
M A S T E R T H E S I S

Real-Time Object Shape Detection using ROS,
the KUKA LWR4+ and a Force/Torque Sensor

submitted by

Stephan Rau

University of Hamburg

Department of Computer Science

TAMS - Technical Aspects of Multimodal Systems

M.Sc. Computer Science

Matriculation-No: 6139152

Primary supervisor: Prof. Dr. Jianwei Zhang

Secondary supervisor: Dr. Norman Hendrich

Abstract

The ability of robots to handle complex tasks is continuously increasing. Sophisticated tasks often require sen-
sors to enable robots to experience their surroundings to act in or react to changes in the environment. Sensors
do not perform reliably in all circumstances which might result in wrong or insufficient information causing the
inability of robot systems to reason or even lead to wrong decision making. Acting in an environment often re-
quires to navigate in or to manipulate the environment, e.g., grasping objects or pushing them away. Naturally,
vision systems are used to map the environment and detect objects to interact in it. However, vision systems
may fail due to reasons as occlusion or poor lighting conditions. Tactile sensing systems, on the contrary, are
not dependent on those conditions and constitute a better choice in many situations.
In this thesis, a concept for blind object surface exploration and object surface reconstruction using a tac-
tile sensor has been developed and implemented. This way information about the environment of the robot
can be gained independently of camera sensors. The aim is to supplement or even temporarily replace vision
approaches. The resulting approach is based on force readings from a six-axis force/torque sensor to detect
contacts between the robot and objects in the environment. The information on the contact points is utilized to
locate and construct the shape of the objects.

Zusammenfassung

Die Fähigkeit von Robotern, komplexe Aufgaben zu bearbeiten, steigt stetig. Die Bewältigung anspruchsvoller
Aufgaben erfordert oft die Wahrnehmung der Umgebung mittels Sensoren, um agieren zu können oder auf
Änderungen zu reagieren. Bestimmte Bedingungen können dazu führen, dass Sensoren keine zuverlässige
Werte liefern, was wiederum dazu führen kann, dass Roboter falsche oder ungenaue Informationen bekom-
men und daher nicht mehr in der Lage sind zu entscheiden, wie sie weiter agieren sollen oder sogar falsche
Entscheidungen treffen. In einer Umgebung zu agieren bedeutet oft in ihr zu navigieren oder die Umgebung zu
manipulieren wie beispielsweise beim Greifen oder Wegdrücken eines Gegenstands. Bildverarbeitungssysteme
werden üblicherweise eingesetzt um eine Umgebung abzubilden oder Gegenstände zu erkennen. Allerdings
können Bildverarbeitungssysteme aus unterschiedlichen Gründen wie Okklusion oder schlechter Lichtverhält-
nisse unbrauchbar werden. Taktile Systeme sind nicht von diesen Umständen abhängig und stellen oftmals eine
bessere Wahl zur Objekterkennung dar.
In dieser Masterarbeit wurde ein Konzept für blinde Exploration von Objektoberflächen und Objektrekonstruk-
tion mittels taktilem Sensor entwickelt und umgesetzt, um Informationen über die Umgebung eines Robot-
ers unabhängig von Kamerasensoren zu gewinnen. Das Ziel des Konzepts ist die Ergänzung von Bildver-
arbeitungssystemes beziehungsweise die Möglichkeit einer temporären Nutzung des Konzepts anstelle ihrer
um in unbekannten Umgebungen agieren zu können. Die resultierende Vorgehensweise basiert auf Mess-
werten eines sechs Achsen Kraft-/Drehmomentensensors zum Wahrnehmen von Kontakten zwischen Roboter
und Objekten in der Umgebung. Die gewonnenen Informationen bezüglich der Kontaktpunkte werden zur
Lokalisierung und Rekonstruktion der Oberfläche der Objekte verwendet.

ii

Contents

1 Introduction 1
1.1 Robotics and Robots . 1
1.2 Motivation . 2
1.3 Goal of the Thesis . 5
1.4 Related Work . 5
1.5 Thesis Outline . 9

2 Fundamentals 11
2.1 Kinematics . 11
2.2 Workspace . 17
2.3 Motion Planning . 17
2.4 Interaction Control . 18
2.5 Force Sensing . 19
2.6 Surface Reconstruction from Point Clouds . 21

3 Experimental Setup 27
3.1 KUKA LWR IV . 27
3.2 Schunk WSG-50 . 29
3.3 ATI Wireless Force/Torque Sensor System . 30
3.4 3D printed Probe . 32
3.5 Fast Research Interface - FRI . 33
3.6 Reflexxes Motion Libraries - RML . 34
3.7 Flexible Collision Library - FCL . 34
3.8 Point Cloud Library - PCL . 35
3.9 OctoMap . 36
3.10 Robot Operating System - ROS . 36

4 Concept 45
4.1 Hardware Setup . 45
4.2 Surface Exploration/Contouring . 47
4.3 Surface Reconstruction . 56
4.4 Requirements . 57

5 Implementation 59
5.1 Overview Collaborating/Functional Modules 59
5.2 Integration in ROS . 60

iii

Contents

5.3 Surface Contouring . 66
5.4 Surface Reconstruction . 74

6 Evaluation 77
6.1 Real-Time Ability of Position Goal Determination and Collision Detection . . . 77
6.2 Accuracy in Reconstructed Object Surfaces 78

7 Conclusion 99
7.1 Conclusion of the Thesis . 99
7.2 Further work . 99

iv

List of Figures

1.1 Statistic on the estimated annual worldwide supply of industrial robots [1] . . . 2
1.2 Sensors used at the TAMS research group of the University of Hamburg 4
1.3 Experimental setup for blind surface exploration of Hussein et al. [2] 6
1.4 The setup and motion outline of the surface contouring approach of Jamisola et

al. [3]. 7
1.5 Hardware setup of Winkler and Suchỳ for probe contouring motion[4]. 7
1.6 Contact sensing finger of Back et al. [5]. 8
1.7 Haptic surface exploration via iCub and tactile sensors of Sommer et al. [6]. . . 8

2.1 Revolute and prismatic lower joints . 15
2.2 Link frame attachment according to Denavit-Hartenberg notation [7]. 16
2.4 Six-force torque representation . 22
2.5 Elements of a polygon . 23
2.6 Convex hull of a set of points . 24
2.7 Non-convex and convex planes . 24
2.8 Convex and non-convex polygons . 24
2.9 Illustration of Poisson reconstruction in 2D 25

3.1 Hardware setup used in the thesis . 28
3.2 Denavit-Hartenberg frames of the KUKA LWR IV [8] 29
3.3 Denavit-Hartenberg parameters of the KUKA LWR IV 29
3.4 Schunk WSG-50 . 30
3.5 ATI Wireless Force/Torque Unit . 31
3.6 ATI six-axis force/torque sensor nano17e . 32
3.7 3D Printed Probe with ATI six-axis force/torque sensor nano17e 33
3.8 FRI control system architecture of the KUKA LWR IV [9] 34
3.9 Interface of the Reflexxes Motion Libraries (RML) [10] 35
3.10 Structure of an octree [11] . 37
3.11 Typical ROS package structure representing the surface_contour package . . . 39
3.12 Typical structure of a ROS workspace . 40
3.13 Example of a ROS computation graph . 41
3.14 Example of URDF link structure . 42
3.15 Example of URDF joint structure . 43
3.16 Example of URDF robot structure . 43
3.17 Overview on MoveIt! namespace moveit::core 44

4.1 Hardware setup used in the thesis shown in rviz 46

v

List of Figures

4.2 Illustration of an object exerting a force on a sphere 47
4.3 Loop of tactile sensing in blind surface exploration 48
4.4 KUKA LWR IV joint configuration limiting motion on a straight line 49
4.5 Surface exploration area . 50
4.6 Surface area covering strategy of grid motion 51
4.7 Probe in contact with object . 53
4.8 Perpendicular vectors to force normal acting on a sphere 53
4.9 Reapproach process after loss of contact to the surface of an object 54
4.10 Strategy to avoid collision between robot and object (a) 55
4.11 Strategy to avoid collision between robot and object (a) 55
4.12 Collision objects of the last links of the robot 56
4.13 Octomap representing contact points generated in surface contour process . . . 57

5.1 Overview of used functionality modules . 60
5.2 Catkin workspace used and implemented throughout the thesis 61
5.3 URDF segment of the probe . 62
5.4 ROS computation graph of mandatory nodes and topics for surface exploration 64
5.5 ROS computation graph of surface exploration including nodes and topics for

visualization . 65
5.6 Roslaunch file loading the robot description and ROS nodes 66
5.7 Communication diagram on RML, FRI and the ros_fri node 67
5.8 Simplfied UML activity diagram on core concepts of surface exploration nodes. 69
5.9 Octomap representing the contact points of the surface exploration of the polystyrene

object no. 2 . 72
5.10 Collision avoidance strategy of the grid_version node 73
5.11 Collision avoidance strategy of the surface_contour node 74
5.12 Collision avoidance strategy of the surface_contour_orientation_change

node . 74
5.13 Comparison on surface reconstruction method results on example object 75

6.1 Surface exploration objects . 79
6.2 Point cloud of block: grid_version . 81
6.3 Point cloud of block: surface_contour . 82
6.4 Point cloud of block: surface_contour_orientation_change 82
6.5 Point cloud of cylinder in vertical position (a): grid_version 83
6.6 Point cloud of cylinder in vertical position (b): grid_version 83
6.7 Point cloud of cylinder in vertical position (a): surface_contour 84
6.8 Point cloud of cylinder in vertical position (b): surface_contour 84
6.9 Point cloud of cylinder in horizontal position (a): surface_contour 85
6.10 Point cloud of cylinder in horizontal position (b): surface_contour 85
6.11 Point cloud of cylinder in horizontal position (a): grid_version 86
6.12 Point cloud of cylinder in horizontal position (b): grid_version 86
6.13 Point cloud of block and cylinder combination: grid_version 87
6.14 Point cloud of block and cylinder combination: surface_contour 87

vi

List of Figures

6.15 Point cloud of bridge object: grid_version 88
6.16 Point cloud of bridge object: surface_contour 88
6.17 Point clouds of bridge object: grid_version and surface_contour 89
6.18 Point cloud of polystyrene object No.1: grid_version 89
6.19 Point cloud of polystyrene object No.2: grid_version 90
6.20 Point cloud of jaw chuck: grid_version . 90
6.21 Surface Reconstruction of wooden block: grid_version node 91
6.22 Surface Reconstruction of wooden block object: surface_contour node . . . 91
6.23 Surface Reconstruction of bridge object: grid_version node 92
6.24 Surface Reconstruction of bridge object: merge of grid_version and surface_contour

node . 92
6.25 Surface Reconstruction of bridge object: surface_contour node 93
6.26 Surface Reconstruction of block/cylinder combination object: grid_version

node . 93
6.27 Surface Reconstruction of block/cylinder combination object: surface_contour

node . 94
6.28 Surface Reconstruction of cylinder object (horizontal): grid_version node . . 94
6.29 Surface Reconstruction of cylinder object (horizontal): surface_contour node 95
6.30 Surface Reconstruction of cylinder object (vertical): grid_version node . . . 95
6.31 Surface Reconstruction of cylinder object (vertical): surface_contour node . 96
6.32 Surface Reconstruction of polystyrene object 1: grid_version node 96
6.33 Surface Reconstruction of polystyrene object 2: grid_version node 97
6.34 Surface Reconstruction of the object shown in figure 6.1(f): grid_version node 97

vii

1 Introduction

In this chapter first the topics of robotics and robots are introduced. More and more application
areas are accessed by robots with increasing versatility in their capabilities to interact with their
environment. The section on motivation discusses the need for blind shape detection alongside
vision approaches followed by the description of the goals of the thesis. The section 1.5 on the
outline of the thesis shows the structure of the thesis by reference to the following chapters.

1.1 Robotics and Robots

The International Organization for Standardization (ISO) defines a robot as “actuated mecha-
nism programmable in two or more axes with a degree of autonomy, moving within its envi-
ronment, to perform intended tasks” [12]. Robotics is defined as the science and practice of
designing, manufacturing, and applying robots [12]. Phrased alternatively, robotics core is the
development and control of robots as interdisciplinary task of the domains of computer science,
electrical and mechanical engineering among others.
The usage of robots is manifold and generally takes place where the usage of robots is more
economical than without, in dangerous environments, as service robots as well as in scientific
research to test theories via application on real subjects. The usage of robots is manifold and
generally takes place where the usage of robots is more economical than without, in dangerous
environments, as service robots as well as in scientific research to test theories via the applica-
tion on real subjects. Robots typically perform tasks which humans prefer not to do or where
robots are more efficient. Tasks humans might not want to perform among others are repetitive
tasks and dangerous tasks, for example, in manufacturing. Furthermore, they can be designed to
execute one task or a category of tasks particularly efficient. Dangerous tasks can be consigned
to robots to avoid causing harm to humans. Removing explosive devices, performing in radioac-
tive environments [13] or executing manufacturing tasks in hostile environments represent such
tasks. The purpose of robots to execute tasks in place of humans occurs in more and more types
of environments. They act in healthcare services, entertainment, education tasks and other do-
mains [14].
The ISO classifies robots in industrial and service robots, leaving out research driven robots.
An industrial robot is “automatically controlled, reprogrammable, multipurpose manipulator,
programmable in three or more axes, which can be either fixed in place or mobile for use in
industrial automation applications” [12] and based on this definition a service robot is a “robot
that performs useful tasks for humans or equipment excluding industrial automation applica-
tions” [12]. The International Federation of Robotics (IFR) provides statistics on the increase
of estimated annual worldwide supply of industrial robots (figure 1.1). The numbers show large
increases in supply and sale of robots in the last decade as well as forecasts increases in the

1

1 Introduction

Figure 1.1: Estimated annual worldwide supply of industrial robots in 1000 of units [1]. The
numbers of sold and supplied robots considerably increased over the years and re-
mains increasing for the upcoming years.

demand for robots in the upcoming years. Furthermore, the IFR provides numbers on the oper-
ation stock of industrial robots stating 1.8 million units in 2016 with an average of 14% annual
increase to 3.05 million units in 2020 [1].

The statistics in figure 1.1 depict the increasing numbers of sold and supplied robots and
indicate an increasing impact on society, e.g., by substituting for humans.

Independent of robot classification robotic sensing is mandatory for autonomy and sophis-
ticated applications in robots. Robotic sensing permits robots to perceive their environment
via tactile sensors, vision sensors, and others. The interpretation of sensor readings enables
the development of robotic applications for non-static environments through the ability to react
to changes in the environment. The development of more complex and autonomous robots and
robotic applications is tied to advancements in sensor technology [15] as well as on other criteria
as the design of the robots regarding the shape and kinematic specifications.

1.2 Motivation

An autonomous robot needs to be able to act in an environment to fulfill a purpose. While en-
vironment is understood as the surroundings regarding objects and the prevailing physical laws,
acting in general means to move in an environment and to manipulate the environment. Regard-
ing the manipulation of the environment, as can be the manipulation of a single object such as

2

1.2 Motivation

a wooden block, the autonomous robot requires a manipulator and information about the object
to be manipulated. A typical manipulation task is to grasp an object. Useful information for
that purpose can be the position of the object concerning the robot, whether it is in motion, its
weight and surface characteristics but foremost the shape and pose. That information enables the
autonomous robot to reason about how to grasp the object, if possible. Considering motion in
an environment a recurring task is to plan motions without collisions. Again information about
position as well as shape and pose of the objects is crucial to ensure collision-free motion of the
robot.
Different approaches exist to feed the robot with the necessary information to act autonomously
to a certain degree in an environment. Three approaches shall be mentioned here.
First, the robot can be fed with a map corresponding to the environment if it is known beforehand
as well as the position of the robot on the map. Likewise, information about inertia or motion
of objects in the environment can be given to the robot beforehand. Continuing this approach
by transferring information about the environment to the robot possibly leads to independence
on sensing the environment with sensors affixed to the robot. Since all necessary information
about the environment has to be known and represented beforehand, the robot does not act au-
tonomously anymore but preprogrammed. Although industrial robots nowadays use sensors to
act and react to environmental changes, they often act in known environments and have con-
stantly recurring motion patterns. Hence they are not acting holistically autonomous.
Secondly and most widely used and investigated (cf. [16]) to get information about the envi-
ronment, concepts using visual approaches as with 3D cameras or laser range finder are applied.
They offer a rather unproblematic way of mapping the environment and gather information about
the proximity of objects to the robot as well as taking shape and pose of objects.
Thirdly tactile approaches can be used to gain information about the environment by touching
the existing objects. Similar to humans exploring an object by touch, robots can be equipped
with sensors which detect the contact to an object. For this purpose force/torque sensors are
commonly used and by exploring the object via force/torque sensing, the shape and pose of an
object can be determined. Recent improvements on tactile sensors leading to more reliability
regarding sensor readings and deployability on robots [15] led to an increase of interest in its
use to explore environments and objects, respectively. Figure 1.2 shows several sensors to gather
information about the environment. The BioTac tactile sensor modeled to mimic the physical
and sensory capabilities of the human fingertip, the ATi six-axis force/torque sensor nano17e
and the ASUS Xtion PRO depth camera are examples of sensors used to enhance the abilities
of robotic systems. Let aside the first approach based on known environments; the visual and
tactile approaches come with advantages and disadvantages. To constitute the tactile approach
as reasonable and useful as well as complementary to the visual approach, the following argu-
mentation describes the advantages and disadvantages of the visual approach and the benefit of
researching effective ways of tactile approaches to gather information about the environment to
be able to act in it autonomously. The shape of environments is generated more efficiently with
visual approaches. More information can be gathered in less time than with tactile approaches
due to the ability to not having to be in contact with objects in the environment but to sense from
a distance. Additionally, to being faster in gaining information about the shape of the environ-
ment and not having to be in direct contact with objects as is the case with tactile approaches,

3

1 Introduction

(a) (b) (c)

Figure 1.2: Sensors and sensor systems used at the TAMS research group of the University of
Hamburg to sense a robotics environment. (a) BioTac tactile sensor [17], (b) ATI
force/torque sensor nano17e [18], (c) ASUS Xtion PRO depth camera[19].

the likelihood for unwanted collisions is diminished. With visual approaches, a robot can react
to possible collisions before the contact to the environment occurs and therefore constitutes a
viable approach in Human-robot Interaction (HRI). Harm to robot and environment can be pre-
vented. In contrast to tactile approaches gathering information from a distance leads to sparse or
no information about the texture, inertia, and weight of the objects in the environment. In poor
visibility conditions, vision approaches turn out to be inapplicable. Poor visibility conditions
occur under various conditions and render sensor readings useless. Visual approaches use dif-
ferent techniques, e.g., stereo cameras or laser range finder. Hence, conditions leading to poor
visibility are dependent on the used technique. Conditions for poor visibility can be poor illu-
mination, direct sunlight, glare on objects caused by light sources, sensing under water, dust in
smoky and foggy disaster environments and occlusion. Occlusion often occurs in manipulation
tasks, where the end effector of a robot occludes the object to be manipulated.
In general, it can be stated that the advantages and disadvantages of visual approaches emerge
mostly due to sensing from a distance and therefore not being in direct contact with the envi-
ronment. Tactile sensing and perception are well-known in robotics [20, 21] and supplements or
temporarily replaces vision approaches. In contrast to passive vision sensing, the level of control
of active tactile sensing is typically more difficult as it changes the environment by manipulation
such as moving an object while exploring it via tactile sensors. Additionally, in the case of gath-
ering information about surface and position of an object, tactile sensors need to be in contact
with it and probe or contour it following sophisticated strategies. It is an independent approach,
complementary to vision and offers additional sensing capabilities as can be the normal direc-
tion of an object surface at the contact position. In contrast to vision, tactile approaches are less
efficient in gathering data and gather far fewer data. However, Lederman and Klatzky and their
colleagues [22, 23, 24] have shown that humans can recover shape and other object attributes
reliably using touch alone. Therefore, sparse data might suffice to reconstruct objects.
To achieve robust reasoning in autonomous robots multi-modality as well as redundancy in sen-

4

1.3 Goal of the Thesis

sors considering their purpose is desirable. Sensor readings turn erroneous or useless in envi-
ronmental conditions they are impractical for. Stereo cameras used to detect objects in sight,
for example, produce useless sensor readings in darkness. Laser range finder or tactile sensors
still produce reliable sensor readings in darkness to gather information about the environment
concerning position of objects in relation to the robot, although occlusion prevents reliable laser
range readings.
It can be stated that tactile approaches gathering information about the environment can tem-
porarily replace visual approaches and supplement them. Multi-modal object representations
allow more robust behavior for autonomous robots in manipulation tasks due to less liability on
single sensor type readings. Approaches to exploring the surfaces of objects in the environment
via tactile sensors are beneficial considering failure of vision approaches and more robustness
through multi-modality.

