last

set value as target value, values set in be-

tween two requests are omitted. Figure

5.10 gives an overview about this process

in form of a state diagram.

When a result is returned by the BioIK

service it has to go through multiple

checks before it is sent to the robot. First, if

the error_code field has another value than 0, the BioIK solver could not find any solution

for the queried robot pose. In this case, the CartesianArmManager sends the same request

to the BioIK service again so it tries to find another solution again. If the error_code field is

0, the joint angles from the solution are compared to the currently measured state of the

robot. When one joint is changed by more than 15 degrees, the solution is rejected as un-

safe and a new solution for the same request is queried at the BioIK service. This is done

to prevent big movements in joint space, possibly causing unwanted and uncontrollable

movements of the robot, potentially causing damage to the robot or its environment. The

check for high distances in joint space can be bypassed, which is used when letting the

robot go into home position, as this specific position most probably has a bigger dis-
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tance to the state before than allowed by the check. This means that when going to the
home position, the user has to use caution and observe the robot throughout the whole
movement. Whenever unwanted movement is observed, the user can lift the finger off

the safety interlock button to immediately stop any robot movement. As an additional

precautionary measure, a hardware emergency switch should be within reach of the op-

erator. When the above checks pass, the joint angles of the arm returned by the BioIK

service are written to the AxisManager which then sends them to the robot over ROS.

The functionality of the three methods to set new target value is in particular:

• goHome() sets the target position of the palm to a fixed position which is known to

be safely reachable. In this case, it’s phome =

 0

ymin

zmax

, which is a position located

directly in front of the robot at the border of the table.

• movePalm() moves the current target position of the palm by offset (by adding it to

the position returned by getPosition()).

• movePalmTo() overwrites the target position by position.

5.5.3 Grasp Synergies

An implementation of the grasp synergies as well as the recorded data matrices repre-

senting the matrix of eigenvectors for each of the different grasp synergies is provided

by the work of Bernardino et al.[3]. The functionality is bundled within the GraspSynergy
class. The data files which can be read by the class methods are included into the appli-

cation as text file resources. A dataset for one grasp consists of two files, which is one file

containing the mean value or the offset of a grasp (s0 in Section 4.3) and one file contain-

ing the matrix with the matrix data (S in Section 4.3). Mean files are called g1mean.txt,
g2mean.txt and so on, while the matrix files are called g1vecs.txt, g2vecs.txt up to g8vecs.txt.
Originally, these files were named differently when provided by Dr. Norman Hendrich,

but due to restrictions of the Android operating system regarding names of resources,

they had to be renamed. GraspSynergy objects are handled and maintained within the

AbsoluteSynergyTouchFragment and RelativeSynergyTouchFragment classes, as they load all

grasp synergies, make them selectable within the drop-down list and assign the currently

selected synergy object to either the RelativeSynergyProxy or the AbsoluteSynergyProxy.

Due to the implementation of GraspSynergy, loading synergy data from application re-

sources is done in only a few lines as shown in Listing 5.23. The variables mean_res and

vec_res are the Android resource IDs for the mean and the vecs resource file.

Listing 5.23: Loading GraspSynergy data

1 GraspSynergy synergy = new GraspSynergy(21);

2 synergy.parseMatlabSynergyMean(getResources().openRawResource(mean_res)

↪→ );
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Table 5.1: The mapping from array index to joint name

0 1 2 3 4 5 6 7 8 9 10
FFJ1 FFJ2 FFJ3 FFJ4 MFJ1 MFJ2 MFJ3 MFJ4 RFJ1 RFJ2 RFJ3
11 12 13 14 15 16 17 18 19 20

RFJ4 LFJ1 LFJ2 LFJ3 LFJ4 THJ1 THJ2 THJ3 THJ4 THJ5

3 synergy.parseMatlabSynergyVecs(getResources().openRawResource(vec_res))

↪→ ;

Within the above named fragment classes, loading of synergies is surrounded with

error handling for the case loading fails. Additionally, a loaded grasp synergy is added

to the drop-down list. All this is encapsulated in a method loadSynergy() accepting the

synergy name (as displayed) and the corresponding resource IDs. Loading of a synergy

is then done in one line as shown in Listing 5.24.

