
Performance optimization and
implementation of evolutionary inverse

kinematics in ROS

Masterthesis
at Research Group Technical Aspects of Multimodal Systems, TAMS

Prof. Dr. Jianwei Zhang

Department of Informatics
MIN-Faculty

Universität Hamburg

submitted by
Philipp Sebastian Ruppel
Course of study: Informatik

Matrikelnr.: 6248024
on

22.6.2017

Examiners: Prof. Dr. Jianwei Zhang

Dr. Norman Hendrich

mailto:zhang@informatik.uni-hamburg.de
mailto:hansen@informatik.uni-hamburg.de
mailto:zhang@informatik.uni-hamburg.de
mailto:hendrich@informatik.uni-hamburg.de

Abstract

Abstract

In this work, a memetic inverse kinematics solver is developed for the motion plan-
ning framework MoveIt and the robot operating system ROS. Inverse kinematics
solvers that are already available for MoveIt are limited to kinematic chains with
a single end effector. The newly developed solver supports kinematic trees with
multiple end effectors. The memetic algorithm uses a combination of evolutionary
optimization, particle swarm optimization, and gradient based methods, allowing
efficient handling of local minima and joint limits as well as fast convergence to
accurate solutions.

Zusammenfassung

Im Rahmen dieser Arbeit wurde ein auf memetischer Optimierung basieren-
der Inverskinematik-Löser for die Bewegungsplanungsbibliothek MoveIt und das
Roboterbetriebssystem ROS entwickelt. Während für MoveIt bereits verfügbare
IK-Löser auf kinematische Ketten mit jeweils nur einem Endeffektor beschränkt
sind, unterstützt der neu entwickelte IK-Löser kinematische Bäume mit mehreren
Endeffektoren. Der memetische Algorithmus kombiniert evolutionäre Optimierung
mit Partikelschwarmoptimierung und gradientenbasierten Verfahren, wodurch
schnelle Konvergenz auf genaue Lösungen bei gleichzeitig hoher Robustheit
gegenüber lokalen Minima und Gelenkwinkelgrenzen erreicht wird.

III

Abstract

IV

Contents

1 Introduction 1

2 State of the Art 3
2.1 Robot Operating System (ROS) . 3

2.1.1 Packages . 3
2.1.2 Nodes . 3
2.1.3 Topics and Messages . 3
2.1.4 Services . 3
2.1.5 Libraries . 4
2.1.6 Package Repository . 4
2.1.7 MoveIt . 4
2.1.8 Gazebo . 5
2.1.9 RViz . 6
2.1.10 URDF . 6
2.1.11 SRDF . 6
2.1.12 SDF . 7

2.2 Kinematic Chains and Kinematic Trees 7
2.3 Forward Kinematics . 7
2.4 Inverse Kinematics . 8

2.4.1 Pseudo-Inverse Jacobian Method 9
2.4.2 Gradient Descent . 10
2.4.3 Issues . 11
2.4.4 Inverse Kinematics Solvers for MoveIt 11

2.5 Motion Planning in MoveIt . 12
2.6 Parallelism . 12

2.6.1 Multiprocessing . 12
2.6.2 Vectorization . 13
2.6.3 Pipelining . 14

2.7 Biologically Inspired Optimization Methods 14
2.7.1 Evolutionary Algorithms . 14
2.7.2 Memetic Algorithms . 15
2.7.3 Particle Swarm Optimization 15

2.8 Rotation Formalisms . 15
2.8.1 Euler Angles . 15
2.8.2 Rotation Matrices . 16

V

Contents

2.8.3 Axis-Angle . 17
2.8.4 Rotation Quaternions . 17

2.9 Rotation Vectors . 18
2.10 BioIK . 19
2.11 Robot Models . 20

3 BioIK for ROS and MoveIt 21
3.1 Requirements . 21
3.2 Performance Measurement . 21
3.3 C++ Port . 22
3.4 Optimization . 22

3.4.1 Quadratic fitness function 23
3.4.2 Islands / Parallelization . 23

3.5 Gradient Based Methods . 25
3.5.1 Pseudo-Inverse Jacobian Method 25
3.5.2 Gradient Descent . 25
3.5.3 CppNumericalSolvers . 26

3.6 Neural Networks . 27
3.7 Modified Algorithm . 28

3.7.1 Genome . 29
3.7.2 Mutation . 29
3.7.3 Selection . 30
3.7.4 Islands . 31
3.7.5 Species and Wipeouts . 31
3.7.6 Initialization . 32
3.7.7 Termination . 32
3.7.8 Particle Swarm Optimization 32
3.7.9 Memetics . 33
3.7.10 Extrapolated Forward Kinematics 34

3.8 Goal Types . 36
3.9 Implementation . 42

3.9.1 Goal Types . 42
3.9.2 Inverse Kinematics Interface 44
3.9.3 Solver Types . 45
3.9.4 Multithreading . 45
3.9.5 Vectorization . 45
3.9.6 Source Tree . 46