1.3 Goal of the Thesis

The goal of the thesis is the development of a blind surface exploration approach based on force/-
torque sensor readings to explore and reconstruct objects in an exploration area. Additionally,
a hardware setup of robot arm manipulator, force/torque sensor, and end effector to apply the
exploration and meet the requirements for the exploration approach is to be worked out.
Blind exploration tasks are defined as being able to extract specific object characteristics using
tactile input and exploration strategies without vision sensors. Shape and location of objects de-
scribe such characteristics. As mentioned in section 1.2, manipulation is crucial for interaction
between robot and environment. Before action can take place, the environment has to be mod-
eled. The result of the approaches of the master thesis targets the modeling of the environment
via reconstructing the shape of objects in three dimensions. The object of the thesis is to provide
a supplemental and temporary replacing approach to model the environment of a robot to visual
approaches.
The surface exploration contains the detection and exploration of objects to a certain degree to
be able to reconstruct the object based on the gathered information during the exploration pro-
cess.
The exploration approach requires real-time ability in motion planning and control as well as in
collision detection.

1.4 Related Work

This section on related work summarizes selected recent work. Many research papers have
been published in the last decades on the topic of interacting with or handle forces acting on a
manipulator. The so-called force control problem [25] tackles the motion control problem where
force/torque sensor readings are provided to manage an interaction of a robot manipulator with
the environment as is the case in surface exploration. The history of the state of the art of the
research findings towards the force control problem is found in [26] for the 1980s and later
research findings in [27] and [28].

5

1 Introduction

Hussein et al. [2] investigate the modeling of 3D models of objects through tactile exploration.
A 6-DOF manipulator is equipped with a force/torque sensor at the wrist to measure forces
acting upon a spherical end effector. The contact location and force normal at the contact point
are used to determine the motion of the end effector along the object to be modeled. The paper
shows a practical demonstration of object surface contouring, where a bottle is approached by
the end effector of the manipulator and upon contact contours the bottle in circles (cf. figure
1.3). The orientation of the end effector thereby is static.

Figure 1.3: The experimental setup of Hussein et al to blindly perceive the shape of a bottle with
force/torque sensor and a 6-DOF manipulator.

The work of Jamisola et al. [3] aim on building an information map of an unknown object or
environment with discontinuities through fully autonomous haptic exploration. Discontinuities
are defined as sharp turns and abrupt dips as can emerge at wall corners or cliffs. Compliant
motion control enabled by force information gained with a force/torque sensor and its limitation
is investigated. Two solutions are presented to overcome the difficulties in contouring discon-
tinuities and simultaneously apply a predefined force normal to the object. The end effector
constitutes a roller tool mounted on a KUKA LWR IV (cf. 1.4) and again the orientation of the
end effector remains static while exploring the object.

Winkler and Suchỳ investigate surface contouring of unknown objects in [4, 29, 30] with force
control approaches. Furthermore, they elaborate on tool orientation control. They state that it
is necessary for some kinds of contour following tasks like polishing, deburring or grinding to
keep the end effector in a constant orientation to the contact environment regarding the incli-
nation angle to it. Although changes in orientations are considered, their approaches do not
consider different objects or test beds to verify a general applicability of the tool orientation
control. Figure 1.5 depicts the setup of Winkler and Suchỳ. Back et al. [5] developed a new
end effector in shape of a finger to cope with the challenges in exploring surfaces. Similar to
the approach in this thesis, an ATI nano17 has been installed as force/torque sensor. Different

6

1.4 Related Work

Figure 1.4: The figure on the left(a) depicts the motion outline of the end effector from A to C
encountering the object at B. The figure shown in (b) pictures the setup of KUKA
LWR IV and the roller tool in between the force/torque sensor and the object [3].

Figure 1.5: The setup of Winkler and Suchỳ consists of an industrial 6-DOF manipulator, a
force/torque sensor and a probe contouring an Object in two dimensions [4].

shapes and materials contribute to the validity of the sensing finger. Additionally, to exploring
surfaces through sliding along them, the pose of a known object is estimated based on their blind
surface exploration approach. The range of motion, while not mounted on 6 or more DOF ma-
nipulators, remains low. The contact sensing finger is shown in 1.6. Using a dexterous hand,
Bierbaum et al. [31] present a tactile exploration strategy for unknown objects. A five-fingered
anthropomorphic hand is guided along a surface and builds a 3D object representation based
on point clouds acquired by tactile sensor information. The dynamic potential field approach

7

1 Introduction

Figure 1.6: The contact sensing finger following object surfaces is shown in (a). The dots plotted
in (b) represent the experienced contact points and trajectory of the finger [5].

Figure 1.7: The iCub performing haptic surface exploration on a bottle via sliding along a bottle
is shown. The bottle is held by one hand while the fingers on the other hand slide
along the object recording tactile data streams. [6]

8

1.5 Thesis Outline

known from the domain of mobile robot navigation is used in the proposed strategy for motion
guidance of the fingers. Several objects are explored using this strategy.
In 2014 Sommer et al. [6] presented a haptic surface exploration approach to identify objects
to gain information to grasp them. In contrary to the earlier introduced approaches, the object
is held in one hand of an iCub humanoid robot, while the finger of the other hand slide over
the object. Tekscan tactile sensors record the contact positions sensed for several objects. The
contact positions are transferred into a point cloud which is then compared to point clouds of
the known objects. Although this approach belongs to blind surface exploration, the object to be
explored has to be in the hand of the iCub to start the exploration strategy. Figure 1.7 shows the
iCub holding a bottle and exploring the surface of it via the fingers on the other hand.

The related work discussed in this section in comparison to the approach in this master thesis
does not connect surface exploration respectively surface contouring and surface reconstruction.
The emphasize lies either in contouring a surface or exploring a surface haptically in 2D or in
exploring an object haptically and map to known objects. The approach of the master thesis is to
explore an object, gain its surface information via force sensing and generate a 3D mesh polygon
from the resulting contact points between end effector of the robot and the explored object. The
mesh polygon could then be used to calculate grasping positions or generally as an object to be
considered while acting in the environment.

1.5 Thesis Outline

The outline of the thesis is described as follows:

- Chapter 2 - Fundamentals:
The fundamentals on kinematics, motion planning, interaction control and surface re-
construction (cf. sections 2.1, 2.3, 2.4, 2.6) among other topics necessary to plan and
implement the goals fo the thesis are introduced.

- Chapter 3 - Experimental Setup:
The hardware setup and used software libraries and frameworks are described.

- Chapter 4 - Concept:
The elaborated concept on how to reach the set goals to pave the way for the chapter on
Implementation is discussed.

- Chapter 5 - Implementation:
Here, the implementation of the concepts is described for the object surface exploration
(cf. section 5.3) and surface reconstruction (cf. section 5.4).

- Chapter 6 - Evaluation:
The results of the conducted object surface explorations (cf. section 6.2.2) and surface
reconstructions (cf. section 6.2.4) are shown and investigated here.

- Chapter 7 - Conclusion:
The thesis is concluded (cf. section 7.1) and prospect for further work (cf. section 7.2) is
given.

9

2 Fundamentals

The upcoming sections describe the fundamentals of surface exploration and surface reconstruc-
tion using a robotic arm. The fundamentals of surface exploration elaborate on kinematic topics
such as orientation and position in space and joint kinematics. Additionally, the workspace of
robotic arms is described as well as motion planning and interaction control. After illustrating
the functional principle of force sensing regarding strain gauges and six-axis force/torque sen-
sors, fundamentals on surface reconstruction from point clouds including surface reconstruction
methods are given.

2.1 Kinematics

Robot kinematics is used to describe the characteristics of robotic systems concerning velocity,
acceleration, and position of the links and joints of robots. The interaction of the elements of
the kinematic chain of robots is elaborated by robot kinematics which constitutes the foundation
for motion planning and controlling. The fundamental concepts are introduced in the following
sections including the derivation of the pose of the last element in a kinematic chain using the
concept of forward kinematics (cf. section 2.1.5).

2.1.1 Joint Space and Cartesian Space

The position and orientation of a manipulator most commonly are described in the joint or
Cartesian space. The joint space is specified by the positions of the robot’s joints. The set of n
joint variables can be denoted as n×1 joint vector. The Cartesian space is derived from the joint
space and measures position and orientation in Cartesian coordinate frames along orthogonal
axes and according to the representations of subsection orientation and position.

2.1.2 Orientation and Position

The position and orientation of an object in an environment is a requirement of fundamental im-
portance to robotics. Meaningful and rational motion planning is only possible when the position
and orientation of the links and joints are known. The composition of position and orientation is
called pose. A pose can be assigned to any point in space and is relative to a coordinate system.
The position of a point can be denoted with a 3x1 position vector. A point P in a three-
dimensional coordinate system A can be written as:

AP = [px py pz] (2.1)

11

2 Fundamentals

where x,y and z denote the three axes of frame A. To describe the orientation of an object,
different representations exist.

Rotation Matrix To denote the orientation of an object, one can attach a frame i to it and
describe it relative to the reference frame j. The orientation of i can be described by expressing
the mutually orthogonal basis vectors (xi yi zi) in terms of the basis vectors (x j y j z j). The cor-
responding vector (jxi

jyi
jzi) can be written as 3x3 rotation matrix:

jRi =

xi · x j yi · x j zi · x j

xi · y j yi · y j zi · y j

xi · z j yi · z j zi · z j

 (2.2)

The rotation of frame i about axis x j through an angle θ is

RX(θ) =

cosθ −sinθ 0
sinθ cosθ 0

0 0 1

 (2.3)

the same rotation about the y j axis is

RY (θ) =

 cosθ 0 sinθ

0 1 0
−sinθ 0 cosθ

 (2.4)

and the same rotation about the z j axis is

RZ(θ) =

1 0 0
0 cosθ −sinθ

0 sinθ cosθ

 (2.5)

The combination of rotation matrices through matrix multiplication allow to express the ori-
entation of a frame i relative to a frame k as

kRi =
kR j

jRi (2.6)

12

2.1 Kinematics

Euler Angles In contrast to the nine values used by the rotation matrix to denote the orien-
tation, Euler angles only require three. The vector (α,β ,γ)T represents the orientation of a
coordinate frame relative to another coordinate frame. Each angle denotes a rotation about an
axis of a moving coordinate frame. As a result, the location of the axes of the successive ro-
tations depends on the preceding rotations. 12 different possible orders of rotation about the
axes exist, but all exhibit a singularity in the case of the first and last rotation axis being the
same. Mathematical problems arise in calculating e.g. the angular velocity vectors due to the
singularity [32]. This limits the usefulness of Euler angles to robotics.

Fixed Angles Euler angles denote the rotations along moving coordinate frames while fixed
angles denote the orientation relative to fixed frames. The vector here is denoted as following
(ψ,θ ,φ)T . 12 orders of rotation are possible and again the same singularities in comparison to
Euler angles exist.

Angle-Axis The orientation of a coordinate frame i to another frame j can also be represented
by a unit vector ω̃ together with an angle θ . i is thereby rotated through the angle φ about an
axis defined by ω̃ = (ωx,ωy,ωz)

T relative to j. Typically the angle-axis representation is written
as θω̃ or (θωx,θωy,θωz)

T . Unfortunately, the rotation with -ω̃ and -θ is equivalent to ω̃ and
θ .

Quaternion Similar to angle-axis the representation of quaternions is based on four parame-
ters. Quaternions combine the advantages of rotation matrices and Euler angles. They are suited
for computations and are short in notation.
The representation using Quaternions is popular in robotics. Quaternions do not suffer from
singularities ([33] p. 51) as other representations like Euler angles and fixed angles do.

The quaternion can be written as the combination of a scalar and a vector

q̇ = s+ v = s+ v1i+ v2 j+ v3k (2.7)

where s ∈ R and v ∈ R3 are scalars and the orthogonal complex numbers i, j,k are defined
such that

i2 = j2 = k2 = i jk =−1 (2.8)

holds. Quaternions of unit magnitude, also known as unit-quaternions, are used to represent
rotations. For unit-quaternions holds

|q̊|= 1 (2.9)

s2 + v2
1 + v2

2 + v2
3 = 1 (2.10)

13

2 Fundamentals

The unit-quaternion can be considered as rotation of θ about the unit vector ñ which is related
to the quaternion components by

s = cosθ/2,v = (sinθ/2)ñ (2.11)

Savings in computation costs are achieved by compounding two quaternions instead of two or-
thonormal rotation matrices. The quaternion form demands 16 multiplications and 12 additions
compared with 27 multiplications and 18 additions ([34] p. 36).

2.1.3 Joint Kinematics

The joint kinematics is determined by the contact surfaces between links and describes the free-
dom of motion between links. A single pair of connecting links constitutes a simple kinematic
joint which can be classified to lower pair joints or higher pair joints. Contact on lower pair
joints occurs on a surface while contact on higher pair joints occurs on points or along lines. Six
forms for lower pair joints exist: revolute, prismatic, helical, cylindrical, spherical and planar
joints. Revolute joints are common in modern robotics due to the possibility to easily actuate
them via rotating motors. A typical use case for prismatic joints are 3 degrees of freedom appli-
cations, where coordinates in a 3D space have to be reached without changes in orientation of
the end effector or the end of the robotic mechanism. Prismatic and revolute joints are shown
in 2.1. Revolute joints (a) provide single-axis rotation function. Only one link of the kinematic
joint is permitted to rotate and revolute joints have one degree of freedom. Prismatic joints (b)
provide single-axis sliding of one link in the kinematic joint and have one degree of freedom.

2.1.4 Geometric Representation

For consistency and computational efficiency, the Denavit-Hartenberg notation has been defined
to attach frames to links to model the geometry of robotic mechanisms. The notation introduced
by Denavit and Hartenberg in [35] has later been adapted in numeral ways for more intuitive pre-
sentation. Instead of using six parameters to locate a frame to another, the Denavit-Hartenberg
notation only requires four. The convention is deployable on robot mechanisms with prismatic
and revolute joints. Does a robot mechanism have other joint specifications, they have to be
broken down into prismatic and revolute joints. The four parameters are composed of two link
parameters namely ai the link length, αi the link twist and two joint parameters namely di the
joint offset and θi the joint angle. The parameters corresponding to the KUKA LWR IV can be
found at table 3.3. The notation with four parameters is achieved by placing the frame origins
and axes in a manner that the x-axis of one frame is perpendicular to the z-axis of the following
frame as well as intersects it. The procedure on how to achieve the right placement of frames in
intermediate links in the chain is illustrated in figure 2.2 and has been pointed out in [7]:

1. The z-axis of frame i, Zi, is coincident with the joint axis i.

2. The origin of frame i is located where the ai perpendicular intersects the joint i axis.

14

2.1 Kinematics

3. Xi points along ai in the direction from joint i to joint i + 1. In the case of ai = 0, Xi is
normal to the plane of Zi and Zi+1.

4. Yi is formed by the right-hand rule to complete the ith frame.

(a) Revolute joint (b) Prismatic joint

Figure 2.1: The figure represented on the left illustrates a revolute joint (a) and the figure shown
in (b) represents a prismatic joint. The revolute joint rotates around an axis pointing
towards the reader situated in the center of the blue cylinder connecting both links.
The prismatic joint translates along the indicated arrows.

The Denavit-Hartenberg notation enables to locate frame i relative to frame i-1 by executing
two rotations and two translations by multiplying transformation and rotation matrices as fol-
lows:

i−1Ti = Rot(xi−1,αi)Trans(xi−1,a1)Rot(zi,θi)Trans(zi,di) (2.12)

expanded to the equivalent and compact homogeneous transformation notation:

i−1Ti =

cos(θi) sin(θi) 0 −ai

−sin(θi)cos(αi) cos(θi)cos(αi) sin(αi) −di sin(αi)
sin(αi)sin(θi) −cos(θi)sin(αi) cos(αi) −di cos(αi)

0 0 0 1

 (2.13)

15

2 Fundamentals

Figure 2.2: Illustration of link frame attachment according to the Denavit-Hartenberg (DH) no-
tation ([7], p.68.) The placing of frame orientation and where to extract the DH-
parameters is shown.

2.1.5 Forward Kinematics

The forward kinematics problem describes the need to calculate position and orientation of an
end-effector of a serial-chain manipulator to its base. The geometric link parameters and joint
values of the manipulator are thereby given. The forward kinematics problem can be solved by
calculating the transformation from the base coordinate system to the end-effector coordinate
system. For a robotic arm with serial chain from base to end-effector, the transformations from
frame to adjacent frame can be concatenated. The transformation from base to end-effector
frame can be denoted as

0T6 =
0T1

1T2
2T3

3T4
4T5

5T6 (2.14)

where the superscript denotes the coordinate frame of the pose to be transformed and the sub-
script denotes the coordinate frame to be transformed to.

16

2.2 Workspace

2.1.6 Inverse Kinematics

The inverse kinematics problem describes the need to calculate the required joint coordinates
given a desired pose for the end-effector of a serial-chain manipulator. The equations to solve
this problem are nonlinear and there might exist no solution or even multiple solutions [36].
Of course, the wanted end-effector pose has to lie in the manipulator’s workspace. Solution
strategies can be split into closed-form and numerical solutions. Closed-form solutions are in
general faster than numerical solutions and readily identify all possible solutions ([32], p. 29).
However, closed-form solutions are robot dependent and take advantage of geometric features
of mechanisms in the robot. Closed-form solutions can be divided into algebraic and geometric
methods where the algebraic method involve the identification of significant equations to bring
the joint variables in a soluble form, whereas geometric methods involve the decomposition
of the spatial geometry of the robotic arm into plane-geometry problems. The plane-geometry
problems can be solved by using plane geometry. Does a closed-form solution exist, the problem
of inverse kinematics can be solved by decomposition concerning inverse position kinematics
and inverse orientation kinematics which enables us to specify a kinematics equation as such

0T6
6T5

5T4 = 0T1
1T2

2T3
3T4. (2.15)

The robot independent numerical methods do not always allow to calculate all possible solutions.
Stated in [32], p. 30., the categories symbolic elimination methods, continuation methods and
interactive methods are the common numerical methods.

2.2 Workspace

The workspace of a robotic arm is the volume of all end-effector positions it can reach. There-
fore the workspace is determined by the geometry of the robotic arm and the limits of the joints.
The workspace can be divided into the reachable workspace and dexterous workspace [37].
The reachable workspace denotes the space the end-effector can reach. Within the dexterous
workspace, the end-effector of the robotic arm can reach the wanted position with all orienta-
tions. Therefore the dexterous workspace is a subset of the reachable workspace. It has to be
stated that a robotic arm with less than six degrees of freedom cannot span a dexterous workspace
due to the inability of reaching a position with all orientations in 3D space.

2.3 Motion Planning

Is the configuration of a manipulator the specification of its joint values, motion planning can
be defined as the determination of the configurations between a start- and a goal-configuration.
All possible configurations of the manipulator are called the configuration space (Cspace). The
Cspace is further divided into C f ree and Cob j. Cob j denotes the subspace of configurations where
collisions arise between the manipulator and the environment or with itself. C f ree, on the other
hand, denotes the configurations without collisions. A single configuration can be represented as
a point in the Cspace and therefore the plan of motion is determined by points in C f ree representing

17

2 Fundamentals

a path between start- and goal-configuration. To connect the points, a trajectory is determined by
a motion planner specifying a time sequence of position, velocity, and acceleration of the joints
based on path and manipulator constraints about dynamics. Point-to-point motion is conducted,
when the initial and final point on a path is assigned while path motion is conducted when
multiple points are assigned on the path.
Reference points of the trajectory are used as inputs for motion control systems determining the
forces or torques to be conducted by the joint actuators.

2.4 Interaction Control

The execution of tasks often requires interaction control to handle manipulation tasks includ-
ing contact between robot and objects. Simple motion control is failure-prone in manipulation
tasks due to its dependency on sufficient certainty in knowledge about the robot’s kinematic and
dynamic as well as accuracy in motion execution. Furthermore the Cspace has to be known per-
manently to be able to react to changes invalidating trajectories. Does the Cspace unknowingly
change resulting in invalid trajectories or inaccuracy in trajectory-following motion takes place,
the risk of collision arises. The resulting deviation from the trajectory results in reaction of the
motion control to reduce the deviation by adapting the forces or torques conducted by the joint
actuators only leading to higher contact forces at the collision point.
Interaction control handles manipulation tasks through compliant behavior during the interac-
tion. The Interaction control can be subdivided into passive and active interaction control.

2.4.1 Passive Interaction Control

In passive interaction control, the inherent compliance of a robot influences its end-effector
trajectory reacting to forces acting upon it. The compliance can be achieved through the different
parts of a robot such as the links, joints, the end-effector and position servo. Furthermore,
robot arms with elastic joints and links are designed for interaction with humans to ensure safe
interaction. A system with passive interaction control does not require force/torque sensors
as it does not need to react to forces in changing the preplanned trajectory. Although passive
interaction handles forces to a certain point, one cannot guarantee a safe and low force interaction
due to the nonexistence of monitored force/torque values. A disadvantage of using passive
interaction control lies in its lack of flexibility. Is an end-effector designed for a compliance
task with a specific robot, another end-effector might have to be designed for another robot or
another compliance task.