Listing 5.24: Call to loadSynergy()

1 loadSynergy("Grasp 1", R.raw.g1mean_n, R.raw.g1vecs_n);

Once loaded, a grasp synergy is used by passing an array of double values to the to-
Joints() method on the GraspSynergy object. The return value of this method is again an

array of double values, representing the calculated joint angles in degrees. The mapping

from the indexes of the returned array to the corresponding joint names is shown in Table

5.1, as extracted from code.

The output of toJoints() is then passed to toSafeAbduction(), which modifies the joint

angles in a way that no collisions between fingers are present and returns the modified

array of joint angles. These joint angles can then directly be passed to the AxisManager
which will forward it to the ROS nodes.

Listing 5.25: Example call of toJoints() and toSafeAbduction()

1 double[] jointData =

2 _currentSynergy.toSafeAbduction(

3 _currentSynergy.toJoints(_amplitudes)

4 );

As this functionality is the same for both the relative and the absolute synergy ap-

proach, it is bundled within the abstract class SynergyProxyBase, which handles the ges-

ture events received by a GestureParser and handles the calculation of joint angles using

the synergy assigned by the containing fragment class. It analyses the gesture events for

changes in size, orientation and position for each gesture and then performs specific calls

to abstract methods which shall be implemented by the inheriting classes AbsoluteSyner-
gyProxy and RelativeSynergyProxy as reactions to changes of a gesture are the only thing

unique to the different approaches.

1 protected abstract void handleSizeChange(GestureState oldState, Gesture

↪→ gesture);
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2 protected abstract void handleLocationChanged(GestureState oldState,

↪→ Gesture gesture);

3 protected abstract void handleOrientationChanges(GestureState oldState,

↪→ Gesture gesture);

All three methods take the current state of the gesture as well as its state from the call be-

fore as parameters. The old state of active gestures is maintained by the SynergyProxyBase
implementation. In fact, only RelativeSynergyProxy will make use of it, as the absolute

synergy control fully relies on the current state of a gesture.

5.5.4 Absolute Control

The AbsoluteSynergyProxy is contained within the AbsoluteSynergyTouchFragment, which

passes touch events on to the GestureParser and registers the AbsoluteSynergyProxy with

the GestureParser to receive events. It also maintains the list of loaded synergies and

assigns the one currently selected to the AbsoluteSynergyProxy. Within the three abstract

methods of SynergyProxyBase only the current states of gestures are handled. According

to their pointer count different actions are made, as two-pointer gestures are used to

control the hand synergies, while three-pointer-gestures are used to control the robotic

arm. Only the X and Z position of the robot hand palm are used when controlling the

arm at the time of writing. The CartesianArmManager described in Section 5.5.2 is used to

control the position of the palm.

As values of properties of a gesture shall be mapped linearly to amplitude or position

values, a new class is introduced, the LinearEquation class. It offers functionality to initial-

ize the parameters of the linear equation by passing it two points between which values

shall be mapped as well as the minimum and maximum values that are allowed for the

output. Another method available is calculateClipped() which calculates the output of the

linear equation and clips it to the previously passed minimum and maximum values. The

public interface of the LinearEquation class can be reviewed in Listing 5.26. Parameters

of the linear equation can either be set directly from the constructor or calculated later.

This is used when reacting to the screen size, as this value might change at runtime (by

changing orientation), so the calculateParameters() method is called when the screen size

changes and new parameters are calculated.

Listing 5.26: Public interface of the LinearEquation class

1 public class LinearEquation {

2 public LinearEquation(double x1, double y1, double x2, double y2,

↪→ double min, double max);

3
4 public void calculateParameters(double x1, double y1, double x2,

↪→ double y2);

5 public void setLimits(double min, double max);

6
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7 public double calculateClipped(double x);

8 }

To react to screen size changes, AbsoluteSynergyProxy implements the method setCan-
vasSize() which is called by the containing fragment class when the screen size changes.

Listing 5.27 shows how the LinearEquation objects are initialized first and updated from

the setCanvasSize() method. The parameters are chosen according to Section 4.3.1.