3.10 Configuration . 48

4 Experiments 49
4.1 Forward Kinematics - Inverse Kinematics 49
4.2 Grid Test . 50
4.3 Minimal Displacement . 52
4.4 Valve Turning . 55
4.5 Balanced IK . 57

VI

Contents

4.6 Shadow Hand . 59

5 Conclusion 63

Bibliography 63

VII

Contents

VIII

List of Figures

2.1 PR2 in MoveIt demo mode . 4
2.2 UR5 trajectory . 5
2.3 Gazebo robot simulation, with NASA Valkyrie robot 5
2.4 RViz, with NASA Valkyrie robot 6
2.5 UR5, link frames . 8
2.6 UR5, inverse kinematics . 9
2.7 Robot models . 20

3.1 FL/IK: evolution, KDL . 22
3.2 FL/IK: BioIK 1, KDL, TRAC IK 24
3.3 FK/IK: BioIK 1, BioIK 2, KDL, TRAC IK 28
3.4 Goal class hierarchy . 43
3.5 Solver classes . 44
3.6 BioIK selected in the MoveIt Setup Assistant 48

4.1 PR2 grid test . 50
4.2 UR5 grid test . 51
4.3 PR2 vertical prismatic joint movement - KDL 53
4.4 PR2 with minimal displacement . 54
4.5 PR2 valve turning test - finger motions 55
4.6 PR2 valve turning test - arm motions 56
4.7 Balanced IK test - Gazebo simulation 57
4.8 Balanced IK test - RViz controls . 58
4.9 Shadow Hand setup . 59
4.10 Shadow Hand experiment - Gazebo simulation 60
4.11 Shadow Hand with finger tip goals 60
4.12 Shadow Hand experiment - Gazebo simulation 62

IX

List of Figures

X

List of Tables

3.1 IK success rate comparison: evolution, KDL, TRAC IK 22
3.2 IK success rate comparison: linear vs. quadratic fitness 23
3.3 IK success rate comparison: multi-threading 23
3.4 IK success rate comparison: custom pseudo-inverse Jacobian solver . 25
3.5 IK success rate comparison: custom gradient descent methods . . . 26
3.6 IK success rate comparison: CppNumericalSolvers 26
3.7 IK success rate comparison: BioIK 2, TRAC IK, KDL 28
3.8 IK success rate comparison: mutation methods 30
3.9 IK success rate comparison: islands 31
3.10 IK success rate comparison: wipeouts 31
3.11 IK success rate comparison: initialization methods 32
3.12 IK success rate comparison: particle swarm optimization 33
3.13 IK success rate comparison: memetic optimization 34
3.14 IK success rate comparison: rotational distance measures 37

4.1 FK/IK benchmark: success rate . 49
4.2 FK/IK benchmark: average solve time 49

XI

List of Tables

XII

Chapter 1

Introduction

In robotics, inverse kinematics is used to find joint parameters (e.g. joint angles),
for which an end effector reaches a certain position and/or orientation (single-
goal IK), or for which multiple end effectors reach multiple goals (multi-goal IK).
Inverse kinematics is also used for other applications, e.g. character animation and
game development.

For simple cases, equations for directly computing inverse kinematics solutions
can be found analytically or geometrically. However, this is not always practical,
and specialized solvers designed this way are limited to a specific robot or to a
small set of supported robots.

A more general approach computes inverse kinematics solutions numerically.
Candidate solutions are iteratively improved, until an error function is small
enough. Numerical inverse kinematics solvers often use gradient based optimization
methods.

However, inverse kinematics problems can exhibit local minima, around which
the gradients point towards a suboptimal solution at the local minimum. A small
movement away from the local minimum would at first always increase the error.
Biologically inspired optimization methods exist, which are typically less suscepti-
ble to local minima (e.g. evolutionary optimization and particle swarm optimiza-
tion). On the other hand, if local minima are not a problem, gradient based meth-
ods typically converge faster to accurate solutions. Memetic algorithms combine
evolutionary optimization with other methods (e.g. gradient based ones) and can
achieve fast convergence to accurate solutions as well as robustness against local
minima.

MoveIt is a motion planning framework for the robot operating system ROS.
Inverse kinematics solvers currently available in MoveIt are limited to single-goal
IK.

Recently, an evolutionary multi-goal inverse kinematics solver has been devel-
oped and implemented in C# for the Unity3D game engine at the TAMS research
group.

In this work, the evolutionary algorithm is first ported to C++ and integrated
into MoveIt as an inverse kinematics plugin. Next, a few minor optimizations and
algorithmic changes are made to increase the performance without changing the

1

Chapter 1. Introduction

general structure of the algorithm. For comparison, several other approaches are
implemented as well, including gradient based optimization methods. Finally, a
re-designed memetic inverse kinematics solver is developed according to robotics-
specific requirements. Different approaches are compared through benchmarks for
single-goal as well as multi-goal IK problems. The re-designed memetic IK solver
outperforms other methods, including gradient based methods which have been
implemented for comparison, as well as already existing gradient-based single-goal
IK solvers which were already available for MoveIt.