2.4.2 Active Interaction Control

In active interaction control, a control system designed for a specific purpose ensures the com-
pliance. The measurement of contact forces and moments can be used to design those control
systems by feeding the sensor values to the controller which then adapts the planned trajectory
of the robot. In contrast to passive interaction control, it is more sophisticated. The sensor val-
ues have to be interpreted with respect to the current task or trajectory of the robot and lead to

18

2.5 Force Sensing

adjusted motion. Naturally, it is more expensive due to the integration of more sensors in the
robotic system. Often active interaction control uses passive compliance to a certain degree to
ensure reasonable task execution speed and disturbance rejection capability [38]. This is because
passive compliance does not need to interpret the force and moment values or calculate inter-
action motion and feedback to the active interaction control system always comes later than the
motion inducing changes in the sensor values. Hence, for contact forces and moments, the active
interaction control system without passive compliance cannot assure certain force and moment
thresholds. This is especially the case when contacts arise between rigid bodies.

Two strategies for active interaction control can be distinguished. Indirect force control
achieves force control through motion control while direct force control through the enclosure
of a force feedback loop enabling the controlling of desired force and moment during motion.
Indirect force control corresponds to either impedance or admittance control [39, 40]. The indi-
rect force control is an impedance control if it reacts to motion deviation caused by interaction
with the environment by generating forces while it is an admittance control if it reacts by devi-
ating from the desired motion. Further, special cases of impedance and admittance control are
stiffness control and compliance control [41]. Here the static relationship between end-effector
pose deviation from the desired motion and contact force and moment is considered.

2.4.3 Interaction Tasks

In general, one can say that there is no need for explicit knowledge of the environment for
indirect force control. Nevertheless, assumptions about the environment can help achieve satis-
factory behavior in the interaction. Interaction tasks evoke complex contact situations between
the environment and the contact point on the end-effector. To cope with contact situations in
force control, tasks have to be specified. An intuitive way of describing a task can be done
using task frames. Task frames are orthogonal reference frames where forces/torques and lin-
ear/angular velocities can be assigned to each axis. A task fame can thereby be specified at any
origin. The so applied forces/torques or linear/angular velocities are called artificial constraints
whereas natural constraints are imposed by the environment to the end-effector. In the case of
rigid bodies, the natural constraints act complementary to the artificial constraints. In the case
of blind surface contouring without desired application of forces or torques along the axes of the
task frame, there still exist natural constraints. In the presence of a contact situation, forces and
torques act upon the end-effector. The control strategy might use this information to change its
preplanned trajectory with respect to the task frame to not make the contact forces rise too high
but still move along the surface of the object.

2.5 Force Sensing

Force sensors can be divided into quantitative and qualitative sensors. While quantitative sensors
measure the force and represent its value, qualitative sensors do not consistently represent force
values but indicate a certain event, e.g., when a force threshold is reached. Strain gauges and
load cells are examples of quantitative sensors, and a light switch is an example of a qualitative
sensor as it reacts to a certain force by switching the switch. As stated in [42] different methods

19

2 Fundamentals

Table 2.1: Characteristics of strain gauges with regard to used material, gauge factor, resistivity
and thermal coefficient of resistance taken from Fraden and Suhir [43, 44]

Material Gauge Factor,
GF

Resistivity at
20◦C, µΩ · cm

Thermal Coeffi-
cient of Resistance
(◦C−1 x 106)

Remarks

Constantan
(55% Cu,
45% Ni)

2.0 49 11 GF constant over
wide range of
strain; use below
360◦C

Platinum al-
loy (95% Pt,
5% Ir)

5 24 1250 Useful to 1000◦C

Silicon
semiconduc-
tor

-100 to +150 109 90.000 High sensitivity

of sensing forces can be categorized. The occasionally used methods are 1 and 2 whereas method
3 is most commonly used:

1. The force is balanced against an electromagnetically developed force

2. The force is converted to a fluid pressure which is then measured

3. The strain produced by an unknown force in an elastic member is measured

The deformation of a physical body under force application (strain) can be used to measure
the applied force by exploiting the piezoresistive effect. Resistive elastic sensors relate to strain
by a function determining its electrical resistance. The ratio of change in resistance to strain,
also known as gauge factor, can be denoted as:

GF =
∆R/RG

ε
. (2.16)

Where GF is the gauge factor, RG the resistance of the undeformed gauge, ∆R the change in
resistance caused by strain and ε the strain. The strain can further be defined as ε = ∆L/L0, L0
being the original length of the strain gauge and the the absolute change in length ∆L. The gauge
factor differs with respect to the material of the resistive elastic sensor. After Fraden and Suhir
[43, 44], characteristics of some strain gauges are shown in table 2.1.

The effect of temperature on the resistance is not considered in the gauge factor formula de-
spite semiconductor strain gauges being sensitive to changes of temperature. In practice changes
in temperature exist and a simplified equation to calculate the resistance can be denoted as fol-
lows:

∆R
R

= GFε +αθ . (2.17)

20

2.6 Surface Reconstruction from Point Clouds

Figure 2.3: Common types of resistance strain gauges ([43], p. 507) from left to right: (a)
bonded-wire gage, (b) foil gage and (c) the semiconductor gage

The temperature coefficient is denoted by α and θ denotes the change in temperature.

Figure 2.3 depicts the three common types of resistance strain gauges.
The combination of measuring elements as strain gauges enables to measure forces or torques

along multiple axes. Robotic applications often require feedback of tools controlled in six axes.
Thereby the six axes are divided into three translational and three rotational axes (cf. 2.4). A
six-axis force/torque sensor (cf. 3.6) is able to measure the magnitude and direction of forces
and torques in three dimensions. The information on force and torques acting on the tools are
usually used to provide feedback during the execution of interaction tasks.

2.6 Surface Reconstruction from Point Clouds

The goal of surface reconstruction is to find an accurate continuous description of an object
surface based on the available information gathered previously. In other words, the goal is to
find a computer model best fitting the real object. A priori knowledge about the object and the
quality of information gathered influence the outcome of the reconstruction and the applicability
of reconstruction methods. In the case of blind surface exploration, a priori knowledge about the
object is not available. The quality of information has different aspects. Concerning accuracy in
spatial position of surface points tactile exploration might be precise although density in surface
points is usually sparse.
In general, two problems arise in surface reconstruction from point clouds [45]:

• A surface is described continuously, and points of a point cloud are a discretization of the
surface. Therefore the surface between the points has to be estimated.

• The constructed point cloud is affected by measurement errors.

In general, the transformation of point clouds to polygonal surfaces or polygonal meshes (see
below) is based on four steps according to [46]:

21

2 Fundamentals

x, Fx
y, Fy

z, Fz

Tz

TxTy

Figure 2.4: The force and torque directions are assigned to the axes of a 3D coordinate system.
The forces are represented in the directions of the axes and the torques are repre-
sented as rotations on the axes. This configuration allows the modeling of the forces
and torques acting in six axes on the gray cylinder.

• pre-processing: in this phase, erroneous data are eliminated alternatively, points are sam-
pled to reduce the computation time;

• determination of the global topology of the object’s surface: the neighborhood relations
between adjacent parts of the surface have to be derived. This operation typically needs
some global sorting step and the consideration of possible ’constraints’ (e.g. break lines),
mainly to preserve special features (like edges);

• generation of the polygonal surface: triangular (or tetrahedral) meshes are created satisfy-
ing certain quality requirements, e.g. limit on the meshes element size, no intersection of
break lines, etc.;

• post-processing: when the model is created, editing operations are commonly applied to
refine and perfect the polygonal surface

22

2.6 Surface Reconstruction from Point Clouds

2.6.1 Polygon Meshes

Modeling surfaces can be done with polygonal modeling, a common approach in computer
graphics respectively geometric modeling. Polygonal models are assembled by polygon meshes
built up by vertices, edges and faces. A vertex is a point in space, an edge is the connection
between two vertices and a face is a closed set of edges. In the case of the most common face in
polygon meshes, the triangle, a face connects three vertices. Vertices are shared by faces so that
contiguous faces build up a polygon. The connection between polygons with shared vertices is
then called polygon meshes and define the shape of 3D models. The elements of a polygon mesh
are shown in figure 2.5. Polygons can be classified based on their convexity or concavity.

(a) (b) (d)(c)

Figure 2.5: A simple polygon and its elements are shown. (b) illustrates the edges between the in
(a) shown vertices. The faces built up by the edges are shown in (c). The connection
between the faces sharing an edge results in a polygon model in (d).

2.6.2 Convex and Concave Polygons

A convex hull of a set X of points is the smallest convex set that contains X (illustrated in 2.6).
A convex set is a region or space in within every pair of points can be connected by a straight
line which is situated entirely in the region or space. Figure 2.7 pictures a convex (a) as well as
a non-convex set (b).
Hence a convex polygon is defined as a polygon where all interior angles are less than or equal
to 180◦ which is equivalent to the property of every point on line segments between two points
of a polygon being inside or on the boundary of the polygon.
Concave polygons are non-convex polygons and therefore has at least one interior angle greater
than 180◦. A polygon with more than three sides can be concave (cf. 2.8) in contrary to a polygon
with three sides. Naturally, the convex hull of a concave polygon contains points on the point
connecting straight lines outside of the polygon. This characteristic renders the determination
of the shape of polygons through the convex hull problematic by disregarding shape features of
the polygon. The area occupied by a concave polygon can be determined by a concave hull, a
shape minimizing the area of the polygon to a certain degree allowing interior angles of more
than 180◦.

2.6.3 Poisson Surface Reconstruction

Surface reconstruction can be done by utilizing Poisson’s equation for the so-called Poisson
Surface Reconstruction [47]. Using Kazhdan et al. paper on Poisson Surface Reconstruction

23

2 Fundamentals

Figure 2.6: The smallest convex set of points shown here describes the convex hull of the set of
points.

(a) (b)

Figure 2.7: The plane illustrated in (a) depicts an area built by a non-convex (concave) set. The
straight line connecting the points is partly outside the area. The plane illustrated in
(b) shows an area built by a convex set showing a plane in which all potential sets of
two points are connected by a straight line within the plane area.

(a) (b)

Figure 2.8: The polygon in (a) depicts a convex polygon with three sides. All polygons with
three sides are convex. The polygon in (b) depicts a concave polygon (or non-convex
polygon) with five sides.

and its illustration in 2.9, the description of the general idea of the approach follows. The
vector field ~V is defined by oriented points sampled from a surface describing the normal to the
surface pointing outwards. Based on the vector field, a 3D indicator function X is computed
representing points inside the model with 1 and 0 outside of the model. The next and final
step is the extraction of an appropriate isosurface to reconstruct the surface. The key to the
indicator function is the characteristic that the gradient of the indicator function is a vector field
that is zero almost everywhere but at points near the surface. At the surface, the values of
the gradient’s vector field are equal to the inward surface normal. Consequently, the oriented
point samples can be interpreted as samples of the gradient of the model’s indicator function.
Determining the indicator function, therefore, is reduced to invert the gradient operator. Hence,
find the gradient best approximating the vector field ~V of the scalar function X . This problem is
a standard Poisson problem applying the divergence operator. Hence the computation of X with
Laplacian’s equation of the divergence of gradients can be denoted as follows:

24

2.6 Surface Reconstruction from Point Clouds

Figure 2.9: The illustration of Poisson reconstruction in 2D is shown. The vector field gained
by oriented points sampled from a surface is described with ~V . Based in this vector
field, an indicator function XM is determined representing points inside the model
with 1 and outside with 0. At the surface, the gradient’s vector field is equal to the
inward surface normal. The determination of the indicator function can, therefore,
be reduced to invert the gradient operator best approximating ~V . This can be done
via determination of a solution to the standard Poisson problem. Next the surface ∂M

can be reconstructed with the extraction of an isosurface.

MX≡ O·OX = O·~V . (2.18)

The Laplace operator is denoted with O. More in depth information on the approach can be
gained in [47].

25

3 Experimental Setup

In this chapter, the experimental setup is described. Thereby the characteristics of the used hard-
ware are elaborated as for example the calibration specifications of the used force/torque sensor
and the properties of the 3D printed probe which is designed to be in contact with the to be
explored objects. Furthermore, the used software libraries and frameworks are illustrated. The
applied hardware and used software have to fulfill specific characteristics to be applicable for
blind surface exploration. Precise motion execution and fast reaction times considering unfore-
seen events as the occurrence of contact between robot and environment are mandatory. The
illustrated hardware setup in 3.1 has been chosen to fulfill those requirements.

3.1 KUKA LWR IV

KUKA and the German Aerospace Center (DLR) have developed the KUKA LWR IV as the
outcome of a research collaboration. The KUKA LWR IV has been built to enable manufacturers
and researchers to develop new robotic applications as well as to simplify the development of
robotic applications. The KUKA LWR IV is equipped with position sensors on the motors and
joint torque sensor at each joint which makes active compliance possible without the need for
compliant end-effectors. Tables 3.2 and 3.1 show specifications of the robotic arm. Table 3.3
depicts the Denavit-Hartenberg Parameters of the LWR 4+ in its zero position (cf. figure 3.2).

New possibilities in robotic applications originated in the new capabilities of the LWR in
contrast to industrial robots at the time. While industrial robotic arms have mainly been pro-
grammed to follow preprogrammed trajectories and automate processes, the ability to measure
torques at the joints and react to forces and moments on-line led to new possibilities in research
for robotic applications, e.g. autonomous interaction in unknown environments [48]. The LWR
4+’s characteristics suit needed abilities for reliable and robust human-robot interaction. It can
react to unforeseen events due to the torque sensor measurements with compliant motion, has
low weight and clamping of human body parts between links is less common [8]. Among other
things the option to write control structures via the Fast Research Interface (FRI) (cf. 3.5) in
the popular programming language C++ and furthermore the funding for robotics research in
the world and especially in Europe made the KUKA LWR IV popular in robotic research lab-
oratories. KUKA and DLR [48] state that the KUKA LWR IV has a servo-control rate of
3 kHz locally in the joints and 1 kHz overall. Together with its state control, the model of
the robot, powerful drives and lightweight construction (cf. 3.1) enables active damping of vi-
brations for excellent motion performance concerning path accuracy and repeatability achieves
programmable axis-specific and Cartesian compliance. Further as advantage of the compliance
control the manual guidance of the robot is described.
The production of the KUKA LWR IV first started in 2008 for 60 robots and has at the time

27

3 Experimental Setup

Figure 3.1: The hardware setup consisting of the KUKA LWR IV, the mounted WSG-50 gripper
and attached probe with ATI six-axis force/torque sensor nano17e and the wireless
force/torque device to send the force readings over wireless LAN is shown. Addi-
tionally, test objects for surface exploration are shown next to the probe in red and
green. The setup is located in one of the research laboratories of the TAMS research
group at the University of Hamburg.

Table 3.1: Axis data describing the KUKA LWR IV(cf. [49]) regarding payload, degrees of
freedom among others are listed in the table.

Payload 7 kg
Degrees of Freedom 7
Number of axes 7
Repeatability (ISO 9283) +/−0.05mm
Weight 16kg
Volume of working envelope 1.84m3

not been released for use in production but has been sold to engineering departments and robot
research laboratories. The later updated industrial version is sold under the name of KUKA LBR
iiwa.

28

3.2 Schunk WSG-50

Figure 3.2: The frames of the KUKA LWR
IV in zero position according to
Denavit-Hartenberg notation are
shown. The x-axes point toward the
viewer [8].

Figure 3.3: The Denavit-Hartenberg parameters
of the KUKA LWR IV in zero posi-
tion are listed in the table.

Link ai αi di θi

1 0 π/2 0 q1

2 0 −π/2 0 q2

3 0 −π/2 d1 = 0.4m q3

4 0 π/2 0 q4

5 0 π/2 d2 = 0.39m q5

6 0 −π/2 0 q6

7 0 0 0 q7

Table 3.2: The specifications of the KUKA LWR IV joints in terms of motion range, speed with
rated payload and maximum torque are described (cf. [49])

Axis data Motion Range Speed with rated payload Maximum torque
Axis A1 (Joint 1) +/- 170◦ 110◦/s 176 Nm
Axis A1 (Joint 2) +/- 120◦ 110◦/s 176 Nm
Axis A1 (Joint 3) +/- 170◦ 128◦/s 100 Nm
Axis A1 (Joint 4) +/- 120◦ 128◦/s 100 Nm
Axis A1 (Joint 5) +/- 170◦ 204◦/s 100 Nm
Axis A1 (Joint 6) +/- 120◦ 184◦/s 38 Nm
Axis A1 (Joint 7) +/- 170◦ 184◦/s 38 Nm

3.2 Schunk WSG-50

The Schunk WSG-50 [50] is a servo-electric two-finger parallel gripper with sensitive gripping
force control and long stroke. Tactile sensing fingers from Weiss Robotics are installed on the
WSG-50. The combination of the gripper and sensitive fingers represented in figure 3.4 will not
be described any further as it only serves as a flange to comfortably attach the 3D printed end
effector instrument and remains rigid at all times.

29

3 Experimental Setup

Figure 3.4: The Schunk WSG-50 two-finger parallel gripper is shown in this figure. The gripper
is used to mount the probe on the KUKA LWR IV.

3.3 ATI Wireless Force/Torque Sensor System

The ATI Wireless Force/Torque Unit is able to control up to six ATI Multi-Axis Force/Torque
transducers. Among others, the unit supports the ATI nano series. The unit provides an antenna
and runs on an integrated rechargeable battery and is be charged via mini-USB connector. The
IEEE 802.11 standard characterize the performance and range of the wireless device. ATI states
that the typical range of the antenna in an office type environment is 30m ([51], p. 47). The
battery life powers the device for one hour maximum with all six transducers at full measure-
ment rate. The device additionally provides the possibility to store sensor data on a MicroSD
card. In figure 3.5 the Wireless Force/Torque Unit (distributed by Schunk) is pictured. Further
information about the specifications of the unit can be found in [51] on pages 10-13. To initially
configure and install the wireless force/torque system on a computer, the wireless force/torque
unit first has to be set up and configured to connect it with a transducer and display the sensor
values. The installation procedure is found in the manual [51] on page 14 et seq.
The force/torque system comes with a Java demo application. In order to display the measured

force and torque values, one has to set up a profile. Amongst other settings, the data packet rate,
active transducer slots and force and torque units can be set. Then, after connecting to the IP
corresponding to the wireless force/torque device, the application finally displays streaming data
from the connected transducers.
The device can be accessed via command interface either by using a USB connection by way of
a virtual serial port or wireless by Telnet communication on port 23 of the device. The interface
allows to read and update system settings as well as to read the streaming data. Various settings
can be updated. Among other commands it is possible to command whether to dump the UDP
packets to console, to reset the device, to power control the connected transducers, to select the
WLAN frequency band, to set the packet rate, to set a calibration for the transducers and to set a
transducers bias. The possibilities are manifold. The example of setting the bias of a transducer
demonstrates exemplary the use of the command interface:

30

3.3 ATI Wireless Force/Torque Sensor System

Figure 3.5: The pictured ATI/Schunk Wireless Force/Torque Unit is connected to the ATI
nano17e transducer. The green LEDs show active status of the transducer slot 3,
the device running in battery mode and active wireless LAN.

> BIAS 1 ON

The bias of transducer 1 is set at the current time. Once a bias point is set, the offset of the cor-
responding transducer is calculated according to the current load and forwarded to the wireless
force/torque device. The offset and the reading of the transducer now adds to zero until force
and/or torque differs to the bias point.
The ATI nano17e six-axis force-/torque transducer (cf. 3.6) is intended to be used with robotic
and/or automated machines. The used nano17e SI-12-0.12 has physical specifications of 17 mm
diameter, 14.5 mm height, 0.009 kg weight and therefore fits into restricted spaces of applica-
tions. An advantage of the small weight lies in the almost nonexistent influence on the payload
of manipulators. The resolution of force and torque of the nano17 enables to sense a difference
of 1/320 N in all three force axes as well as 1/64 Nm in the torque axes. Among other specifica-
tions (cf. 3.3), the resolution and sensing ranges enable a robot control system to react to subtle

31

3 Experimental Setup

Figure 3.6: The ATI six-axis force/torque sensor nano17e is equipped with a stainless steel cas-
ing and provides holes for screws to mount the sensor on appropriate devices. More
specifications on the sensor are listed in tables 3.3 and 3.4

Table 3.3: Nano17 Properties (cf.
[51] p. 32)

Single-Axis Overload (SI) Metric Units
Fxy +/- 250 N
Fz +/- 480 N
Txy +/- 1.6 Nm
Tz +/- 1.8 Nm
Physical Specifications
Weight 0.00907 kg
Diameter 17 mm
Height 14.5 mm

Table 3.4: Nano17 SI-12-0.12 Cali-
bration Specifications (cf.
[51] p. 33)

Axes Sensing Ranges Resolution
Fxy 12 N 1/320 N
Fz 17 N 1/320 N
Txy 120 Nm 1/64 Nm
Tz 120 Nm 1/64 Nm

changes in force and torque values. The nano17 is typically used in dental research, robotic
surgery, robotic-hand, and finger-force research [52].