Listing 5.27: Initizlization of LinearEquations for hand and arm

1 private LinearEquation[] _eqsHand = new LinearEquation[] {

2 new LinearEquation(1200, 50, 300, -50, -50, 50),

3 new LinearEquation(0, 50, 1000, -50, -50, 50),

4 new LinearEquation(-(Math.PI / 2.0), 50, Math.PI / 2.0, -50, -50, 50)

5 };

6
7 private LinearEquation[] _eqsArm = new LinearEquation[] {

8 new LinearEquation(300, CartesianArmManager.X_MIN, 1200,

↪→ CartesianArmManager.X_MAX),

9 new LinearEquation(0, CartesianArmManager.Z_MIN, 1000,

↪→ CartesianArmManager.Z_MAX)

10 };

11
12 public void setCanvasSize(float width, float height) {

13 LinearEquation leq = _eqsHand[XPOS_AMPLITUDE];

14 leq.calculateParameters(width * 0.25, 50, width * 0.75, -50);

15
16 _eqsArm[ARM_X_EQ].calculateParameters(width * 0.25,

↪→ CartesianArmManager.X_MIN, width * 0.75, CartesianArmManager.

↪→ X_MAX);

17 _eqsArm[ARM_X_EQ].setLimits(CartesianArmManager.X_MIN,

↪→ CartesianArmManager.X_MAX);

18
19 _eqsArm[ARM_Z_EQ].calculateParameters(height * 0.75,

↪→ CartesianArmManager.Z_MIN, height * 0.25, CartesianArmManager.

↪→ Z_MAX);

20 _eqsArm[ARM_Z_EQ].setLimits(CartesianArmManager.Z_MIN,

↪→ CartesianArmManager.Z_MAX);

21 }

As an example, the usage of the above functionality is shown with the handleLocation-
Changed() event for a gesture. First it is checked whether the pointer count corresponds to

that of an arm or a hand control gesture. The coordinates of the gesture are then passed

to the corresponding LinearEquation objects and the results are written either to an ampli-

tude or the CartesianArmManager to update the position of the palm of the hand. The Y

coordinate of the hand is maintained the same, as only X and Z coordinates are changed.
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Listing 5.28: Example usage of LinearEquation

1 protected void handleLocationChanged(GestureState oldState, Gesture

↪→ gesture) {

2 if(gesture.getPointerCount() == HAND_GEST_POINTER_COUNT) {

3 setAmplitude(XPOS_AMPLITUDE, _eqsHand[XPOS_AMPLITUDE].

↪→ calculateClipped(gesture.getCenter().getX()));

4 }

5 else if(gesture.getPointerCount() == ARM_GEST_POINTER_COUNT) {

6 Location p = gesture.getCenter();

7 double x = _eqsArm[ARM_X_EQ].calculateClipped(p.getX());

8 double z = _eqsArm[ARM_Z_EQ].calculateClipped(p.getY());

9
10 PointInSpace pos = arm.getPosition();

11 PointInSpace newPos = new PointInSpace(x, pos.getY(), z);

12 arm.movePalmTo(newPos);

13 }

14 }

5.5.5 Relative Control

The implementation of RelativeSynergyProxy is similarly embedded into the environment

of RelativeSynergyTouchFragment, GestureParser and CartesianArmManager as the AbsoluteSyn-
ergyProxy. Within the methods that are called when a gesture changes, the RelativeChanger
class is used to change amplitudes or the position of the arm relatively to their current

position. The parameter oldState within all gesture events comes into action here, as only

the difference between the old and the current state matters for the calculations.

The RelativeChanger class is initialized with a rate of change and a maximum and mini-

mum value, to which the output shall be clipped. The rate of change is given in two num-

bers, the one representing the change in the output value corresponding to the change in

input value, which is given as a second parameter. This is implemented according to

Definition 9 on page 24. Additionally it gives the opportunity to invert the changes made

by RelativeChanger using the invert flag during the initialization. Listing 5.29 depicts the

public interface of the RelativeChanger class while Listing 5.30 gives an example of its us-

age according to the one given in Section 5.5.4 to show the main differences between the

two approaches. In this approach uses the movePalm() method of CartesianArmManager,

which already changes the position relatively and clips input to the allowed boundaries.

Because of this, a LinearEquation is used instead of RelativeChanger to only get the desired

change to the output value, which is then passed to the CartesianArmManager.

Listing 5.29: Public interface of the RelativeChanger class

1 public class RelativeChanger {

2 public RelativeChanger(double valueChange, double inputChange,

↪→ boolean invert, double min, double max);
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3 public void setRateBySpan(double valueChange, double inputChange,

↪→ boolean invert, double min, double max);

4 public double getChangedClipped(double oldValue, double inputChange);

5 }

Listing 5.30: Example usage of RelativeChanger in RelativeSynergyProxy

1 RelativeChanger[] _changers = new RelativeChanger[] {

2 new RelativeChanger(50, 1200, false, -50, 50),

3 new RelativeChanger(50, 1200, false, -50, 50),

4 new RelativeChanger(40, Math.PI, false, -50, 50)

5 };

6
7 LinearEquation armXEq = new LinearEquation(0, 0, 2200,

↪→ CartesianArmManager.X_MAX - CartesianArmManager.X_MIN);

8 LinearEquation armZEq = new LinearEquation(0, 0, -1000,

↪→ CartesianArmManager.Z_MAX - CartesianArmManager.Z_MIN);

9
10 protected void handleLocationChanged(GestureState oldState, Gesture

↪→ gesture) {

11 if(gesture.getPointerCount() == HAND_GEST_POINTER_COUNT) {

12 double xChange = gesture.getCenter().getX() - oldState.getCenter().

↪→ getX();

13
14 setAmplitude(XPOS_AMPLITUDE, _changers[XPOS_AMPLITUDE].

↪→ getChangedClipped(getAmplitude(XPOS_AMPLITUDE), xChange));

15 }

16 else if(gesture.getPointerCount() == ARM_GEST_POINTER_COUNT) {

17 Location old = oldState.getCenter();

18 Location newLoc = gesture.getCenter();

19 Location offset = newLoc.substract(old);

20
21 PointInSpace armoffset = new PointInSpace(

22 armXEq.calculate(offset.getX()),

23 0,

24 armZEq.calculate(offset.getY())

25 );

26
27 CartesianArmManager.getInstance().movePalm(armoffset);

28 }

29 }

5.6 Direct Fingertip Mapping (DFTM)

The direct fingertip mapping (DFTM) is mainly implemented using the DfmtProxy and Fin-
gertipPointer classes, in which most of the functionality is contained. The DftmProxy class
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implements the Singleton pattern. Its instance is used from the FingertipFragment class

which offers the user interface for this approach and forwards all touch events of the

user interface to the DftmProxy. For BioIK service interactions, the DftmProxy class di-

rectly depends on the C5LwrNode which offers the functionality needed to request joint

angle solutions for a set of given fingertip positions.

The FingertipPointer class stores information about one fingertip that is laid onto the

touch screen, which is its position in screen coordinates, the name of the effector (also

called link) which is controlled by this fingertip and the coordinates of the pointer in

meters. The latter is stored within this class for convenience reasons and is calculated

whenever the screen coordinates of the pointer change. Having the world coordinates

available reduces the computational load when writing the information to the screen on

the FingertipFragment. Both coordinates originate in the top-left corner of the screen. In

addition to the position of the pointer a flag is stored whether the pointer is currently

available on the screen, i.e. a finger is currently positioned on the screen controlling this

pointer.

For the calculation of the world coordinates in centimeters to be correct, the screen

metrics, namely the width, height and number of dots per inch (DPI) have to be set once

they are known to the user interface (FingertipFragment). The coordinates are calculated

using Equation 4.10 from Page 26 with r being the dots per inch as set by the user interface

class.

The effector controlled by a FingertipPointer is determined by the order in which the

fingertips are laid down onto the screen. At the moment, at most three fingertips may

be controlled using this approach. The first finger put down onto the screen controls

the thumb (thtip), the second controls the first finger (fftip) and the third the second or

middle finger mftip. This should usually map the finger controlled to the actual finger

of the controller’s hand. Fingers can be lifted during operation. If the lifted finger was

the last finger laid down onto the screen, the pointer is removed from the list of pointers

sent to the BioIK service. If the finger was not the last one laid down onto the screen,

the corresponding FingertipPointer is marked as not present, which means that no finger

is currently controlling its position but it is still included in BioIK service calls. Once

a finger is put onto the approximate position where it was lifted, the pointer is again

marked as present and its position is updated periodically. The public interface of the

FingertipPointer class is shown in Listing 5.31.