3.4 3D printed Probe

In order to fulfill the requirements for an end effector in the surface exploration approach of the
thesis, 3D printed objects (holder, sphere and stick combination) have been chosen pictured in
3.7. The fingers of the WSG-50 are plugged into the holder to flange the end effector onto it.
The nano17e transducer is installed between holder and the stick and sphere combination.
The chapter on the concept of the implementation of the surface contouring and reconstruction

32

3.5 Fast Research Interface - FRI

Figure 3.7: The sensing probe is a combination of the 3D printed objects and the ATI six-axis
force/torque sensor nano17e. On the left figure the single models of the holder, stick
and sphere as well as a mounting plate are shown. The dimensions of the model are
specified in millimeters. The right figure shows the 3D printed and assembled probe
with holder in white.

gives information on why a sphere has been chosen as last link respectively as link to be in touch
with the to be explored surfaces.
The development of applications to explore and contour objects involves the risk of damaging
the environment as well as the robot itself. Therefore the possibility to 3d print an end effector
with compliance regarding the ability to bend to a certain degree and to break when to much
force is acting upon it is a valuable asset. The holder stick and sphere combination is printed
with a Formlabs Form 2 3D Printer which uses stereolithography (SLA) technology and artificial
resin material.

3.5 Fast Research Interface - FRI

The Fast Research Interface Library [9] enables an easier use of the KUKA LWR IV function-
ality via C++. The FRI control system architecture is depicted in figure 3.8. The application
programming interface permits the use of the robots functionality while the FRI Library is run
on a remote computer. The communication between FRI and FRI Library runs over the User
Datagram Protocol (UDP), and a cyclic time-frame of 1-100 ms can be set. The remote com-
puter establishes a connection using Ethernet to the KRC (KUKA Robot Controller) via the FRI.
Via this connection the KRC sends status information as joint sensor data, cartesian measured
data, information about the robot state and other to the remote computer and expects in return
bitfields for desired commands. Real-time access to the KRC is mandatory for robot control
strategies coping with unforeseen sensor events to react instantaneously.

33

3 Experimental Setup

Custom C++ Code

C++ Library

FRI Remote

UDP
1 - 100msecFast Research

Interface

FRI

 UDP
Robot Control
Motion Kernel

KRC

Light Weight Robot

Control Panel

KCP

Robot Language
Interpreter

KRL

Figure 3.8: FRI control system architecture [9] showing the communication between applica-
tions executed on the remote computer and the FRI interface as well as the commu-
nication architecture between Robot Language Interpreter, Control Panel and Robot
Control Motion Kernel interacting with the Light Weight Robot.

3.6 Reflexxes Motion Libraries - RML

The Reflexxes Motion Libraries (RML) is a motion planning library enabling trajectory calcula-
tion in under 1 millisecond [10] to be able to react to unforeseen sensor events. Instantaneously
calculating an adjusted trajectory is crucial to control strategies operating in environments with
natural and artificial force and torque constraints. Different RML Libraries exist. While Re-
flexxes Type I and II Motion Libraries are free to use, type III and IV are commercial. Type
II is used in this work which enables to specify the target position and target velocity at the
target position. As depicted in 3.9, the input parameters include the current state of motion, the
kinematic motion constraints and the target state of motion. Within one control cycle, the new
state of motion including position, velocity, and acceleration are calculated. Furthermore, the
author of RML states that the new state of motion lies on the time-optimal trajectory to reach
the desired target state of motion.

3.7 Flexible Collision Library - FCL

The Flexible Collision Library (FCL [53]) is a library for collision and proximity queries. It
integrates several techniques for fast collision checking and proximity computation and is based
on hierarchical representations. One can choose queries to include discrete collision detection,
continuous collision detection, distance computation and others. FCL thereby supports collision
checking and proximity calculations between basic shapes like boxes, cylinders and spheres as
well as between triangle meshes/soups and point clouds. Unstructured meshes are represented
as bounding volume hierarchy. The collision query returns a yes or no answer and optionally the

34

3.8 Point Cloud Library - PCL

Figure 3.9: The interface of the Reflexxes Motion Libraries (RML) with its input and output val-
ues are shown in this figure. Based on the current state of motion and the kinematic
motion constraints as well as the target state of motion, the goal motion states to
arrive at the target state of motion are calculated within one control cycle. [10]

contact points and contact normal can be computed and returned. The distance query returns the
smallest distance between two objects and optionally returns the two closest pair of points.
The FCL is being used in this work to calculate possible collisions for the next goal position of
the end-effector. Although the queries for collision checking return reliable results in most of
the cases, proximity queries are used in the thesis which return even more reliable results.

3.8 Point Cloud Library - PCL

The Point Cloud Library (PCL [54]) is a library with state-of-the-art algorithms for 3D per-
ception regarding filtering, feature estimation, surface reconstruction, model fitting and others.
PCL is free and a BSD licensed C++ library for 3D point cloud processing. Although PCL has
been developed to be used with 3D sensing hardware such as the in robotics popular Microsoft
Kinect, it, of course, is possible to generate point clouds from non-3D sensing hardware. In this
thesis contact points sensed by a force/torque sensor are transferred to point cloud points to use
the many functionalities PCL provides.

35

3 Experimental Setup

The basic processing pipeline of an interface in PCL can be divided into four parts:

• Create the processing Object (e.g. filter, segmentation, feature estimator)

• Use setInputCloud to pass an input point cloud to the processing module

• Set parameters

• Call compute (or filter, or segment) to get the output

3.9 OctoMap

The open-source framework OctoMap [55] enables the generation of volumetric 3D environ-
ment models through octrees. OctoMap uses octrees and probabilistic occupancy estimation to
represent occupied, free and unknown areas. The authors of OctoMap state efficiency and prob-
abilistic updates of occupied and free space as central property of the framework while keeping
the memory consumption at a minimum [55]. The implementation of the framework is in the
form of a self-contained C++ library.
Octrees to generate 3D environment models are hierarchical data structures for spatial sub-
division in 3D. Each internal node in an octree has exactly eight children. Therefore three-
dimensional space is recursively subdivided into eight octants and a node represents the space
in a cubic volume. OctoMap calls nodes voxels for their characteristic of representing a volume.
A predefined minimum voxel size defines the stop condition in the recursive subdivision of the
space and determines the resolution of the octree.
In a basic form, octrees can model a Boolean property such as if a voxel is occupied. The tree
structure enables pruning, e.g., in the case of occupancy of all the children of a parent node.
Pruning can lead to a reduction of the number of nodes to be maintained in the tree and therefore
time savings regarding operations to be performed on the tree.
OctoMap offers easy generation of 3D models via integration of point clouds such as from 3D
laser scans or stereo cameras but also the insertion of single nodes in an existing octree structure.
The structure of an octree is presented in 3.10.

3.10 Robot Operating System - ROS

The Robot Operating System [56] has been presented in 2009 at a workshop on open source
software on the ICRA 2009. ROS has been developed to meet challenges many developers for
robotic systems witness as having to deal with varying hardware. Some if those challenges are
code reusability and handling big code bases which tend to emerge in robotic systems where
subsystems as processing sensor reading, plan and control motion or reason under the premise
of reaching a goal state are linked. ROS has been developed as part of the STAIR project [57]
at Stanford University and the Personal Robots Program [58] at Willow Garage. ROS provides
a multitude of tools, libraries and conventions which simplifies the development of robust appli-
cations. ROS can run on distributed computer systems and different operating systems although
Ubuntu Linux is the most used operating system in the community. One of the strengths of ROS

36

3.10 Robot Operating System - ROS

(a)

(b)

(c)

Figure 3.10: The structure of an octree representing volumes is shown. The origin node in (a) is
the source node of the tree which is in (b) and (c) recursively subdivided. The ori-
gin volume is subdivided into eight volumes represented by eight nodes (b) which
then are further subdivided to another eight volumes respectively nodes in (c). The
minimum volume size defines the resolution of the octree. [11]

are the many available software modules for robot tasks which can easily be used and adapted.
The goals of ROS are summarized by five idioms [56, p.1-3]:

• Peer-to-peer: A a connection between computer programs is established, the commu-
nication takes place directly between them without central routing service. Peer-to-peer
targets scalability of a system under rising amounts of data to be processed.

• Tools-based: Individual tools d are small and together build a complex software sys-
tem. The benefit of small tools is comparable to modularization. The task of modules
respectively tools is clearer and improving them is easier when they are detached from
logically independent parts of the software system. A canonical integrated development
and runtime environment is not provided by ROS; separate programs provide tasks such
as visualizing system interconnections, graphically plotting data streams or logging data.

• Multi-lingual: Software modules can be written in any programming languages as long
as a corresponding client library exists. Client libraries exist for multiple languages as for
C++, Python, LISP, Java, MATLAB, etc. Although many client libraries exist, C++ and
Python are the most used languages.

• Thin: ROS encourages code development to occur in standalone libraries with no depen-

37

3 Experimental Setup

dencies on ROS to then wrap them to send and receive messages from other ROS modules.
The developed modules allow an easy reuse outside of ROS and besides simplifies the cre-
ation of automated tests via standard continuous integration tools.

• Free and Open-Source: Commercial and non-commercial use is provided under the per-
missive BSD license of the core of ROS. Communication with interprocess communica-
tion (IPC) allows licensing of components of software systems build using ROS. There-
fore, completely open source as well as partly open source development is enabled under
the ROS license.

The primary goal of ROS is to support code reuse in robotics research and development. A
distributed framework of processes which describe small programs can be grouped in packages
and stacks, which can be shared and distributed. The design of ROS can be brought together
in three levels of concepts [59]: The Filesystem level, the Computation Graph level and the
Community level.

3.10.1 ROS Filesystem

ROS files are organized in a certain way which is described by the Filesystem concept level
representing:

• Packages (cf. figure 3.11) constitute the atomic build and release item in ROS software.
They represent single ROS software units containing runtime processes (nodes), ROS-
dependent libraries, scripts, configuration and other files which have its use being stored
in a package.

• Metapackages package multiple packages related to specific topics or functionality.

• Package Manifests (package.xml) hold metadata about a package as the likes of name,
version, description and other information as dependencies.

• Messages types are message descriptions defining the data structures for messages sent
in ROS.

• Service types define the data structures for request and response for services in ROS.

Figure 3.11 pictures the package surface_contour with a package typical structure of direc-
tories for source files, launch files, configuration files, message files and a CMake file as well
as a package file in XML-format. The nodes in the source directory are started with roslaunch
files from the launch directory. Roslaunch is a tool to easily start one ore multiple ROS nodes
either locally or remotely via SSH. Additionally, parameters can be set via roslaunch files on
the parameter service. The official build system of ROS is catkin which combines macros of
CMake, an open source build system, and Python scripts. Although catkin’s and CMake’s work-
flow is similar, catkin adds additional functionality among others in terms of building multiple
dependent projects at the same time. Each ROS package contains a package manifest file called
package.xml and a CMakeLists.txt. The package.xml defines properties about the package such
as the name, authors and dependencies on other catkin packages. The CMakeLists.txt contains

38

3.10 Robot Operating System - ROS

surface_contour
action
config
include
launch

grid_version.launch
surface_contour.launch
surface_contour_orientation_change.launch

msg
src

grid_version.cpp
surface_contour.cpp
surface_contour_orientation_change.cpp

srv
CMakeList.txt
package.xml

Figure 3.11: The typical structure of a ROS package is shown in this figure representing the
package of surface_contour implemented in the thesis.

instructions to the CMake build system for building software packages.
Catkin packages can be built standalone, but the concept of workspaces [60] provides to build
multiple and independent packages together at once. In general, the workspace is the place to
modify, build and install catkin packages and the typical layout is shown in figure 3.12. The
workspace contains up to four spaces with different purposes with respect to software develop-
ment:

• Source Space: The source space contains one or multiple catkin packages and the source
code.

• Build Space: CMake is invoked in the build space to build the catkin packages in the
source space. The cache information as well as other intermediate files generated by the
build process are kept here.

• Devel Space: Built targets are placed in the development space before being installed.
The devel space has its benefit in being a testing and development environment.

• Install Space: Built targets can be installed in the install space although the install space
does not have to be in the workspace.

39

3 Experimental Setup

catkin_ws
build
devel
install
src

tams_cml
tams_pa10
tams_cml
tams_sunrise_ft
CMakeList.txt

Figure 3.12: The typical structure of a ROS workspace is shown representing a catkin
workspace, the corresponding directories of build, devel, install and src. ROS pack-
ages are found in the src directory.

3.10.2 ROS Computation Graph

The processes in ROS are called nodes and span a network of communication. This network is
called the computation graph and consists of the following concepts:

• Nodes represent the units performing computation. ROS aims to build simple nodes rather
than complex nodes which might be hard to debug. Therefore the development of multiple
nodes can lead to complex programs and sophisticated functionality. The nodes usually
are written using ROS client libraries such as roscpp and rospy, while roscpp is used with
the programming language C++ and rospy with Python. By using the ROS communication
methods, such as messages and topics, nodes can easily communicate with each other.

• The ROS Master enables the exchange of information between nodes by providing name
registration and lookup to the rest of the nodes. Although it is required for exchange
and lookup, the master is not responsible for the communication between nodes which
bypasses a possible bottleneck in the case of scenarios with heavy communication needs
between nodes.

• The Parameter Server serves as a storage for data in a central location. It can be accessed
and modified from the nodes and is part of the master.

• Messages are sent between nodes to communicate. A message is simply a data structure
containing a typed field over which corresponding data can be sent. Standard types are
supported by ROS messages with types as the like of integer, floating point and boolean.
Own message types can be build by combining standard types.

• Topics transport messages. They make use of a publisher/subscriber infrastructure. Does a
node send a message via a topic, the node publishes it on the topic and is called publisher.

40

3.10 Robot Operating System - ROS

Figure 3.13: An example of an extraction of a more complex computational graph showing
two nodes in rectangles and two topics in ellipses. The arrows show the data
flow between nodes and topics. The /surface_contour node publishes on the
topic /sphere_goal_pose and has a subscription on the topic /collision_flag. The
fcl_collision_check node publishes and subscribes vice versa.

Does a node subscribe to a topic it receives the corresponding messages sent over this
topic and is called subscriber. Publishers and subscribers are not aware of each other’s
existence. Moreover, it is possible to have multiple publishers and subscribers on the
same topic. Each topic has its unique name and is also defined by a message type.

• Services introduce a request/response communication interaction due to the need for an-
other communication interaction concept than topics. Services can be compared to remote
procedure calls and are defined by a pair of messages structures corresponding to request
and response. A service is provided by a node which receives a request by another node,
processes the request and sends the result message to the requesting node.

• Bags is a format for storing data in ROS. Sensor data, e.g., send over topics, can be stored
in bags and replayed afterward. Bags enable to develop, test and debug ROS software
without the need to have the robotic system available and running.

3.10.3 ROS Community

The ROS Community describes the resources where the exchange of software and knowledge
takes place. The exchange of information with the community is crucial in open-source envi-
ronments. Without platforms providing down- and upload of files or the possibility to ask and
answer questions online, distributed software development hardly works, let alone dedicated
software developers. The following resources describe the most important communities:

• ROS Distributions are versioned meta packages ready to be installed. It can be compared
to Linux distribution and a ROS distribution maintain consistent versions across a set of
software.

• Repositories most often maintained in GitHub provide open-source access to robot soft-
ware components and are documented manifold on the ROS wiki.

• The ROS wiki is the main forum for documenting information about ROS. Tutorials, best
practices, and information about packages and meta packages as well as error handling
can be found here.

41

3 Experimental Setup

<link name="link_example">
<inertial> ... </inertial>
<visual> ... </visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0"/>
<geometry>

<cylinder radius="1" length="0.5"/>
</geometry>

</collision>
</link>

Figure 3.14: Example of an URDF link structure

3.10.4 Representing a Robot Model in ROS

The Universal Robot Description Format (URDF) and XML Macros (Xacro), both XML spec-
ifications, enable to model a robot in ROS. While URDF describes a robot model in terms of
kinematic and dynamic properties, Xacro is used when large XML documents as with URDF
occur to shorten XML files and make them more readable.

URDF

The files describing a robot model end with .urdf and base on an XML file format with a hierar-
chical structure. The URDF, furthermore to kinematic and dynamic description, enables a visual
representation and collision model of the robot.
According to XML, URDF uses tags to build up the model of the robot. Commonly used tags
are links, joints and the tag robot which encapsulates the entire XML file. The link elements
describe the rigid bodies of the robot and have sub-tags describing inertial, visual and collision
features. Figure 3.14 depicts an example of a link element from an URDF file. The collision
model of the example link is a cylinder with a radius of 1 meter and length of 0.5 meters. Addi-
tional to describing a link by simple shape elements as the likes of a sphere, box, and cylinder, a
3D mesh can be imported to represent a robot link.

The joint elements represent the robot joints. Alongside the kinematics and dynamics of the
joint, the limits on joint movement and velocity can be specified here. Different types of joints
naming revolute, continuous, prismatic, fixed, floating and planar are supported. A URDF joint
is located between two links and a typical syntax is as follows:

Inside the robot tag is defined the name of the robot and the links and joints constituting the
robot model. A syntax example is given in figure 3.16

Xacro

The construction of robot models via URDF can become confusing with growing numbers in
links and joints representing a robot model additional to concatenations of multiple URDF files

42

3.10 Robot Operating System - ROS

<joint name="joint_example" type="revolute">
<origin xyz="0 0 1" rpy="0 0 3.1416"/>
<parent link="link0"/>
<child link="link1"/>
<limit ... />

</joint>

Figure 3.15: Example of an URDF joint structure

<robot name="robot_example">
<link> ... </link>
<joint> </joint>
<link> ... </link>
<joint> </joint>

</robot>

Figure 3.16: Example of an URDF robot structure.

to build up an environment in which a robot is situated. The URDF allows not only the descrip-
tion of robot models but also the description of the environment. In fact, it allows the description
of whatever the URDF XML format syntax allows. Xacro enables modularity and re-usability
of URDF files. It extends the functionality of URDF by introducing macros inside the robot
description. In this way, robot models consisting of different dynamic and kinematic parts can
be modularized. Additionally, basic concepts of programming such as variables and constants
are introduced by Xacro which ease the process of building a robot model. An example of a
Xacro file depicts the additional functionality:

Via roslaunch files, the xacro is converted to URDF and used as a parameter called ’robot_
description’. Nodes are now able to access the robot model description to use it in their pro-
cesses, e.g., extract joint limitations or visualize the robot model.

3.10.5 MoveIt!

MoveIt! [61] is widely used in robotics research providing a framework for motion planning,
collision control, manipulation, navigation and kinematics under ROS. The MoveIt! core node
provides the interface to calculate forward and inverse kinematics. The mandatory information
about the kinematic is provided by the ROS parameter server. The parameter server provides the
URDF, the SRDF (Semantic Robot Description Format) and configuration files. The SRDF and
configuration files can comfortably be generated with the MoveIt! Setup Assistant and emerge
from the URDF files. Although many possibilities in using MoveIt! exist for the application of
the thesis; only the forward kinematics calculation is used due to manifold reasons. Crucial in
the surface contouring task is the instantaneous trajectory change in case of a contact occurrence
between end-effector and object. The standard trajectory planning algorithms of the OMPL
(Open Motion Planning Library) used in MoveIt! do not fulfill that requirement.

43

3 Experimental Setup

ROS Parameter Server

U
R

D
F

S
R

D
F

C
on

fig
ur

at
io

n

MoveIt!

. . .

moveit::core

::RobotState

+getGlobalLinkTransform()

+setJointGroupPositions()

. . .

::AttachedBody
. . .

::JointModel

. . .

Figure 3.17: Overview on MoveIt! namespace moveit::core showing where to set joint values
and get link transforms. The methods of getGlobalLinkTransform() and setJoint-
GroupPositions() are located in the moveit::core::RobotState class and are used in
the course of the surface exploration nodes to gather the current pose of the robots
frames and to set joint positions for Cartesian goal positions of the probe.

To get the pose of a frame relative to a reference frame, getGlobalLinkTransform has to be called
on a moveit::core::robot_state instance (cf. 3.17). Via setJointGroupPositions the joint values
of the robot can be set on a robot_state instance. Usually, a robotic arms frames reach from the
base of the robot to the end-effector. Setting the end-effector frame as link to be transformed to
in getGlobalLinkTransform results in the Cartesian position of the end-effector link in relation
to the base frame.

44

4 Concept

The chapter on concepts illustrates the approach on how to reach the set thesis goals. First, the
decisions on the used hardware are shortly introduced with emphasis on the printed 3D probe.
The concept of surface exploration respectively surface contouring is described as well as how
to achieve surface reconstruction.
In blind surface exploration tasks based on single force sensors, knowledge about the environ-
ment is little or non-existent in comparison to vision-based approaches. Therefore and for sim-
plicity, assumptions have been made including an exploration area in which the to be explored
object is situated to not have to explore the whole workspace of the KUKA LWR IV.
Key to blind surface exploration is the strategy on how to reliably contour objects and in parallel
avoid collisions with the environment. Concepts to achieve this behavior are described in the
following as well as requirements for the concepts to succeed.

4.1 Hardware Setup

The hardware setup is shown in figures 4.1 and 3.1 has been chosen to meet the requirements for
the approach described in this chapter to explore and contour objects in 3D to then reconstruct the
shape of the object via surface reconstruction methods. More information on the hardware setup
concerning the robot arm manipulator KUKA LWR IV and ATI nano17e is found in chapter 3.