Listing 5.31: Public interface of the FingertipPointer class

1 public class FingertipPointer {

2 public FingertipPointer(String effectorName, Location screenLoc, int

↪→ id);

3
4 public String getEffectorName():

5
6 public int getPointerId();
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7 public void setPointerId(int pointerId);

8
9

10 public Location getScreenLocation();

11 public void setScreenLocation(Location screenLocation);

12
13 public Location getWorldLocation();

14 public void setWorldLocation(Location worldLocation);

15
16 public boolean isPresent();

17 public void setPresent(boolean present);

18 }

Once a new position for a fingertip is found, the update loop is started. The update loop

for this approach is very similar to the one of the CartesianArmManager depicted in Figure

5.10 on Page 57. The DftmProxy requests new solutions for the current pointers’ locations

until either no pointers are registered anymore or the DftmProxy is disabled using the

setEnabled() method. Once a new solution is returned to DftmProxy, it is also checked

against a maximum movement of 15 degrees on a per-joint basis, solutions with a too big

displacement are discarded and a new solution is requested.

To request a solution the desired locations of the fingertips in three-dimensional space

have to be calculated first. As the position of the fingertips is known in meters from the

top-left corner of the screen, the simple calculations described in Section 4.4 can be done

using no more conversions. The PointInSpace class offers all functionality needed for

these calculations. The base vector and the two spanning vectors are currently defined

as fixed values and shown in Listing 5.32. Listing 5.33 shows how the mapping from

two-dimensional screen coordinates into three-dimensional coordinates is performed.

Listing 5.32: Vectors used for planar mapping

1 PointInSpace surfaceBase = new PointInSpace(0.0, -1.25, 1.2);

2 PointInSpace surfaceYBaseVect = new PointInSpace(0, 1, 0);

3 PointInSpace surfaceXBaseVect = new PointInSpace(-1, 0, 0);

Listing 5.33: Mapping of points from two into three dimensions

1 FingertipPointer p = _pointers[i];

2
3 PointInSpace wloc = surfaceBase

4 .add(surfaceXBaseVect.multiply(p.getWorldLocation().getX()))

5 .add(surfaceYBaseVect.multiply(p.getWorldLocation().getY()));

Once this calculation has been done for all pointers, the request is passed to the BioIK

service. In addition to the fingertip locations, the C5LwrNode class adds a MinimalDis-
placementGoal to the request to indicate to the service that a solution with minimal dis-

placement of all joints is desirable. Additionally, a OrientationGoal is added, forcing the
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palm of the robotic hand into a top-down orientation. Otherwise, the IK solver could find

solutions where the fingertips are at the correct positions but were placed there from the

bottom, which is correct in principle, but neither a expected nor a desired solution.

The safety interlock button on the screen sets the enabled flag of the DftmProxy which

is redirected to the AxisManager. This means that once the safety interlock button is re-

leased, no movement is done by the robot. If an IK request is still pending and the result is

returned after the button has been released, the solution is discarded since the AxisMan-
ager does not accept new joint angles. At the time of writing it is not possible to move

the base vector of the plane fingertips are mapped to. Thus actions are limited to a very

small workspace. Functionality to scroll the workspace can be implemented by changing

the base vector, but it has to made sure that the movement is safe and no unexpected joint

angle changes occur.
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6 Evaluation

6.1 Usability

First tests and trials have shown that the different approaches yield different results re-

garding simplicity, manoeuvrability and usability. No formal tests and studies have been

conducted by now, the following experiences are subjective and by far not representative.

Controlling the hand grasps using the grasp synergy approaches works decently good.

The absolute version seems to give the user a little better and more direct control about

what is actually happening with the hand and thus more dexterity in the grasp opera-

tions than the relative approach. Controlling the arm in both approaches, however, is

fairly inaccurate. In the absolute approach, inaccuracies derive from the small screen size

which is mapped to a relatively large workspace. In the relative approach the arm can

be controlled more precisely, but the activation time of one second for a new gesture is

significantly affecting the workflow. Whenever the gesture is lifted and moved to the

other end of the screen to perform another relative movement of the arm, the operator

has to wait one second. In both approaches, however, the arm does not remain at one

stable position when the control gesture is stationary. This results in a noticeable jitter

of the arm. The reason for this seems to be the BioIK solver returning different solu-

tions for the same pose. As long as the gesture is active on the screen, new solutions are

queried by the application in an endless loop, since the position of the pointers change

very little. These changes are in the second to fourth decimal digit of the value of the am-

plitude, however the BioIK solver returns a new – and different – solution for the same

position. This effect was dramatically reduced once the MinimalDisplacementGoals were

added to the request messages, but are still noticeable. Additionally, finding solutions

with the MinimalDisplacementGoal active in the request takes significantly longer (about

factor two, see Section 6.2.2). These small movements made precise control and position-

ing of the hand difficult. One possible solution could be to monitor the movement of a

gesture and only calculate new values when movements above a certain threshold (e.g.