3D printed probe The design of the tactile probe compound of sphere and stick is used to
allow fairly comfortable surface contouring characteristics. The sphere constitutes the link and
is expected to be in contact with the object surface during the contouring process. The stick
constitutes the connection between sphere and force/torque sensor which itself is connected to
the fingers of the WSG-50 gripper mounted on the KUKA LWR IV. Bulkiness in the end ef-
fector leads to higher chance of unwanted collisions between object and robot in blind surface
exploration tasks. The force/torque sensor is installed between the 3D printed holder and the
stick as part of the end effector. The proximity to the sphere and therefore proximity to the last
link in the robot kinematic chain retains distortion of the measured force values emerging due to
intrinsic compliance behavior of the robot.

The shape of a sphere comes with valuable characteristics for surface contouring. Does a
sphere touch a plane surface of an object, only one contact point emerges and therefore eases
the determination of the contact point to later being used in surface reconstruction. Furthermore
the normal force vectors acting on a sphere always pass through its center and allow an easy
determination of the contact point location.
The contact point P on the surface of the sphere can be determined as follows:

45

4 Concept

~v = [Fx, Fy, Fz] (4.1)

|~v|=
√

Fx
2 + Fy

2 + Fz
2 (4.2)

P = [x,y,z] = r
[

v1

|~v|
,

v2

|~v|
,

v3

|~v|

]
(4.3)

P is the contact point on the sphere represented in the coordinate frame with origin at the center
of the sphere. x, y and z are the coordinates of the contact point, r denotes the radius of the
sphere. Fx,Fy,Fz are the elements of the force vector ~v and |~v| represents the magnitude of the
force vector.
The force normal represents the surface normal of the object and therefore the surface direction
of the object in contact with a sphere is easily determined by the orthogonal vector to the force
normal. In the case of three dimensions, the orthogonal vectors span a plane while in the case of
two dimensions, orthogonal vectors directing in two opposite directions are obtained (cf. 4.2).
Considering two dimensionalities, the tangent to the circle generated of the sphere touching it
at the contact position is orthogonal to the force normal and can be placed at the contact point.
Hence, the shape of the sphere allows easy determination of the contact point and based on the
contact point location easy determination of the surface direction of the object.

Figure 4.1: The hardware setup shown includes a KUKA LWR IV, a Schunk WSG-50, the 3D
printed combination of holder, ATI six-axis force/torque sensor nano17e and probe.

46

4.2 Surface Exploration/Contouring

Fx

Fy

FN

perp(FN)

perp(FN)
perp(FN),T

Figure 4.2: This figure illustrates exemplary an object exerting a force on a sphere and how to
derive the surface direction of the object. The acting force between object and sphere
passes through the sphere’s center. The perpendicular vectors (perp(FN)) of the force
normal (FN) point in the directions of the object surface direction. The tangent (T)
of the contact point on the sphere is parallel to the perpendicular vectors of the force
normal.

4.2 Surface Exploration/Contouring

Independent of the specific strategy for blind tactile exploration, the general process can be
described simplified as a loop of measuring, analyzing, planning and motion. In contrast to
vision approaches, the data to be analyzed is not generally available but has to be gathered via
motion and contact to the environment.
Starting at the tactile sensor reading in 4.3, the readings are analyzed in the next step regarding
on how to react to them motion-wise, e.g., set a new position goal for the robot. The motion
trajectory then has to be planned, and finally, the execution of the motion is conducted. Motion
execution, motion planning and sensor reading analysis are each dependent on the preceding
process. The execution of tactile sensor reading is not dependent on the motion execution and is
performed permanently, although the sensor reading outcomes are dependent on motion.

The general process of tactile exploration is to analyze based on the measurements of the tac-
tile sensor, as can be a force/torque sensor, the current situation and subsequently plan the next
motion and execute it. In motion, the sensor readings have to be permanently analyzed to be
able to react instantaneously.
The approach for exploration of the thesis is divided into two parts. The strategy for the case
of being in contact with the object differs from the strategy with no contact. Naturally, once a
contact between end effector and object occurs, the strategy is to hold the contact while contour-
ing the object. Is no contact being made yet, the strategy is to cover a grid where the object is
supposed to be.

47

4 Concept

Tactile Sensor
Reading

Sensor
Reading
Analysis

Motion
planning

Motion
execution

Figure 4.3: A loop describing the process of tactile sensing in blind surface exploration is shown
and illustrate the sequential processes to analyze tactile sensor readings to plan mo-
tion and finally execute motion. The tactile sensor readings thereby are not depen-
dent on the other processes concerning sequentiality, but its readings are dependent
on the motion execution.

4.2.1 Motion Control

The motion control to explore the surface area and the surface of an object can, according to
the interaction control section in the chapter fundamentals (cf. 2.4), be described as active
interaction control. More specifically indirect force control by admittance control is applied
together with point-to-point motion. In other words, if the force/torque sensor readings are
evaluated to represent a contact to an object in the environment, the motion of the robotic arm is
adjusted to not push into the object, but to contour the object once a contact has been made.
The determination of the trajectory of the robotic arm is based on point-to-point motion where
a single point in Cartesian space describes the goal position of the tool center point. The TCP
is the point in relation to which all robot positioning is defined as well as in our case constitutes
the origin of the sphere coordinate system.
To perform admittance control via point-to-point motion, points describing goals resulting in
motion not pushing into the environment objects respectively contouring the objects are to be
found. The strategy on how to achieve this behavior if requirements (cf. 4.4) are met in a simple
way is described in the following sections.

4.2.2 Assumptions and Simplifications

For the sake of simplification and applicability of the approach to explore and reconstruct an
object, assumptions have to be defined. The assumptions concern the object and the setup to
perform the exploration. The object is rigid and motionless throughout the exploration and fur-
thermore convex to ensure the development of a general approach for a defined class of objects.
A universal approach to ensure blind exploration and reconstruction of all kinds of object shapes
with reasonable results is yet to be found, if possible. The exploration strategy is tightly cou-
pled to the mechanics and kinematic of the robot’s manipulator. The kinematic chain and joint

48

4.2 Surface Exploration/Contouring

(a) (b)

Figure 4.4: Figures (a) and (b) show the same joint configuration from different angles in which
a straight line on the y-axis (green) in -y-direction is not possible. The joint config-
uration limits the ability to continuously follow the object surface beginning at an
arbitrary position.

types, as well as joint limits, specify the reachable and dexterous workspace. The ability to
reach positions in 3D in arbitrary end effector orientation is desirable in the case of exploration.
Contouring an object without losing contact to the surface requires orientation change of the end
effector and diminishes the likelihood of unwanted collisions between robot and object. Never-
theless, joint limits and kinematic chain based limitations in freedom of motion can result in the
inability of an end effector to move in straight lines as in following an object contour (cf. 4.4).
Of course, one might address this problem with appropriate motion planning, but has to be done
before the motion takes place and in knowledge of the environment during the motion which is
not known in blind surface exploration respectively contouring.
The figures of 4.4 represent a joint configuration of the KUKA LWR IV which does not allow

further motion of the end effector in current orientation to contour the object. In order to reach
the position goals needed to contour the object result in joint reconfigurations leading to high
motion ranges including the loss of contact to the object and therefore the stoppage of surface
contouring. High ranges of motion are accompanied by motion in the end effector not in con-
vention with surface contouring and therefore unwanted. Additionally, the risk of collision with
the environment increases due to limited knowledge about the surroundings.
Thus a setup has been chosen to preferably avoid this problem as can be seen in figure 4.1. In this
joint configuration motion along the y-axis towards the object and surface contouring is ensured.
To avoid the tedious and time-consuming blind search of the object to be explored in the workspace
of the KUKA LWR IV, the objects to be explored are placed in the same position. Hence, the
end effector motion, to begin with, can be considered given.

49

4 Concept

Figure 4.5: The green box in the hardware setup for the thesis represents the exploration area to
find and contour the object. The coordinate frame in red, blue and green represents
the static coordinate frame in which Cartesian position control goals are expressed

4.2.3 Exploration Area

Blind surface exploration is time expensive and therefore motion along an exploration area
shown in figure 4.5 has been implemented. The TCP drives through the area following straight
lines to cover the surface area in two dimensions. In the case of the pictured grid, the TCP is
driven along the axes of y and x.
Knowing about the completion of object exploration with unknown shape is nontrivial. There-

fore the position goals in the implemented exploration and contouring approaches are defined to
generally alter no more than two values of the end effector position either in no contact or con-
tact situation with respect to a static coordinate system. The idea is to simplify time efficiency
in covering the exploration area via motion alignment on two axes and to develop an easily
comprehensible exploration and contouring strategy assuring completion in the exploration of
objects. Systematically covering an exploration area via position control in a static coordinate
system is straightforward.

4.2.4 No Contact

In the case of no contact between probe and object in the exploration area, the end effector
respectively the probe moves according to 4.6 being aligned to the axes of a static coordinate

50

4.2 Surface Exploration/Contouring

Figure 4.6: The strategy to explore the exploration area (green) is shown in top view. A combi-
nation of x-axis and y-axis motion at a time is conducted to cover the area. Once the
end of the exploration area on the x-axis is reached, the probe is moved back to the
point of the first contact. Then the rest of the area in plus x-axis direction is covered.

system. In the case of the exploration starting point in figure 4.6 the motion is conducted aligned
to the y-axis and altered in the direction of the x-axis when the end of the exploration area has
been reached in the direction of the y-axis. Next, the motion direction is in the opposite y-axis
direction until again the end of the exploration area has been reached. The process is continued
until the end of the area on the x-axis is reached. Depending on the starting point at an edge of
the exploration area, the probe is now directed to the starting point to explore the remaining area
now altering the direction in -x-axis direction ends the exploration area on the y-axis. Changes
in distance x-axis motion allow more or less fine-grained coverage of the area.

4.2.5 Contact

What the concept of surface exploration provides for surface contouring is the probe in contact
with an object. Although the implemented approaches in chapter 5 differ in rules on how to
contour the object in specific cases, the general concept is similar. The sphere of the probe is to
be in contact with the object during the process of contouring.
Is an object present in the exploration area collision detection has to be performed to neither
harm the object nor the robot. The force/torque sensor is installed between the links of the 3D
printed holder and the probe. The probe is mounted on the nano17e to transfer the forces and
torques it is exposed to directly to the sensor. All robotic links except the probe have to be
considered in collision detection as they are not represented in the nano17e’s sensor readings.

51

4 Concept

Surface Contouring

The contouring strategy is composed of the following 3 phases:

1. The end effector motion is determined based on the force/torque sensor readings:
The force/torque sensor indicates the force acting upon the sphere on the end effector.
Based on this information, the contact point due to the characteristics of a sphere (cf. fig-
ure 4.2) can easily be determined as well as the expected surface direction being orthogo-
nal to the force normal (cf. figure 4.8) at the contact point. Once the surface direction is
determined, the next position goal can be set parallel to it.
Figure 4.7 shows the robot in contact with the object with the sphere and is schematically
pictured in figure 4.8. (1) Represents the the probe approaching the object in -y-direction.
In (2) the force normal acting on the sphere on contact is shown to then determine the
motion direction (3) to contour the object. Based on the characteristics of a sphere respec-
tively circle described above, the object surface direction can be determined as motion
direction.

2. The contact to the object has been lost:
Is the contact to the object surface lost as can happen with surface discontinuities, the
force normal sensed at the last contact point is taken and multiplied by -1 to point towards
the opposite direction and used as motion direction for the end effector to re-approach the
object.
Figure 4.9 shows the loss of contact and the process of re-approaching the object on a
surface discontinuation. The motion according to the force normal acting on the sphere
leads to the loss of contact between sphere and object in the transition from 1 to 2. The
last recorded force normal (LCFN) is used to determine the direction of the end effector
to re-initialize contact. A simple yet effective procedure with a sphere as a probe is to
use the opposite direction of the LCFN to specify the motion direction. Sub-figures 3 and
4 show the subsequent motion direction of the probe and the resulting force normal with
corresponding perpendicular vector determining the direction for the next position goal.

Can no contact be achieved through the re-approaching process for a certain distance,
the object can no longer be contoured and the motion strategy to cover the grid as in no
contact situation takes over.

3. Collision avoiding motion:
In consequence of the shape of the manipulator, collisions can arise between object and
robot. Is a collision distance between robot and object below a threshold, either a change
in motion direction or a change in the end effector orientation is triggered. The change
in motion direction takes advantage of the fact that the vectors orthogonal to the force
normal span a plane, wherein each orthogonal vector constitutes a surface direction of the
object. The change in motion direction aims to avoid the collision by not diminishing the
collision distance.
Figure 4.10 illustrates the occurrence of a collision threat between the end effector of the

52

4.2 Surface Exploration/Contouring

Figure 4.7: The probe is shown in contact to an object.

1 2

3

z

y

FN FN, Fy

Fz,perp(FN)

Figure 4.8: The figure shows the making of contact with the object (1), the force acting upon
the sphere at contact (2) and the subsequent motion direction of the end effector in
(3). The force normal (FN) acting on the sphere is additionally shown in (2) and
the resulting surface directions of the object respectively the perpendicular vectors
(perp(FN)) to the vector of the force normal (FN).

53

4 Concept

1z

y

2

LCFN

LCFN * -1

3

FN

perp(FN)

4

Figure 4.9: The reapproach process is visualized from 1-4. The sphere moves along the object
surface in 1 and loses contact due to a discontinuity in 2. The last contact force
normal (LCFN) is multiplied by -1 to direct to the opposite and indicate the new
motion direction. 3 and 4 show the following interaction between sphere and object.

robot and the object if the motion direction is retained in (a). One way of handling the
situation is to change the motion direction in the opposite direction, hence moving parallel
to the z-axis in +z direction (b). Alternatively, leaving the strategy of covering the grid
as described above, the surface direction along the x-axis determined by the force normal
acting on the sphere can be chosen to direct the end effector motion along the x-axis. As a
result, the collision can be avoided. The change in orientation based on the position of the
possible collision ensures to avoid the collision while maintaining the motion direction
along the taken surface direction. Hence, the orientation change enables to contour more
shape surface and is not entirely dependent on the impact of the shape of the end effector
and manipulator on collision probability.
The figure 4.11 illustrates the change in end effector orientation to avoid collisions as well
as to enable further contouring in the same motion direction.

Furthermore, other characteristics of the environment have to be taken into account in the used
setup. The table on which the object is positioned has to be managed. For reasons of simplicity,
the workspace of the KUKA LWR IV has been restricted to not get in contact with the table.
Does the sphere reach a certain low height the motion strategy to cover the grid takes over.

54

4.2 Surface Exploration/Contouring

y

z

x

z

(a) (b) (c)

Figure 4.10: Strategies to avoid collision between robot and object are shown in the figures (b)
and (c). The motion direction in (a) results in a collision if the motion in minus z-
axis direction is continued. (b) and (c) show ways to avoid the collision. In (b) the
motion direction is directed in the opposite direction on the z-axis. In (c) motion
along the x-axis is performed to avoid collision respectively not to diminish the
distance to the collision point.

y

z

(a)

y

z

(b)

Figure 4.11: The strategy resulting in orientation change to avoid collision is shown. The col-
lision to be expected in (a) can be avoided by changing the orientation of the end
effector (b). Furthermore, motion along the object in z-axis can be continued.

Collision Detection

To perform collision detection, collision objects have to be modeled in an environment, and it
has to be detected whether or not the collision objects intersect each other. A collision is detected
in the case of an intersection. The Flexible Collision Library described in 3.7 is used to perform
collision detection. Collision objects representing the links and shape of the robot are easily
created and shown exemplary in figure 4.12.

On the other hand collision objects and contoured objects of the blind exploration process
cannot be created as easily as their location and pose are entirely unknown. Via the OctoMap

55

4 Concept

Figure 4.12: The finger of the WSG-50 gripper as well as the 3D printed holder, the ATI nano17e
and the stick of the probe are surrounded by a collision shape shown in red. The
sphere does not have a collision shape as it is supposed to be in contact with objects
in the environment.

library (cf. section 3.9) a 3D occupancy grid is used to map the force readings interpreted as
contact points to insert voxels in the grid and construct the collision object of the unknown object
step by step (cf. figure 4.13). The single voxels can then be used to generate collision objects
where each voxel has its corresponding collision object. Beginning with the first voxel-based
collision object, collision detection is performed to avoid collisions during motion of the robot.
To be able to avoid collisions, the minimal collision distance of collision pairs is observed to
react in time if it drops under a particular threshold value.

4.3 Surface Reconstruction

The approach to reconstruct the shape of an object is based on building polygon meshes respec-
tively build a convex or concave 3D hull of the contact point positions gathered through surface
exploration. The approach makes use of some of the many surface reconstruction algorithms and
methods emerged or used in computer vision such as moving least squares (MLS) and Poisson
reconstruction.
Typically, data generated in computer vision is dense and the algorithms and methods perform
best on those data sets and might fail on sparse data sets with respect to the generated shape in
comparison to the real shape. Tactile surface exploration is time expensive and therefore one
of its objectives is to perform time efficiently which leads to sparse data sets. In order to cope
with this circumstance, upsampling can be used to generate more data points. Upsampling, on

56

4.4 Requirements

Figure 4.13: The occupied nodes of the octomap representing the contact points between the ex-
plored object and the sphere of the probe are shown with colored voxels. The color
illustrates the height of the occupied nodes. The red voxels are located above the
other colored voxels. The octomap has been generated during the exploration of a
wooden block (cf. figure 6.1 (a)) and the shape of the object is already recognizable.

the other hand, approximates the positions of the generated data points and is prone to error
due to the nature of approximation itself. The methods used in the thesis are Poisson surface
reconstruction [62] and the computation of concave respectively convex hulls (cf. section 2.6).
Both differ from each other in terms of tuning via parametrization and the requirements of the
provided data set.

4.4 Requirements

Several requirements have to be met for the approaches of surface exploration and surface re-
construction as described in this chapter to work out. The requirements are denoted as follows
for the two of surface exploration/contouring and surface reconstruction:

57

4 Concept

• Surface Exploration/Contouring:

- Accurate and frequent force readings of the force/torque sensor

- Accurate and frequent feedback on pose of the kinematic chain of the robot

- Instantaneous determination of position goals based on force readings

- Instantaneous motion execution of the robot arm based on commands sent from the
position control

- Dexterous workspace of the robot manipulator

- Compliant but robust end effector

• Surface Reconstruction

- Accurate contact positions and contact surface normals

- Sufficiently dense data set with respect to the reconstruction method

The requirements for the reconstruction base on sound data sets to perform the corresponding
algorithms to ensure valid results. The requirements for the exploration emphasize real-time
ability regarding motion planning, motion control and collision checking. Additionally, the
accuracy of force values and kinematic state of the robot is of upmost importance to ensure
surface contouring and valid collision checking. Delays would result in unwanted behavior
such as losing contact to the object or collisions between robot and environment. The end
effector is needed to be compliant to a certain degree when in contact with an object or when
the contact is initially made due to a characteristic of blind tactile exploration. In blind tactile
object exploration, no collision check can be done if no knowledge about the position and shape
of the object is known. Hence, a collision or contact is experienced when robot and object are in
touch. In the case of both bodies being rigid with no compliance, the force acting on both either
pushes one object away, shuts down the manipulator if a mechanism to avoid harm to its links
and joints based on force magnitude acting upon them exists, or theoretically and immediately
grows to a certain magnitude and can lead to a breakage of one of the bodies. The compliance in
the end effector or kinematic chain of the robot permits reaction in time according to a moderate
force and avoid damage to robot or environment.

58

5 Implementation

The implementation of the concepts earlier described is illustrated in this chapter. The imple-
mentation of the surface exploration and reconstruction is based on the concepts of chapter 4
and makes use of the ROS framework (cf. section 3.10) to reuse already existing nodes such as
the ros_fri node for communication between the RML library and the FRI.
First, an overview of the collaborating modules is given in section 5.1 to illustrate the division
of the implemented functionality. Then the integration of the implemented modules into the
ROS framework is illustrated with an example of a URDF partially describing the probe visual
and collision geometry. The core functionality and purpose of the implemented and used nodes
represented in the ROS computation graph are presented. Section 5.3.3 illustrates the function-
ality of the implemented nodes for surface exploration and surface reconstruction. Particular
emphasis is put on the functionality of the surface contour nodes. Three versions of surface con-
tour nodes have been implemented, and the differences are exposed. The octoMaps generated
by the contact points between probe and objects during surface contouring are transformed to
point clouds to execute the surface reconstruction methods are shown in the evaluation chapter
at 6.2.2.