10 pixels) occur.

In the direct fingertip mapping, these jitters were even more significant, as the position

of the fingertips were to be mapped to positions in space with high dexterity. However,

because of the jitter occurring within the BioIK solutions, it is very hard to precisely grasp

objects. Again, adding the MinimumDisplacementGoal reduced this effect significantly, but

slowed down the (already slow) solution finding of BioIK even more.
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6.2 Performance

As performance issues occurred during first tests, a small look into where these issues

arise shall be given.

6.2.1 Application

The overall performance of the application seems sufficient. No significant lags in re-

sponse times of the user interface were noticeable. All off-line calculations like calculat-

ing joint angles from grasp synergies or fingertip positions in three dimensions do not

take any significant processing power. While using the application without any inverse

kinematic involved, the CPU load was measured well below 5%. Nonetheless, the device

gets significantly warm after a period of usage and the battery power drains perceptibly

faster compared to everyday use.

No further effort was done to find out the reason for the warmth and battery drain as

it did not directly affect development, but a good assumption might be that the ROS data

exchange induces a constant load onto the WiFi chipset of the tablet computer. Joint states

are received at about 100 Hz, updates are sent at 10 Hz. Additionally, every BioIK service

call issues some wireless communication. This leads to a lot of small packets being sent

over the wireless network, resulting in a constant workload preventing the chipset from

being put into power saving modes.

6.2.2 BioIK Service

It was observed during tests that getting a result from the BioIK service takes significant

amounts of time during arm movements controlled by touch gestures and even more

time in the direct fingertip mapping mode. In the grasp synergy approaches, an IK re-

quest took about 200-300 ms from sending the request until the onSuccess() callback was

called in the application. This is a frequency of about 5Hz, which is lower than expected

but still enough for a relatively precise positioning of the arm.

In the direct fingertip mapping approach however, response times varied depending

on the number of fingers that were currently mapped, from approx. 600ms when using

one finger to about 1.6 seconds with three fingers on the screen. Update frequencies of

significantly less than 1 Hz are very disturbing and prevent the application from being

used in the desired manner.

Additionally it is observable that when the BioIK service is called, the user interface

freezes until a response is processed, resulting in a very juddery user experience. Multi-

ple factors can take effect here:

• The rosjava/rosandroid implementation of service calls is faulty. The freezing user

interface is an indication for the service calls not being implemented asynchronously

as one would think, since a call is initiated with a service response handler which

is called when the result was received.
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Figure 6.1: Measurements for 1000ms
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• The BioIK service is very slow or has unexpected behaviours.

Since debugging of foreign code can be very time-consuming, especially in projects of

the size of rosjava and rosandroid, first measurements were done concerning the perfor-

mance of BioIK. A pose of the robot was chosen which was once returned by the BioIK

service, so it’ iss known that a solution exists. Then, the following cases were measured:

• 1, 2 and 3 fingertips with approximate = false.

• 1, 2 and 3 fingertips with approximate = true.

for the following cases:

• With OrientationGoal for the palm, without MinimumDisplacementGoal.

• Without OrientationGoal for the palm, without MinimumDisplacementGoal.

• With OrientationGoal for the palm, with MinimumDisplacementGoal.

• Without OrientationGoal for the palm, with MinimumDisplacementGoal.

Every test request was executed 200 times, as a result the mean execution time of all

calls was taken. The aim was to find out what affects execution time of the BioIK service

the most, the suspected properties were the MinimumDisplacementGoal, the additional

OrientationGoal for the palm and the approximate property of the IK request. Measure-

ments were initially done with a timeout of one second passed to the BioIK solver. A plot
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Figure 6.2: Measurements for 10ms
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of the measurements can be reviewed in Figure 6.1. Three interesting aspects are visible

on the first sight:

• If the request is marked with approximate = true, the solver takes about twice the

time as if a precise solution is requested.

• The MinimumDisplacementGoal seems to have a huge effect on execution time, mul-

tiplying the time by a factor of about 4-5.

• The time needed by the solver is highly dependent on the number of fingertips

included in the request.