5.1 Overview Collaborating/Functional Modules

An overview of the applied functionality for surface exploration and reconstruction is shown in
figure 5.1. The data flow during execution is marked by arrows pointing from source of data to its
destination. The surface exploration module processes information from the force/torque sensor,
the collision detection module and the Moveit! kinematic service to determine the motion to be
conducted by the probe to explore the surface area or contour an object. The new motion goal is
forwarded to the ROS FRI controller module which transforms the motion goal to a trajectory.
The trajectory path is finally sent to the Fast Research Interface of the KUKA LWR IV and
executed. In order to determine the motion of the probe, the state of the KUKA LWR IV is shared
with the ROS FRI controller in real-time. Hence the surface exploration module can operate
on real-time position data of the robot’s kinematic chain supplied by the MoveIt! kinematics
service. The collision detection module detects collisions respectively distances between the
robot and the environment based on the shape and motion of the robot and the gathered contact
points during surface exploration representing objects.
The surface reconstruction is independent of the determination of motion to conduct surface
exploration but operates on the information gathered by the force sensitive probe during the
exploration.

59

5 Implementation

Force/Torque Sensor
Readings

Collision Detection

Surface Exploration ROS FRI Controller KUKA LWR FRI

MoveIt! FK/IK
Service

Surface
Reconstruction

(a) (b) (c)

Figure 5.1: An overview of the used functionality modules in the thesis are shown. The rect-
angles represent the used and implemented functional modules to perform surface
exploration and reconstruction. The arrows indicate the information flow between
the modules. The dotted lines indicate the physical separation of the modules. The
force/torque sensor readings are conducted on the ATI nano17e (a). The logic on
surface exploration and contouring including the determination of motion goals and
collision detection as well as the surface reconstruction are executed on a remote
computer (b). Robot motion goals are commanded via the ROS FRI controller to the
Fast Research Interface (FRI) architecture of the KUKA LWR IV (c) (cf. figure 3.8).

5.2 Integration in ROS

The catkin workspace in figure 5.2 includes the needed packages to run the surface explo-
ration as well as surface reconstruction. Obviously the packages of surface_exploration
and surface_reconstruction include the corresponding functionalities. The package of
tams_wireless_ft includes the ROS node providing access to the force/torque sensor read-
ings and the ros_fri package includes the ROS node which communicates with the KUKA
LWR IV Fast Research Interface. The tams_lwr_wsg50_description and other packages
contain configuration files declaring among others joint limits such as acceleration and velocity
limits which have to be considered in motion planning but also the URDF and SRDF of the
robot.
The division in different packages enables logical distribution of functionalities and easier main-
tainability and reusability.

The probe mounted on the WSG-50 gripper is designed to ease surface contouring with regard
to following the surface of an object. Additionally, the design has been chosen to circumvent
collisions between other parts of the robot and the environment (cf. figure 4.1). The URDF of
the probe is attached to the already existing URDF of the robot. Exemplary figure 5.3 shows a
segment of the XML-file describing the sphere of the probe, assigning a radius of 5 mm in visual
and collision model. The color of the sphere is denoted to be silver.
The changes to the URDF of the robot lead to the need of adaptations in the KUKA controller

60

5.2 Integration in ROS

catkin_ws
build
devel
install
src

surface_exploration
surface_contour

launch
surface_contour_grid.launch
surface_contour.launch
surface_contour_orientation_change.launch

src
surface_contour_grid.cpp
surface_contour.cpp
surface_contour_orientation_change.cpp

CMakeLists.txt
package.xml

collision_detection
surface_reconstruction

launch
src

surface_convex_hull.cpp
surface_concave_hull.cpp
poisson.cpp
...

CMakeLists.txt
package.xml

tams_cml
tams_wireless_ft
ros_fri
tams_lwr_wsg50_description
...

Figure 5.2: The catkin workspace used for the surface exploration and reconstruction is shown.
Thereby a separation between the packages has been realized to modularize func-
tionality to generate better maintainability and ease reusability.

61

5 Implementation

<robot
...

<link name="sphere">
<inertial>

<mass value="0.001"/>
<origin xyz="0 0 0"/>
<inertia ixx="0.1" ixy="0.0" ixz="0.0" iyy="0.1"

iyz="0.0" izz="0.1"/>
</inertial>
<visual>

<material name="Silver" />
<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>

<sphere radius="0.005"/>
</geometry>

</visual>
<collision>

<origin xyz="0 0 0" rpy="0 0 0" />
<geometry>

<sphere radius="0.005"/>
</geometry>

</collision>
</link>

...
</robot>

Figure 5.3: A segment of the URDF file of the probe is shown. The inertial, visual model and
collision model of the sphere is described and the material color set to ’Silver’.

software. The TCP of the robot has initially been set at the fingers of the WSG-50 gripper and
needed to be changed to the center of the sphere of the probe to guarantee motion goals being
executed concerning the coordinate frame of the sphere.

The ROS computation graphs shown in the figures 5.4 and 5.5 illustrates the active nodes and
topics at a certain point in time giving an overview of the data flow between the nodes.
Both figures show the nodes and topics being used during surface exploration although they
differ. One figure shows the mandatory elements to execute surface exploration while the other
figure shows supplementary nodes and topics which are used to visualize the procedure of explo-
ration. Elements for visualization are, e.g., the /tf topic carrying the poses of the robot links or
the collision object marker and /BaseMarker carrying the pose of the corresponding collision
objects. The information on visualization are brought together in rviz, a 3D visualizer for the
ROS framework.
The functionality of the nodes and the published respectively subscribed topics of the graphs are
described as follows:

62

5.2 Integration in ROS

/wireless_ft The /wireless_ft node receives the force/torque sensor readings, converts
the raw force data into Newtons and publishes it on the /wireless_ft/wrench_3 topic
to the /surface_contour node. Additionally, the bias of the transducer is set to zero at
the start of surface exploration to get meaningful force/torque values.

/surface_contour The /surface_contour node is the node determining the motion goals
of the probe with regard to exploring the exploration area or contouring an object. The
determination is based on several topics. Based on the /wireless_ft/wrench_3 infor-
mation it can be determined if a contact to an object exists and how to find the surface
direction of the object. The information of reaching a pose goal is communicated via
/lwr/RMLFinalStateReached and the current joint state of the robot is subscribed to
the /lwr/joint_states topic. Information about the existence of a collision threat is
gained via the /collision_flag topic. The node publishes the pose goals of the probe
via /lwr/jointPositionGoal and the wanted goal pose of the sphere on /sphere_
goal_pose for the /fcl_collision_check node to determine to-be-collision situations.
Additionaly, an octree structure describing the occurence of contacts is published on
/octoMap.

/lwr The /lwr node represented in the graph denotes the ros_fri node implementing the
robot controller communicating between KUKA LWR IV FRI and the /surface_contour
node forwarding the robot joint states over /lwr/joint_states and receiving joint po-
sition goals over the topic /lwr/jointPositionGoal. Additionally the RML final state
reached flag is communicated over /lwr/RMLFinalStateReached.

/fcl_collision_check The collision checking node determines if collision situation exists
using the information of the octree of /octoMap, the goal pose of the sphere via /sphere
_goal_pose and the current joint states of the robot via /lwr/joint_states. The infor-
mation about possible collision are published on /collision_flag.

The graph in figure 5.5 is extended by elements used for visualization as follows:

/joint_state_merger The /joint_state_merger merges the wanted joints such as the
likes of the KUKA LWR IV and the WSG-50 gripper and publishes them on topic /joint_
states.

/robot_state_publisher The /robot_state_publisher receives the merged joint states
and forwards them on the /tf and /tf_static to the /rviz node.

/fcl_collision_check The collision checker node publishes the poses of e.g. the force/-
torque transducer via /CylinderMarker directly to /rviz.

/rviz Rviz visualizes the incoming information in 3D.

Overview on communication between nodes (selected topics for comprehensibility)

The roslaunch file shown in figure 5.6 shows to be loaded nodes and configuration files for
surface exploration. In this example the joint_state_merger is not loaded. Hence, visual-
ization in rviz will not show the motion of the robot nor the pose of the joint and link frames.

63

5 Implementation

Figure 5.4: The ROS computation graph illustrating used topics and nodes is shown. The el-
lipses denote the nodes and the rectangles the topics. In contrast to the computation
graph shown in 5.5, this computation graph shows only the mandatory elements used
to conduct the surface exploration process without nodes and topics describing func-
tionality towards visualization of the exploration process. The arrows between the
elements show the communication via topics based on publisher/subscriber architec-
ture.

64

5.2 Integration in ROS

Figure 5.5: The ROS computation graph shows the used nodes and topics for surface exploration
and the 3D visualization in rviz. The topics are illustrated in rectangles whereas
the nodes are illustrated in ellipses. The arrows between the elements show the
communication via topics based on publisher/subscriber architecture.

65

5 Implementation

<?xml version="1.0"?>
<launch>

<arg name="launch_joint_state_merger" default="false" />
<arg name="launch_lwr" default="true" /> <!-- Kuka LWR with FRI -->
<arg name="launch_rviz" default="true" />

...
<!-- upload the robot model: LWR, WSG-50 gripper, tables.. -->

<param name="robot_description"
command="$(find xacro)/xacro.py $(find tams_lwr)/launch/sphere_

launch/lwr_with_wsg50_sphere.xacro" />
<!-- The semantic description that corresponds to the URDF -->

<include file="$(find tams_lwr)/launch/sphere_launch/planning_context_
sphere.launch">
<arg name="load_robot_description" value="false"/>

</include>
...
<!-- LWR arm controller node -->

<group if="$(arg launch_lwr)">
<include file="$(find tams_lwr)/launch/ros_fri.launch" />

</group>
...
</launch>

Figure 5.6: Roslaunch files can be nested and contain commands to load other roslaunch files.
The roslaunch file shown in this figure loads the launch files of ros_fri.launch
and rviz. Additionally, the robot model containing the kinematic descriptions of
among others the KUKA LWR IV, the WSG-50 gripper and probe. Once loaded
to the parameter server, the kinematic description can be used to perform kinematic
calculations on the models such as forward and inverse kinematics.

The arguments for the lwr (ros_fri) and rviz nodes are set to true. Hence they are loaded. Fur-
thermore, the robot description, here the xacro of the environment including the robot and the
semantic descriptions that correspond to the URDF files are loaded to be used for calculations
on forward and backward kinematics.
Not included in the roslaunch file are the launch files for the nodes of /wireless_ft, /fcl_
collision_check and /surface_contour. They are launched separately simplifying shut
down of and restarting the nodes.

5.3 Surface Contouring

The implemented surface contouring nodes follow the concepts introduced in chapter 4 and
put emphasis on real-time ability. First, the process of motion planning via RML and FRI is
described. On this basis, pose goals for the probe generated by the surface exploration node can

66

5.3 Surface Contouring

Reflexxes Motion Library II

ros_fri

surface_contour

PIP POP

/joint_states/jointPositionGoal

FRISetCommandedJointPosition

GetMeasuredJointPositions

Figure 5.7: A communication diagram between the Libraries RML, FRI and the nodes ros_fri,
surface_contour is shown. The ros_fri node is the connecting part between
the other components transforming and transferring messages. Once a joint posi-
tion goal has been sent to the ros_fri node, it is transformed to be send as po-
sition input parameters (PIP) as new target motion goal to the RML. The gener-
ated position output parameters denoting the next joint positions to be set on the
FRI are transferred back to the ros_fri node and then sent to the FRI via the
SetCommandedJointPosition() method. The GetMeasuredJointPositions()
method of the FRI delivers the current joint positions which are then published on the
/joint_states topic and subscribed by the surface_contour node to determine
Cartesian pose goals for the probe based on current joint values.

be specified to explore the exploration area and contour objects. The general idea of the three
implemented versions of surface exploration nodes is displayed in figure 5.8. The strategy on
how to avoid collisions mostly distinguishes the surface exploration nodes. Therefore, emphasis
is put on working out the differences in this aspect

5.3.1 Motion Planning via RML and FRI

The motion planning of the KUKA LWR IV is determined with the RML (cf. section 3.6)
and the communicated over FRI (cf. section 3.5). The process of motion planning based on
position goals send by the surface_contour node is illustrated in figure 5.7. Starting at the
surface_contour node, the joint position goal to set the probe to a desired position is pub-
lished on the /jointPositionGoal topic via an RML compatible data structure called RML
PositionInputParameters(PIP) to the ros_fri node. Based on the current position and ve-
locity, the limits for velocity and acceleration of the joints, the RMLPositionOutputParameters
(POP) are determined by the RML. The parameters of the POP are then converted to an FRI com-
patible data structure and send via the SetCommandedJointPositions() method to the FRI.

67

5 Implementation

Finally, the trajectory point determined by the RML is executed via the FRI on the KUKA
LWR IV. The POP is fed into the PIP after each control cycle leading to a trajectory eventu-
ally reaching the desired position goal. Nevertheless, setting new position goals during non-
finished trajectories is possible. The prevalent joint positions of the KUKA LWR IV are ob-
tained via the GetMeasuredJointPositions method of the FRI library and published on the
/joint_states topic.

5.3.2 Overview on Surface Contouring

Three different concepts for surface contouring nodes haven been implemented for the explo-
ration task. The individual functionality and logic of the concepts overlap greatly and mostly
differ in the approach of collision avoidance. Therefore a simplified UML activity diagram for
the approaches illustrating the procedure of entering the grid following motion to start the sur-
face exploration until the exploration is completed is shown in figure 5.8.
In the following description of the diagram, it has to be stated that there is a difference between
collision and contact. Is the sphere of the probe in contact with an object of the environment,
then a contact is prevalent. Is a link of the robot expected to be in contact with an object, it is
called collision.
In the case of the exploration area not yet fully being covered, no contact and no collision is
prevalent, then the grid following motion continues until the area is covered and the motion is
stopped, or a contact or collision arises. In the case of an expected collision, a collision avoiding
motion determined by a motion strategy with regard to the surface contouring version is con-
ducted. Next, if a contact to the object has been made prior to the collision threat, the object
surface is reapproached. Once a contact exists, the surface of the object is contoured until a
collision is arising, the contact has been lost, or the surface exploration is terminated.

5.3.3 Functionality of Nodes

The functionality of the nodes earlier shown in the ROS computation graph is described in this
section. The key concepts and methods of the nodes are presented.

wireless_ft.cpp The wireless_ft node is responsible for the gathering and transferring
of meaningful force and torque values to the surface_contour node. Once the node is started,
it first connects to the ATI Wireless F/T device via telnet. After establishing a connection, con-
figurations as well as device parameters are set. Among others, active transducers and filter
options are set. Additionally, at the start, the bias of the used transducer is set to zero at the
starting position of the robot respectively the transducer. A UDP port is opened after the con-
figuration has been finished and a command is sent to the Wireless F/T device to start streaming
the sensor readings. The now incoming data is processed using the factory calibration matrices
provided by ATI. The conversion from raw values to values specified in Newton are published
into geometry_msgs/WrenchStamped messages representing a coordinate frame, timestamp
and the force and torque values.

68

5.3 Surface Contouring

Grid following
motion

no contact

contact

Grid following
motion

no contact

no collision

 collision

Surface Contouring

Collision
avoiding motion

Re-approach
object surface

Surface exploration
terminated

Surface exploration
ongoing

Surface area exploration
ongoing

Surface area exploration
completed

Figure 5.8: This simplified UML activity diagram describes the core ideas of the implemented
surface exploration nodes. Starting with a grid following motion to cover the ex-
ploration area, the motion is aborted in the case of a collision threat or the case of
a contact to the probe. In the case of a collision threat, a collision avoiding motion
according to the specific surface exploration node is conducted. In the case of a con-
tact situation between the sphere of the probe and the object, a surface contouring
motion is started and continued until the object surface is lost or the exploration is
terminated due to the object being outside the exploration area. Is the contact to the
surface lost, a reapproach process is executed to reenter in contact with the object.
Does the re-approach process fail, the motion strategy of exploration area covering
via grid motion is executed. Once the exploration area has been covered, the surface
exploration is terminated.

69

5 Implementation

fcl_collision_detection.cpp The collision detection node heavily uses the FCL (cf. sec-
tion 3.7). The node aims to check for collisions between objects. For reasons of real-time ability
of collision detection, the objects taken into account for collision checking are represented only
by the links near to the sphere of the probe. Additionally considered for collision checking are
the occupied voxels of the octoMap being send from the surface_contour node via the topic
/octoMap. Thereby the occupied voxels are transferred to collision objects represented by a
cube. The size of the cubes can be adapted by changing the octree size of the octoMap. Further-
more, to check for collisions between objects, the collision objects represented by the robot links
can be visualized in rviz via markers. The markers are published via topics to the rviz node.
The fcl::distance() method approximates the distance between single collision objects or
arrays of collision objects. The minimal distance between the objects is compared to a thresh-
old value. Is the threshold value undershot by the determined minimal collision distance, a
collision_flag is set to true and published via the topic collision_flag.
Knowledge about the kinematic state of the robot is of great importance when collision checks
are executed, and therefore with every ROS loop calling the collision_check() method of the
node, the information about the kinematic state of the robot is updated via the forward kinematics
functionality of MoveIt! (cf. section 3.10.5). Additionally, to publishing the collision_flag,
further information is published on the same topic. As the fcl::distance() function deter-
mines a collision pair representing the two points on collision objects with the minimal distance
to each other, the information on those points is used to determine the relative position of the
probe to the collision point generated by an occupied octoMap voxel. This information can then
be used to reorient the probe to avoid a collision. Information on the real-time ability of the
collision detection can be gained in 6.1.

ros_fri.cpp The ros_fri node is the connecting link (cf. section 5.3.1) between the RML,
FRI and nodes using those libraries to control the KUKA LWR IV such as the surface_contour
node. Furthermore, the node reads and enforces robot joint limits, velocity, acceleration and
effort limits.
The functionality of the FRI library is provided over the ros_fri node including information
about the state of the robot including joint positions and drive temperatures as well as the ability
to set motion goals to the FRI of the KUKA LWR IV. The communication between the node and
other ROS nodes is realized over topics. The topic of /lwr/RMLFinalStateReached has been
additionally implemented to communicate that a final motion goal position has been reached.

surface_contour.cpp, surface_contour_orientation_change.cpp,grid_version.cpp
The three versions of surface exploration nodes as can be understood from section 5.3.2 share
most of their core functionality except for the approach to avoid collisions and the subsequent
motion strategy. Therefore the following description of the functionality with the aid of the im-
plemented core methods is valid for all the surface exploration nodes and a distinction is made
for the collision avoidance.
It is to be understood (cf. sections 4.2.4, 4.2.5) that the motion of the probe is always conducted
along one axis of the world coordinate frame (WCF) at a time in the case of no contact to an
object and along two axes of the world coordinate frame in the case of contact to an object to

70

5.3 Surface Contouring

follow its surface. Furthermore, if in the following descriptions a position goal is determined or
published, the forward and inverse kinematic services of MoveIt! (cf. section 3.10.5) are used
to transfer Cartesian coordinate frame points to joint position values of the KUKA LWR IV.

setMotionState() Three motion states namelyX_Y, Z_Y and TO_FIRST_CONTACT exist. If
the X_Y motion state is active, motion is conducted on the x-axis of the WCF and in
contact situation additionally, motion on the y-axis is executed if necessary or wanted for
surface contouring. In the case of Z_Y motion is conducted on the y-axis of the WCF
and in contact situation motion along the z-axis can additionally be executed. In the
case of TO_FIRST_CONTACT the motion is not limited to one or two axes, but motion is
directly conducted towards the first contact point experienced during the process of surface
exploration.
Via the method setMotionState(), the desired motion state can be selected.

estimatedExternalTCPWrenchCallback() The callback on estimatedExternalTCP
-WrenchCallback() processes the wrench published via the /wireless_ft/wrench_3
topic (cf. figure 5.4) and holds ready the current values to be used in the node.

forceToWCFRotation() The forceToWCFTransform() method rotates vectors of the force/-
torque sensor frame to the world coordinate frame and therefore eases the dealing with
forces expressed in the sensor frame such as the wrench published over the /wireless_
ft/wrench_3 . Since the frame of the force/torque sensor has the same orientation as
the frame of the sphere the rotation is also used in other parts of the node e.g. in the
buildOctomap() method to rotate contact points expressed in the sphere frame to be
expressed relative to the WCF.

pointOnSphere() In the case of a contact between the sphere and an object, the pointOn
Sphere() method determines the position of the contact point expressed in the sphere
frame. The calculation on how to determine the contact point on the sphere surface is
described in equations of 4.1, 4.2 and 4.3.
The point on the sphere surface is forwarded to the buildOctomap() method.

buildOctomap() The buildOctomap() method takes the contact points determined by the
pointOnSphere() method and fills them into an octoMap after transforming them to
the WCF. Hence every contact point is entered in an octoMap which is published on
the /octoMap topic. The so built up octoMap represents the points in space on where an
object has been touched. At the end of the surface exploration, the final octoMap is written
to a binary file to be later processed by surface reconstruction algorithms. An octoMap
representing the contact points experienced in the exploration of the polystyrene object
shown in figure 6.1 (f) is displayed in figure 5.9.

generateSurfaceTangent() This method is called when the probe is in contact with an object
and generates the surface tangent using the current force values. The procedure of how
to determine the object surface tangent can be understood in figure 4.2. Naturally, with
regard to two dimensions, a tangent can be determined in two directions. Dependent on

71

5 Implementation

Figure 5.9: The octoMap represents the contact points experienced in the surface exploration of
the polystyrene object shown in 6.1 (f). The grid_version surface contour node
has been used to explore the object and the side length of the cubes representing
the occupied nodes have a side length of 2 mm. The height of the nodes is color
encoded. The purple cubes denote the lowest and the red nodes the highest height.

the motion direction of the superordinate grid to cover the exploration area combined with
the motion state, the wanted direction of the tangent is generated.

collisionFlagCallback() The data sent over the /collision_flag topic is processed by the
collisionFlagCallback() method. Depending on the collision avoidance strategy of
the nodes, a new motion state is set, surface contouring aborted or an orientation change
of the probe is initiated.

reapproachObject() The reapproachObject() method aims at moving the sphere back to
the object if the contact has been lost. Figure 4.9 in the concept chapter shows how to
reapproach the object by moving in the opposite direction of the last sensed contact force.
Is no contact reinitiated after a certain motion distance, the reapproach motion is aborted
and motion is conducted according to the exploration area grid covering strategy.

exploration() The exploration() method is called in a ROS loop as long as the exploration
is not finished checking whether a certain threshold force is acting on the force/torque

72

5.3 Surface Contouring

sensor. Once the threshold value is overstepped, either the contourTracking() method
is called, or if the force value is overlarge, immediately a position goal in the direction
of the force acting on the sphere is published to release the forces acting on the probe
respectively the object. In the case of no contact, position goals to cover the exploration
area according to the motion state are published and received by the ros_fri node.

contourTracking() The contourTracking() method called when a force value threshold is
overstepped, gathers information on the object surface tangent direction via the generate
SurfaceTangent() method and publishes the according joint position goal. Addition-
ally, the pointOnSphere() method is called which then calls buildOctomap() as the
execution of contourTracking() denotes the contact to an object.

publishPositionGoal() The purpose of the publishPositionGoal() method is to pub-
lish the determined joint position goals on the /lwr/jointPositionGoal topic in the
expectation to lead to the desired motion of the KUKA LWR IV.