All tests were repeated setting the timeout for the request to 10 ms. The test results are

represented in Figure 6.2. Surprisingly this rendered all measurements completely dif-

ferent. Execution times are nearly constant for every fingertip configuration, the depen-

dency seems to be exponential. The only real difference visible is the measurement of one

fingertip with OrientationGoal for the Palm and with MinimumDisplacementGoal, which is

about factor three bigger than without the MinimumDisplacementGoal. Most importantly,

the maximum times of about 55ms were about two orders of magnitude smaller than

the maximum values measured with a timeout of one second. The execution time of

the BioIK solver seems to be dependent on the passed timeout, using more time when

the timeout is bigger. This assumption was confirmed by Ruppel[22] who states that the

BioIK solver can return a result before the timeout is exceeded, but does not necessarily

do so.
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As a consequence, a time-out of 10ms was set for the BioIK service calls within the

Android application. The results, again, were surprising, as no significant improvement

was observed. The only difference then was that the BioIK solver returned an error code

indicating no solution was found, increasing the timeout up to 500ms rendered the DFTM

approach usable again, but still with response times of 1.2 to 1.6 seconds. At the time of

writing open questions remain. It is yet to be found out why the service calls take such

a long time in rosjava/rosandroid, rendering the user interface frozen with the response

time not significantly impacted by the timeout set in the request. As the measurements

suggest, however, the main issue should probably be searched for within the rosjava and

rosandroid implementations, as solving times were found reasonable when calling the

BioIK service isolated.

6.3 Possible User Studies

With user studies, one could find out how well the different approaches implemented

here work with untrained and trained test persons. Data can be recorded either objec-

tively by measuring times and judging how successful the execution of a task has been

or subjectively, by asking the user about how difficult the task was. A famous, standard-

ized questionnaire is the NASA TLX (Task Load Index) test[14]. It yields a good insight

of how stressful a task was for the user. Apart from these standardized tests, a domain-

specific test should be developed to get data about the actual environment that shall be

evaluated.

Each test person should perform multiple tasks with a rising level of difficulty. For

example:

• Grasp an object and release it.

• Grasp an object, move it to another place and release it.

• Grasp an object, put it into a box placed nearby.

These tasks can then be performed for both multiple objects (balls, cylinders, cuboids) of

different materials (sponge, wood, rubber) and the three different approaches. Each task

shall be completed multiple times, while the time needed to complete the task is mea-

sured. This gives an insight in how fast a specific task can be trained. Additionally, after

the task was executed multiple times by one user, he shall be queried for how difficult he

thinks the task was, how much help he needed and how intuitive he thinks the control

was. The test supervisor shall also note how much help he had to give to the test person

to give an insight on how different perception was.

From the data raised during these studies a conclusion can be made which approach

is probably the best to grasp a variety of objects, which is the easiest to learn, which

one is the most intuitive and which one causes the least stress on the operator. These
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results could then be used in further development and improvement of tele-manipulation

methods using a dexterous robotic hand and a robot arm, combined to a robot system

with a high number of degrees-of-freedom.
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7 Conclusion

The application that was developed within this thesis shows the principle possibilities to

control a robot with many DOF using a generic end-user multitouch device running the

Android operating system. Having implemented multiple approaches gave an insight

into different possibilities to perform tele-operation of a robot and tele-manipulating its

environment. While the gesture parsing functionality developed gives a generic method

to explore the properties of a simple multi-pointer gesture, which may be used for other

purposes as well, the direct fingertip mapping approach showed that mapping of point-

ers in two dimensions into a three-dimensional space is a task that can be performed with

basic maths operations.

First tests were done using the given set-up. Besides some hardware-related issues

(like missing air pressure) the functionality mostly worked as expected, only the jitters of

the arm in all approaches were a significant drawback, which is what future work should

probably put some effort into. Of course, more tests and studies have to be conducted and

parameters of the different approaches (especially the relative grasp synergy approach)

have to be optimized.

7.1 Outlook

Future work could concentrate on several things. First, the occurred performance and

jittering issues should be reviewed. The performance issues can probably be resolved

by looking into the rosjava and rosandroid implementations, where at least a factor of

two is situated. After that, a look into the jittering of BioIK solutions would be an inter-

esting thing to look into, as precise grasping actions depend on a stable and dexterous

positioning of effectors. If these problems are solved, statistically significant user studies

should be conducted to deeply evaluate the usability of the different approaches and give

suggestions on improving them.

In the end, the application is designed in a way that should make it easy to implement

more methods of controlling a robot as they come up and are researched, using the exist-

ing framework of AxisManager and C5LwrNode and the given user interface structure.
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