Collision avoidance strategies of the surface_exploration nodes The strategies of the nodes
concerning collision avoidance are illustrated in the figures 5.10, 5.11, 5.12 and the descrip-
tions can be obtained from the corresponding captions. The collision avoidance strategy of the
grid_version node assumes that a collision threat only arises in surface contour motion in
consequence of driving against the object with the force/torque collision model. This is usually
the case when the object is longer on the z-axis than the stick and sphere of the probe combined
(cf. figure 4.10 (a)). Keep in mind that the orientation of the probe does not alter in the nodes of
grid_version and surface_contour. The changes in orientation of the surface_contour
_orientation_change node selects between two quaternions describing the goal orientation
of the probe to reach in order to be able to continue the contour motion along the object. The
quaternions are chosen to make the probe point towards the object to gain space between the
collision objects of the force/torque sensor, the holder, and the object.

Figure 5.10: The collision avoidance strategy of the grid_version node is to abort a surface
contour motion in the case of a collision threat and to return to the grid covering
motion strategy. The superordinate grid motion direction to cover the exploration
area is maintained.

73

5 Implementation

Figure 5.11: The collision avoidance strategy of the surface_contour node changes in the case
of a collision threat the motion state from Z_Y to X_Y or vice versa but the object
is continuously contoured. The change on the motion state causes motion on other
axes to circumvent the collision. Additionally an object is contoured not only along
two axes but on three if a collision threat occurs. This can result in a more detailed
picture of the object expressed in the octoMap.

Figure 5.12: The collision avoidance strategy of the surface_contour_orientation_change
differs based on the motion state. Is the motion state not Z_Y in the case of a
collision threat, the motion state is set to Z_Y and similar to the strategy in the
surface_contour node, the collision threat is attempted to be taken off via motion
on other axes. On the other hand, if the motion state is Z_Y, the orientation of the
probe is changed to cope with the possible collision (cf. figure 4.11).

5.4 Surface Reconstruction

The surface reconstruction aims to reconstruct the shape of the explored object via building a
polygon mesh. The general pipeline to transform point clouds to polygon meshes is similar for
all three approaches and are mentioned in the chapter on the fundamentals in the section on
surface reconstruction 2.6 and the chapter of the used setup in section 3.8 regarding the Point
Cloud Library (PCL).
The octoMap library provides a tool to comfortably convert octoMaps to point clouds called
octree2pointcloud.

74

5.4 Surface Reconstruction

Figure 5.13: The reconstructed shapes via the three reconstruction approaches based on the same
object and point cloud are shown. From left to right, the first object is a model de-
scribing the shape of the object. The second is the reconstructed surface of the
convex hull approach followed by the concave hull approach. The right most sur-
face is the result of the Poisson surface reconstruction.

The convex hull as well as the concave hull of the generated point clouds corresponding to the
explored objects are determined to reconstruct their shape. PCL provides methods to do so. Fur-
thermore, another approach called Poisson surface reconstruction (cf. section 2.6.3) is executed.
The following descriptions show the pipeline of the programs executing the reconstruction and
parameter for the approaches. The figure 5.13 shows examples of reconstructed shapes via the
three reconstruction approaches based on the same object and initial point cloud.

surface_concave_hull.cpp The surface_concave_hull node takes as input a point cloud
file in .pcd format and outputs a polygon mesh in .stl format. The input point cloud
is set as input cloud for a pcl::ConcaveHull object. The concave hull point cloud type
has among others the parameters of dimensionality and alpha. The dimension is set to 3
to generate a 3D concave hull and the alpha value is set to 0.015 describing the maximum
size of the resultant hull segments. Next, the reconstructing method is called, and the
resulting polygon mesh is saved to the output file.

surface_convex_hull.cpp The surface_convex_hull node takes again as input a point
cloud in .pcd format and outputs a polygon mesh in .stl format. The input cloud is loaded
into a pcl::ConvexHull object. Likewise to the surface_convex_hull approach, the
dimension is set to 3. Then the reconstruct method is called, and the resulting polygon
mesh is saved to the declared output file.

75

5 Implementation

poisson.cpp The Poisson surface reconstruction node takes as input a point cloud file in .pcd
format and outputs a polygon mesh in .stl format. As the approach of Poisson surface
reconstruction needs surface normals associated with the points of the point clouds to be
applicable and to improve the result of the approach the input cloud is processed. First,
the input cloud is set as input cloud to a MovingLeastSquares object of PCL and a
method to upsample the point cloud as well as computing the normals is executed. Then
the resulting point cloud is processed by a NormalEstimationOMP object of PCL to de-
termine curvature information of each 3D point. The resulting point clouds generated by
the MovingLeastSquares object and the NormalEstimationOMP object is then concate-
nated and processed by a PCL Poisson object to finally reconstruct the polygon mesh.
Then the polygon mesh is saved in the output file.

76

6 Evaluation

The evaluation of the implemented concepts on surface exploration and reconstruction discusses
performance characteristics of the implemented and used ROS nodes as real-time ability is cru-
cial for the execution of the approaches. In the section on object descriptions (cf. 6.2.1) the
explored objects are presented which mostly represent simple polyhedra. The point clouds cor-
responding to the objects and version of surface contour node are shown in 3D and discussed in
section 6.2.2. The shape of the cylinder and block object have been modeled in 3D and plotted
together with the corresponding point clouds to better visualize the accuracy of the location of
the points on the object surfaces.
The results of the surface reconstruction methods are shown and discussed in section ??. Thereby
the results of the approaches of concave and convex hull generation are compared. The Poisson
surface reconstruction approach, in contrast, performs worse in the accuracy of reconstructed
surface.

6.1 Real-Time Ability of Position Goal Determination and Collision
Detection

The ability to react instantaneously to unforeseen events such as contact to objects in blind ex-
ploration or blind motion is of utmost importance and has been elaborated in the Introduction
chapter of the thesis (cf. 1). The process to determine new position goals via the nodes of
the surface exploration needs to be real-time, as well as the parallel running collision detec-
tion. Collision detection remains a computationally hard problem for motion planning ([32]
p. 139) in robotics and therefore the duration of the applied FCL method is elaborated. The
nodes of collision_detection, ros_fri and the three versions for surface exploration are
permanently running in loops upon start-up permitting high frequencies. Tables 6.1 and 6.2
show the duration of one loop iteration. Thereby the duration between the surface exploration
loops (grid_version, surface_contour, surface_contour_orientation_change) do not
distinguish in their loop times and are subsumed under the term of surface_exploration in
the table.
For the measurement of the loop iterations and the duration of the collision checks, ros::
Time::now() has been used for the generation of time stamps at the beginning and end of a
loop iteration. The subtraction between the two points in time yield the duration of the pro-
cesses.

The flexible collision library (FCL) provides different possibilities to store collision objects
in data structures and call collision detection methods on them. The usage of simple colli-
sion shapes (e.g., boxes, cylinders) in comparison to detailed meshes and the application of
BroadPhaseCollisionManager objects to avoid O(n2) complexity [53] in collision checking

77

6 Evaluation

Table 6.1: The duration of one loop iteration is shown for the different nodes in the ROS com-
putation graph expect the collision checking node, which is in table 6.2.

Node Measured loop iteration duration in ms
wireless_ft 0.2 - 7

ros_fri 10
surface_exploration 8.4

Table 6.2: The duration of the collision checking method is shown in this table. The volume of
the nodes with 8 mm3 corresponds to a cube with side length of 2 mm and the 125
mm3 corresponds to a cube with side length of 5 mm.

Number of Occupied Octree nodes Duration in ms on Nodes
with Volume of 8mm3

Duration in ms on Nodes
with Volume of 125mm3

10 0.3 - 0.5 0.5 - 1
100 0.4 - 1 0.8 - 1.3
1000 0.9 - 1.6 1.3 - 3
10000 8 - 13 9 - 14

has been considered to be the least time expensive approach. Applied to collision checking in
the case of surface exploration, two collision managers hold the collision objects represented by
the occupied nodes of the generated octoMap (cf. figure 4.13). Moreover, the collision objects
representing the shapes of the robot links in the neighborhood of the probe (cf. figure 4.12) are
hold by the collision managers. Only those links have been considered in collision checking
to ensure real-time ability. More and bigger respectively more detailed bodies considered for
collision checking result in longer execution times. The collision check calculation defines the
duration of the fcl_collision_check node loop.

The number of occupied octree nodes generated during surface explorations has not exceeded
1000 nodes and therefore should not have been a limiting factor to the real-time ability for the
determination of motion goals. It can be stated that the durations of the used nodes do not
exceed 10 ms and should provide real-time ability. The evaluation of further potentially limiting
factors as limits in kinematics and dynamics as well as the communication delays between the
functional modules describing the hardware setup is outside of the scope of this thesis.

6.2 Accuracy in Reconstructed Object Surfaces

6.2.1 Object Descriptions

The objects utilized for the exploration and reconstruction process are simple wooden polyhedra
with smooth faces, rounded edges, and symmetries. Convex, as well as concave polyhedra, have
been taken into account. Additional to the wooden polyhedra, slightly more complex objects
made of polystyrene have been explored.
The figures in 6.1 show photos of the explored and reconstructed objects. The block has a width

78

6.2 Accuracy in Reconstructed Object Surfaces

(a) (b) (c) (d)

(e) (f) (g)

Figure 6.1: The different objects used for surface exploration and reconstruction are represented.
The figures from (a)-(d) are wooden while in (e) and (f) polystyrene objects are
shown. A simple block is shown in (a) and a block with bulge is shown in (b). (d)
shows a cylinder which is put in the bridge shown in (c). Two more complex objects
are shown in (e) and (f). The selected area of the jaw chuck shown in (g) describes
its explored area.

height and depth of 5 cm and a width of 10 cm. The cylinders radius is 2,4 cm and has a height
of 5 cm. The bulge on the block in (b) and (c) has the volume of half the volume of the cylinder
in (d).

6.2.2 Generated Point Clouds

OctoMaps have been recorded during the process of surface contouring. The contact positions
on the sphere of the probe in contact with an object have been taken to locate the nodes of the
octoMap. Then they have been transformed to point clouds via the octree2pointcloud tool.
The figures 6.2-6.20 represent the generated point clouds based on the three surface contour
nodes and are shown on the upcoming pages. The block and cylinder objects are modelled ac-

79

6 Evaluation

cording to their metrics and plotted together with the point clouds to visualize the conducted
contouring motion better. The figures show the modelled objects with transparent as well as
non-transparent faces to indicate points located on object boundaries or within the boundaries
and behind the object model. Points only partially shown are located on the boundaries of the
object models.
All objects have been explored with an octomap node size of 2 mm and 1,5 cm x-axis mo-
tion distance at exploration area boundaries (cf. figure 4.5) for the surface exploration nodes
of surface_contour and surface_contour_orientation_change and with 1 cm motion
distance for the grid_version node.
The generated point clouds of the surface_contour_orientation_change resemble the point
clouds generated by the grid_version, thus also the reconstructed surfaces. The difference in
both approaches is the collision avoidance strategy. While surface contouring is aborted in
the case of a collision threat with the grid_version node, the orientation change to han-
dle the situation allows the continuation of the surface contouring (cf. figure 4.11). Exem-
plary figure 6.4 shows the generated point cloud corresponding to the wooden block by the
surface_contour_orientation_change node. One block has been stacked on top of an-
other block to illustrate the benefit of the orientation change.
Merging the resulting point clouds of multiple surface exploration processes on the same object
results in more points describing the shape. Figure 6.17 shows exemplary four merged point
clouds encoded in different colors.

6.2.3 Comparison between Surface Reconstruction Objects

The generated point clouds have been used to reconstruct the surfaces of the explored objects.
The performance of the approaches differs strongly. The approach of Poisson surface recon-
struction appears to be unqualified for the prevalent conditions of sparse data in comparison to
point clouds generated by cameras. The result of a Poisson surface reconstruction is shown in
figure 5.13 representing the surface on the right. As the results of the approach for the other
objects turned out to look similar to this reconstruction and do not represent much resemblance
to the objects, they are not shown in the following object surface reconstruction figures.

6.2.4 Surface Reconstruction Objects of Convex and Convave Hull
Reconstruction

The reconstructed surfaces naturally differ to the metrics of the objects due to the superordinate
grid following strategy to cover the exploration area. The x-axis motion of the boundaries can
lead to failure to observe the objects ends with regard to the x-axis. Additionally, the objects are
located on a table and can therefore not be contoured at the underside.
Evaluating the surface reconstruction approaches of the convex hull and concave hull generation,
no best solution is to be found. The accuracy of the reconstructed surfaces depends on the
explored objects. The simple shapes of the block (6.21, 6.22) and cylinder (6.28, 6.29, 6.30,
6.31) are best reconstructed via the convex hull approach as they themselves are defined by a
convex hull. The other objects, the bridge, combination of block and cylinder, the polystyrene

80

6.2 Accuracy in Reconstructed Object Surfaces

objects as well as the object slice tend to be better reconstructed with the concave hull approach.
The concave hull approach allows in contrast to the convex hull approach to represent the shape
of non-convex shaped objects. The result of convex hull surface reconstruction neglects shape
characteristics specifically shown in figures representing the bridge object reconstruction (cf.
figures 6.23, 6.25) and the polystyrene object shapes shown in 6.32 and 6.33. Multiple surface
explorations have been completed to get different point clouds describing the bridge (6.17).
Merging the points to one point cloud results in less space between the single points and more
coverage of the shape surface. This allows more precise and robust surface reconstruction due to
denser data and reduction on the dependency of single, possibly faulty, point clouds. However,
even small changes in the location of the explored object result in shifted point clouds. The
surface reconstruction shape based on merged point clouds is shown in figure 6.24.

y-coordinate in cm
x-coordinate in cm

0

2

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

6
8

10

2
4

0

10
8

6
4

2
0

Figure 6.2: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the block object (cf. 6.1 (a)) is shown with a non-
transparent model.

81

6 Evaluation

y-coordinate in cm
x-coordinate in cm

0

2

4
z-

co
or

di
na

te
 in

 c
m

6

8

10

6
8

10

2
4

0

10
8

6
4

2
0

Figure 6.3: The point cloud corresponding to the surface exploration via surface_contour
node performed on the block object (cf. 6.1 (a)) is shown with a non-transparent
model.

y-coordinate in cm
x-coordinate in cm

10

0

2

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

6
8

2
4

0

8
10

6
4

2
0

Figure 6.4: The point cloud corresponding to the surface exploration via
surface_contour_orientation_change node performed on two block ob-
ject stacked on top of each other (cf. 6.1 (a)) is shown with a non-transparent model.
The points of the point cloud do not reach the bottom of the stacked blocks as the
exploration area has been set to be situated above the table shown in figure 3.1.

82

6.2 Accuracy in Reconstructed Object Surfaces

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6

2
3

4
5

1
0 0

1
2

3
4

5
6

Figure 6.5: The point cloud corresponding to the surface exploration via grid_version surface
contour node performed on the vertical cylinder object (cf. 6.1 (d)) is shown with
a non-transparent model. Some measured points lie slightly inside the cylinder and
are not visible (cf. 6.6)

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6
5

64 5
3 4

32
21 1

0 0

Figure 6.6: The point cloud corresponding to the surface exploration via grid_version surface
contour node performed on the vertical cylinder (cf. 6.1 (d)) object is shown with a
transparent model.

83

6 Evaluation

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m
3

4

5

6

6

6
5

4
4

5

3
2

11
0 0

2
3

Figure 6.7: The point cloud corresponding to the surface exploration via surface_contour
node performed on the vertical cylinder object (cf. 6.1 (d)) is shown with a non-
transparent model. Some measured points lie slightly inside the cylinder and are not
visible (cf. 6.8)

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6
5

64 5
3 4

32
21 1

0 0

Figure 6.8: The point cloud corresponding to the surface exploration via surface_contour
node performed on the vertical cylinder object (cf. 6.1 (d)) is shown with a transpar-
ent model.

84

6.2 Accuracy in Reconstructed Object Surfaces

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6

1
2

3
4

5

6

2
3

1
0 0

5
4

Figure 6.9: The point cloud corresponding to the surface exploration via surface_contour
node performed on the horizontal cylinder object (cf. 6.1 (d)) is shown with a non-
transparent model. Some measured points lie slightly inside the cylinder and are not
visible (cf. 6.10)

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6
5

64 5
3 4

32
21 1

0 0

Figure 6.10: The point cloud corresponding to the surface exploration via surface_contour
node performed on the horizontal cylinder object (cf. 6.1 (d)) is shown with a
transparent model.

85

6 Evaluation

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m
3

4

5

6

6

1
2

3
4

5

6

2
3

1
0 0

4
5

Figure 6.11: The point cloud corresponding to the surface exploration via T surface contour
node performed on the horizontal cylinder object (cf. 6.1 (d)) is shown with a non-
transparent model. Some measured points lie slightly inside the cylinder and are
not visible (cf. 6.12)

y-coordinate in cm
x-coordinate in cm

0

1

2

z-
co

or
di

na
te

 in
 c

m

3

4

5

6

6
5

64 5
3 4

32
21 1

0 0

Figure 6.12: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the horizontal cylinder (cf. 6.1 (d)) object is shown
with a transparent model.

86

6.2 Accuracy in Reconstructed Object Surfaces

y-coordinate in cm
x-coordinate in cm

0

2

10

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

8 10
6 8

64
42 20 0

Figure 6.13: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the block and cylinder combination object (cf. 6.1
(c)) is shown.

y-coordinate in cm
x-coordinate in cm

0

2

10
8

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

10
6 8

64
42 20 0

Figure 6.14: The point cloud corresponding to the surface exploration via surface_contour
node performed on the block and cylinder combination object (cf. 6.1 (c)) is shown.

87

6 Evaluation

y-coordinate in cm
x-coordinate in cm

0

2

4

z-
co

or
di

na
te

 in
 c

m
6

8

10
8 10

6 8

10

4 6
42 20 0

Figure 6.15: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the bridge object (cf. 6.1 (b)) is shown.

y-coordinate in cm
x-coordinate in cm

0

2

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

10
8 10

6 8
64

42 20 0

Figure 6.16: The point cloud corresponding to the surface exploration via surface_contour
node performed on the bridge object (cf. 6.1 (b)) is shown.

88

6.2 Accuracy in Reconstructed Object Surfaces

10
12

8
6

y-coordinate in cm
4

2
0

-2 0

1

x-coordinate in cm

2

3

z-
co

or
di

na
te

 in
 c

m

6
5

4
3

2
1

4

5

6

Figure 6.17: The merged point clouds corresponding to the surface exploration via
surface_contour and grid_version node performed on the bridge object (cf.
6.1 (b)) is shown. The blue points correspond to the exploration via surface_contour
node and the red, orange and purple point clouds to the grid_version.

y-coordinate in cm
x-coordinate in cm

0

2

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

10
8 10

6 8
64

42 20 0

Figure 6.18: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the polystyrene object (cf. 6.1 (e)) is shown.

89

6 Evaluation

y-coordinate in cm
x-coordinate in cm

0

2

4

z-
co

or
di

na
te

 in
 c

m

6

8

10

10
8 10

6 8
64

42 20 0

Figure 6.19: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the polystyrene object (cf. 6.1 (f)) is shown.

Figure 6.20: The point cloud corresponding to the surface exploration via grid_version sur-
face contour node performed on the jaw chuck (cf. 6.1 (f)) is shown.

90

6.2 Accuracy in Reconstructed Object Surfaces

Figure 6.21: The reconstructed object shapes of the wooden block modeled on the left are shown.
The object in the middle is the reconstructed object shape of the convex hull ap-
proach and on the right is the result of the concave hull approach. The reconstruc-
tion is based on the point cloud generated by the grid_version node.

Figure 6.22: The reconstructed object shapes of the wooden block modeled on the left are shown.
The object in the middle is the reconstructed object shape of the convex hull ap-
proach and on the right is the result of the concave hull approach. The reconstruc-
tion is based on the point cloud generated by the surface_contour node.

91

6 Evaluation

Figure 6.23: The reconstructed object shapes of the bridge object modeled on the left are shown.
The object in the middle is the reconstructed object shape of the convex hull ap-
proach and on the right is the result of the concave hull approach. The reconstruc-
tion is based on the point cloud generated by the grid_version node.

Figure 6.24: The reconstructed object shapes of the bridge object modeled on the left are shown.
The object in the middle is the reconstructed object shape of the convex hull
approach and on the right is the result of the concave hull approach. The re-
construction is based on the point clouds generated by the grid_version and
surface_contour nodes shown in figure 6.17.

92

6.2 Accuracy in Reconstructed Object Surfaces

Figure 6.25: The reconstructed object shapes of the bridge object modeled on the left are shown.
The object in the middle is the reconstructed object shape of the convex hull ap-
proach and on the right is the result of the concave hull approach. The reconstruc-
tion is based on the point cloud generated by the surface_contour node.

Figure 6.26: The reconstructed object shapes of the block/cylinder combination modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the grid_version
node.

93

6 Evaluation

Figure 6.27: The reconstructed object shapes of the block/cylinder combination modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the surface_contour
node.

Figure 6.28: The reconstructed object shapes of the cylinder object (horizontal) modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the grid_version
node.

94

6.2 Accuracy in Reconstructed Object Surfaces

Figure 6.29: The reconstructed object shapes of the cylinder object (horizontal) modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the surface_contour
node.

Figure 6.30: The reconstructed object shapes of the cylinder object (vertical) modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the grid_version
node.

95

6 Evaluation

Figure 6.31: The reconstructed object shapes of the cylinder object (vertical) modeled on the
left are shown. The object in the middle is the reconstructed object shape of the
convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the surface_contour
node.

Figure 6.32: The reconstructed object shapes of the polystyrene object 1 are shown. The object
on the left is the reconstructed object shape of the concave hull approach and on the
right is the result of the convex hull approach. The reconstruction is based on the
point cloud generated by the grid_version node.

96

6.2 Accuracy in Reconstructed Object Surfaces

Figure 6.33: The reconstructed object shapes of the polystyrene object 2 are shown. The object
on the left is the reconstructed object shape of the concave hull approach and on the
right is the result of the convex hull approach. The reconstruction is based on the
point cloud generated by the grid_version node.

Figure 6.34: The reconstructed object shapes of the the object shown in figure 6.1(f) modeled
on the left are shown. The object in the middle is the reconstructed object shape of
the convex hull approach and on the right is the result of the concave hull approach.
The reconstruction is based on the point cloud generated by the grid_version
node.

97

7 Conclusion

This chapter provides a conclusion on the thesis in section 7.1 and a perspective for further work
in respect of potential for improvements.

7.1 Conclusion of the Thesis

Approaches for object surface exploration and surface reconstruction to determine the shape of
objects in the environment of a robotic arm have been conceptualized and implemented. The
software components used for surface exploration have been implemented with the Robot Oper-
ating System (ROS). A tactile based approach for surface exploration has been chosen and the
modeling of polygon meshes to reconstruct the shape of the objects.
The realized concept of surface exploration utilizes a six-axis force/torque sensor to detect con-
tacts between the robot and the environment. The sensor is integrated into the end-effector of
the robotic arm representing a force sensing probe. The measured forces acting on the probe
are analyzed to determine the surface directions of the touched objects to generate motion goals
for object surface contouring. Indirect force control by admittance control is applied to achieve
interaction control. The strategy to explore object surfaces includes collision checking to avoid
unwanted collisions between links of the robots kinematic chain other than the end-effector.
Therefore, the locations of the contact points are used to place small collision objects which
then are collision checked against the collision models of the robot. Three different approaches
to avoid collisions but maintaining surface exploration have been implemented.
The implemented object surface reconstruction uses polygon meshes to represent the recon-
structed shape of the objects. To generate the polygon meshes, first, the contact points of the
surface exploration describing the surface of the objects are transformed into point clouds and
then processed. The concave hull and convex hull of the point clouds are generated, and the
Poisson surface reconstruction method is utilized to obtain polygon meshes.
The surface exploration is conducted on a KUKA LWR IV, while the used sensor is an ATi
nano17e six-axis force/torque sensor and the end-effector probe is 3D printed. The explored
objects mostly represent simple polyhedra.

7.2 Further work

Further work can be conducted towards the performance of the implemented approaches regard-
ing time consumption in surface exploration and accuracy of the reconstructed object models.
Although the duration time of surface exploration has been kept in mind while working on the
thesis, the duration has not explicitly been investigated. Further work regarding the accuracy of
the reconstructed object shapes is necessary to make statements about favorable parameters for

99

7 Conclusion

surface exploration and surface contouring paths. Plenty algorithms for surface reconstruction
from point clouds exist. Investigation towards the utilization of other algorithms and tuning of
the parameters of the used methods might result in more accurate polygon meshes.

100

Bibliography

[1] International Federation of Robotics, “Executive Summary World Robotics 2017 Indus-
trial Robots.”, https://ifr.org/downloads/press/Executive_Summary_WR_Service_Robots_
2017_1.pdf, Online; accessed 30-October-2017.

[2] H. Al Hussein, T. Caldeira, D. Gan, J. Dias, and L. Seneviratne, “Object shape perception
in blind robot grasping using a wrist force/torque sensor,” in Electronics, Circuits, and
Systems (ICECS), 2013 IEEE 20th International Conference on. IEEE, 2013, pp. 193–
196.

[3] R. S. Jamisola, P. Kormushev, A. Bicchi, and D. G. Caldwell, “Haptic exploration of un-
known surfaces with discontinuities,” in Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on. IEEE, 2014, pp. 1255–1260.

[4] A. Winkler and J. Suchy, “Force controlled contour following by an industrial robot on
unknown objects with tool orientation control,” in ISR/Robotik 2014; 41st International
Symposium on Robotics; Proceedings of. VDE, 2014, pp. 1–6.

[5] J. Back, J. Bimbo, Y. Noh, L. Seneviratne, K. Althoefer, and H. Liu, “Control a contact
sensing finger for surface haptic exploration,” in Robotics and Automation (ICRA), 2014
IEEE International Conference on. IEEE, 2014, pp. 2736–2741.

[6] N. Sommer, M. Li, and A. Billard, “Bimanual compliant tactile exploration for grasping
unknown objects,” in Robotics and Automation (ICRA), 2014 IEEE International Confer-
ence on. IEEE, 2014, pp. 6400–6407.

[7] J. J. Craig, Introduction to robotics: mechanics and control. Pearson Prentice Hall Upper
Saddle River, 2005, vol. 3.

[8] C. Gaz, F. Flacco, and A. De Luca, “Identifying the dynamic model used by the KUKA
LWR: A reverse engineering approach,” in Robotics and Automation (ICRA), 2014 IEEE
International Conference on. IEEE, 2014, pp. 1386–1392.

[9] G. Schreiber, A. Stemmer, and R. Bischoff, “The fast research interface for the KUKA
LWR robot,” in IEEE Workshop on Innovative Robot Control Architectures for Demand-
ing (Research) Applications How to Modify and Enhance Commercial Controllers (ICRA
2010), 2010, pp. 15–21.

[10] T. Kröger, “Opening the door to new sensor-based robot applications—The Reflexxes Mo-
tion libraries,” in Robotics and Automation (ICRA), 2011 IEEE International Conference
on. IEEE, 2011, pp. 1–4.

101

https://ifr.org/downloads/press/Executive_Summary_WR_Service_Robots_2017_1.pdf
https://ifr.org/downloads/press/Executive_Summary_WR_Service_Robots_2017_1.pdf

Bibliography

[11] Wikipedia, “Schemazeichnung eines Octrees, einer Datenstruktur der Informatik.”, https:
//commons.wikimedia.org/wiki/File:Octree2.png, Online; accessed 09-November-2017.

[12] International Organization for Standardization (ISO), “ISO 8373 Robots and robotic de-
vices.”, https://www.iso.org/obp/ui/#iso:std:iso:8373, Online; accessed 29-October-2017.

[13] M. Yamaguchi, “Swimming robot probes Fukushima reactor to find melted fuel.”, https:
//phys.org/news/2017-07-robot-probes-fukushima-reactor-fuel.html, Online; accessed 29-
October-2017.

[14] J. Dietsch, “People meeting robots in the workplace [industrial activities],” IEEE Robotics
& Automation Magazine, vol. 17, no. 2, pp. 15–16, 2010.

[15] M. I. Tiwana, S. J. Redmond, and N. H. Lovell, “A review of tactile sensing technologies
with applications in biomedical engineering,” Sensors and Actuators A: physical, vol. 179,
pp. 17–31, 2012.

[16] S. Chen, “Kalman filter for robot vision: a survey,” IEEE Transactions on Industrial Elec-
tronics, vol. 59, no. 11, pp. 4409–4420, 2012.

[17] SynTouch, “Syntouch Sensor Technology.”, https://www.syntouchinc.com/
sensor-technology/, Online; accessed 30-October-2017.

[18] ATI, “ATI nano17e.”, http://www.ati-ia.com/products/ft/ft_models.aspx?id=
Nano17global/products/ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png,
Online; accessed 30-October-2017.

[19] ASUS, “ASUS Xtion PRO.”, https://www.asus.com/media/global/products/
ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png, Online; accessed 30-October-
2017.

[20] P. K. Allen and K. S. Roberts, “Haptic object recognition using a multi-fingered dextrous
hand,” in Robotics and Automation, 1989. Proceedings., 1989 IEEE International Confer-
ence on. IEEE, 1989, pp. 342–347.

[21] R. Bajcsy, D. Brown, J. Wolfeld, and D. Peters, “What can we learn from one finger exper-
iments?” in International Symposium on Robotics Research, 1984, pp. 509–527.

[22] R. L. Klatzky, S. J. Lederman, and V. A. Metzger, “Identifying objects by touch: An “expert
system”,” Attention, Perception, & Psychophysics, vol. 37, no. 4, pp. 299–302, 1985.

[23] S. J. Lederman and R. L. Klatzky, “Hand movements: A window into haptic object recog-
nition,” Cognitive psychology, vol. 19, no. 3, pp. 342–368, 1987.

[24] S. J. Lederman et al., “The physiology and psychophysics of touch,” in Sensors and sensory
systems for advanced robots. Springer, 1988, pp. 71–91.

[25] B. Siciliano and L. Villani, Robot force control. Springer Science & Business Media,
2012, vol. 540.

102

https://commons.wikimedia.org/wiki/File:Octree2.png
https://commons.wikimedia.org/wiki/File:Octree2.png
https://www.iso.org/obp/ui/#iso:std:iso:8373
https://phys.org/news/2017-07-robot-probes-fukushima-reactor-fuel.html
https://phys.org/news/2017-07-robot-probes-fukushima-reactor-fuel.html
https://www.syntouchinc.com/sensor-technology/
https://www.syntouchinc.com/sensor-technology/
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17global/products/ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17global/products/ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png
https://www.asus.com/media/global/products/ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png
https://www.asus.com/media/global/products/ew6QHQeiYGMMAn69/P_setting_fff_1_90_end_500.png

Bibliography

[26] D. E. Whitney, “Historical perspective and state of the art in robot force control,” The
International Journal of Robotics Research, vol. 6, no. 1, pp. 3–14, 1987.

[27] M. Vukobratović and Y. Nakamura, “Force and contact control in robotic systems,” in
Tutorial at the IEEE conference on robotics and automation, Atlanta, GA, 1993.

[28] J. De Schutter, H. Bruyninckx, W.-H. Zhu, and M. W. Spong, “Force control: a bird’s eye
view,” in Control Problems in Robotics and Automation. Springer, 1998, pp. 1–17.

[29] A. Winkler and J. Suchỳ, “Explicit and implicit force control of an industrial manipu-
lator—an experimental summary,” in Methods and Models in Automation and Robotics
(MMAR), 2016 21st International Conference on. IEEE, 2016, pp. 19–24.

[30] A. Winkler and J. Suchy, “Position feedback in force control of industrial manipulators-
an experimental comparison with basic algorithms,” in Robotic and Sensors Environments
(ROSE), 2012 IEEE International Symposium on. IEEE, 2012, pp. 31–36.

[31] A. Bierbaum, M. Rambow, T. Asfour, and R. Dillmann, “A potential field approach to
dexterous tactile exploration of unknown objects,” in Humanoid Robots, 2008. Humanoids
2008. 8th IEEE-RAS International Conference on. IEEE, 2008, pp. 360–366.

[32] B. Siciliano and O. Khatib, Springer handbook of robotics. Springer, 2016.

[33] J. M. McCarthy, Introduction to theoretical kinematics. MIT press, 1990.

[34] P. Corke, Robotics, vision and control: fundamental algorithms in MATLAB. Springer,
2011, vol. 73.

[35] J. Denavit, “A kinematic notation for lower-pair mechanisms based on matrices,” ASME J.
Appl. Mech., pp. 215–221, 1955.

[36] J. Duffy, Analysis of mechanisms and robot manipulators. Edward Arnold London, 1980.

[37] K. Waldron and A. Kumar, “The dextrous workspace,” ASME Paper, no. 80, 1980.

[38] J. De Schutter and H. Van Brussel, “Compliant robot motion i. a formalism for specifying
compliant motion tasks,” The International Journal of Robotics Research, vol. 7, no. 4, pp.
3–17, 1988.

[39] N. Hogan, “Impedance control: An approach to manipulation,” in American Control Con-
ference, 1984. IEEE, 1984, pp. 304–313.

[40] H. Kazerooni, T. B. Sheridan, and P. K. Houpt, “Robust compliant motion for manipulators,
parts i-ii,” IEEE Transaction of Robotics and Automation, 1986.

[41] J. K. Salisbury, “Active stiffness control of a manipulator in cartesian coordinates,” in De-
cision and Control including the Symposium on Adaptive Processes, 1980 19th IEEE Con-
ference on, vol. 19. IEEE, 1980, pp. 95–100.

103

Bibliography

[42] E. O. Doebelin and D. N. Manik, Measurement systems: application and design.
McGraw-Hill, 2007.

[43] J. Fraden, Handbook of modern sensors: physics, designs, and applications. Springer
Science & Business Media, 2004.

[44] E. Suhir, “How to make a device into a product: Accelerated life testing it’s role attributes
challenges pitfalls and interaction with qualification testing,” Micro-and Opto-Electronic
Materials and Structures: Physics, Mechanics, Design, Packaging, Reliability”, Springer,
2007.

[45] F. Bellocchio, N. A. Borghese, S. Ferrari, and V. Piuri, 3D surface reconstruction: multi-
scale hierarchical approaches. Springer Science & Business Media, 2012.

[46] R. Fabio, “From point cloud to surface: the modeling and visualisation problem–
international archives of the photogrammetry, remote sensing and spatial information sci-
ences,” vol XXXIV-5/W10-2001, Tech. Rep., 2001.

[47] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in
Proceedings of the Fourth Eurographics Symposium on Geometry Processing, ser. SGP
’06. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2006, pp. 61–70.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1281957.1281965

[48] R. Bischoff, J. Kurth, G. Schreiber, R. Koeppe, A. Albu-Schäffer, A. Beyer, O. Eiberger,
S. Haddadin, A. Stemmer, G. Grunwald et al., “The KUKA-DLR Lightweight Robot arm-
a new reference platform for robotics research and manufacturing,” in Robotics (ISR),
2010 41st international symposium on and 2010 6th German conference on robotics
(ROBOTIK). VDE, 2010, pp. 1–8.

[49] KUKA, “KUKA LWR.”, https://www.kukakore.com/wp-content/uploads/2012/07/
KUKA_LBR4plus_ENLISCH.pdf, Online; accessed 05-November-2017.

[50] Schunk, “Schunk WSG.”, https://schunk.com/gb_en/gripping-systems/series/wsg/, On-
line; accessed 31-October-2017.

[51] ATI, “ATI Network Force/Torque Sensor System.”, http://www.ati-ia.com/app_content/
documents/9610-05-1031.pdf, Online; accessed 31-October-2017.

[52] ATI, “F/T Sensor: Nano17.”, http://www.ati-ia.com/products/ft/ft_models.aspx?id=
Nano17, Online; accessed 31-October-2017.

[53] J. Pan, S. Chitta, and D. Manocha, “FCL: A general purpose library for collision and prox-
imity queries,” in Robotics and Automation (ICRA), 2012 IEEE International Conference
on. IEEE, 2012, pp. 3859–3866.

[54] R. B. Rusu and S. Cousins, “3D is here: Point Cloud Library (PCL),” in Robotics and
automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011, pp. 1–4.

104

http://dl.acm.org/citation.cfm?id=1281957.1281965
https://www.kukakore.com/wp-content/uploads/2012/07/KUKA_LBR4plus_ENLISCH.pdf
https://www.kukakore.com/wp-content/uploads/2012/07/KUKA_LBR4plus_ENLISCH.pdf
https://schunk.com/gb_en/gripping-systems/series/wsg/
http://www.ati-ia.com/app_content/documents/9610-05-1031.pdf
http://www.ati-ia.com/app_content/documents/9610-05-1031.pdf
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17
http://www.ati-ia.com/products/ft/ft_models.aspx?id=Nano17

Bibliography

[55] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap:
An efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,
2013. [Online]. Available: http://octomap.github.com

[56] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and A. Y.
Ng, “ROS: an open-source Robot Operating System,” in ICRA workshop on open source
software, vol. 3, no. 3.2. Kobe, 2009, p. 5.

[57] M. Quigley, E. Berger, A. Y. Ng et al., “Stair: Hardware and software architecture,” in
AAAI 2007 Robotics Workshop, Vancouver, BC, 2007, pp. 31–37.

[58] K. A. Wyrobek, E. H. Berger, H. M. Van der Loos, and J. K. Salisbury, “Towards a per-
sonal robotics development platform: Rationale and design of an intrinsically safe personal
robot,” in Robotics and Automation, 2008. ICRA 2008. IEEE International Conference on.
IEEE, 2008, pp. 2165–2170.

[59] ROS wiki, “ROS Concepts.”, http://wiki.ros.org/ROS/Concepts, Online; accessed 31-
October-2017.

[60] ROS wiki, “ROS Workspaces.”, http://wiki.ros.org/catkin/workspaces, Online; accessed
31-October-2017.

[61] S. Chitta, I. Sucan, and S. Cousins, “Moveit![ROS topics],” IEEE Robotics & Automation
Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[62] M. Kazhdan, M. Bolitho, and H. Hoppe, “Poisson Surface Reconstruction,” in Symposium
on Geometry Processing, A. Sheffer and K. Polthier, Eds. The Eurographics Association,
2006.

105

http://octomap.github.com
http://wiki.ros.org/ROS/Concepts
http://wiki.ros.org/catkin/workspaces

Eidesstattliche Erklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Masterstudiengang
Informatik selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel – insbeson-
dere keine im Quellenverzeichnis nicht benannten Internet-Quellen – benutzt habe. Alle Stellen,
die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche ken-
ntlich gemacht. Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen
Prüfungsverfahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem elek-
tronischen Speichermedium entspricht.

Hamburg, den 28.11.2017 Vorname Nachname

Veröffentlichung

Ich stimme der Einstellung der Arbeit in die Bibliothek des Fachbereichs Informatik zu.

Hamburg, den 28.11.2017 Vorname Nachname

	Introduction
	Robotics and Robots
	Motivation
	Goal of the Thesis
	Related Work
	Thesis Outline

	Fundamentals
	Kinematics
	Workspace
	Motion Planning
	Interaction Control
	Force Sensing
	Surface Reconstruction from Point Clouds

	Experimental Setup
	KUKA LWR IV
	Schunk WSG-50
	ATI Wireless Force/Torque Sensor System
	3D printed Probe
	Fast Research Interface - FRI
	Reflexxes Motion Libraries - RML
	Flexible Collision Library - FCL
	Point Cloud Library - PCL
	OctoMap
	Robot Operating System - ROS

	Concept
	Hardware Setup
	Surface Exploration/Contouring
	Surface Reconstruction
	Requirements

	Implementation
	Overview Collaborating/Functional Modules
	Integration in ROS
	Surface Contouring
	Surface Reconstruction

	Evaluation
	Real-Time Ability of Position Goal Determination and Collision Detection
	Accuracy in Reconstructed Object Surfaces

	Conclusion
	Conclusion of the Thesis
	Further work