2

Chapter 2

State of the Art

2.1 Robot Operating System (ROS)

ROS [1] [2] is a software framework for developing robot software. ROS supports
modularization and code reuse through packages, nodes, libraries, and messages.

2.1.1 Packages

A package can contain ROS nodes, library code, and data and configuration files.
Information about a package and dependencies between packages are described
through manifest files. ROS packages are typically built using ROS-specific build
systems (such as catkin, based on CMake).

2.1.2 Nodes

ROS nodes are executable units. A ROS-based system typically consists of mul-
tiple nodes running in parallel and communicating with each other through ROS
messages. A ROS node can also load and use libraries which are provided by other
packages.

2.1.3 Topics and Messages

Messages provide a way for nodes to communicate with each other. Messages are
organized via topics. A node can publish messages on a specific topic. Other nodes
subscribed to the same topic can receive the published messages. Messages are
automatically serialized and de-serialized. The data structures are defined via mes-
sage description files and are translated to different programming languages during
compilation.

2.1.4 Services

ROS services implement procedure call semantics on top of ROS messages. A server
can advertise a service. When a client calls the service, it sends a request message

3

Chapter 2. State of the Art

to the server, and when the server has handled the request, it sends back a reply
message.

2.1.5 Libraries

ROS packages can expose program libraries to other packages. A ROS library
written in C++ can be used by declaring the dependency in the package manifest
and including the library header. The build system links the node’s executable
to the library. ROS libraries can also be used as plug-ins. One package defines a
common base class and exposes it through a C++ header. Other packages include
the header, provide implementations, and declare the implementations via their
package manifests and via ROS plug-in description files. A ROS node can now
dynamically enumerate, load and use the plug-ins.

2.1.6 Package Repository

A large number of existing ROS packages is available at the ROS package reposi-
tories. [3]

2.1.7 MoveIt

MoveIt [4] [5] is a motion planning framework for ROS. MoveIt supports forward
and inverse kinematics, collision checking, perception, and trajectory planning.
Inverse kinematics solvers and motion planners can be implemented as plug-ins.

Figure 2.1: PR2 robot in RViz-based MoveIt demo mode

4

2.1. Robot Operating System (ROS)

Figure 2.2: Trajectory planned for the UR5 robot using MoveIt - RViz-based MoveIt
demo mode

2.1.8 Gazebo

Gazebo [6] [7] is a robot simulator which can be used in combination with ROS.
Gazebo provides physics simulation and visualization.

Figure 2.3: Gazebo robot simulation, with NASA Valkyrie robot

5

Chapter 2. State of the Art

2.1.9 RViz

RViz can be used in ROS for visualization. Different components are provided
for different visualization tasks. A RobotModel component can be used to ren-
der URDF models and to visualize robot poses. PointCloud receives point clouds
through ROS messages and visualizes them. An InteractiveMarkers component is
provided for user interaction. RViz is frequently used in combination with MoveIt.
MoveIt also provides it’s own MotionPlanning RViz component, which can be used
to control some of the MoveIt functionality interactively.

Figure 2.4: RViz, with NASA Valkyrie robot

2.1.10 URDF

In ROS, robot models are typically described via URDF (Unified Robot Descrip-
tion Format) files. URDF is an XML based file format, which—among other
things—encodes the kinematic structure of a robot. ROS provides packages for
working with URDF files. MoveIt expects robots to be defined in URDF. RViz can
also visualize URDF files. Gazebo supports URDF and SDF.

2.1.11 SRDF

MoveIt uses SRDF files (Semantic Robot Description Format) to store additional
information about a robot, including which parts of the robot should be used for
motion planning and inverse kinematics.

6

2.2. Kinematic Chains and Kinematic Trees

2.1.12 SDF

SDF (Simulation Description Format) is used to describe Gazebo simulations. To
simulate a robot in Gazebo, the robot could either be described in URDF, or in
SDF. Often, the robot itself is described in URDF, and only simulation specific
information is described in SDF. SDF tags can also be embedded in URDF files.

2.2 Kinematic Chains and Kinematic Trees

Virtual robot models are commonly represented as kinematic trees or kinematic
chains, consisting of links and joints. Each link represents a part of the robot as a
rigid body. A joint describes a connection between two links. Links can be moved
in relation to each other via the connecting joints.

A link in a kinematic tree can have a single parent link and one or more child
links. The kinematic tree starts at a root link and ends in one or more tip links.
In a kinematic chain, each link can only have a single child link.

Joints can be of different joint types. A fixed joint describes a static connection
between two links. A revolute joint can rotate one link in relation to another link
around a given joint axis. A prismatic joint moves a link in relation to another link
along it’s joint axis. The current state of a joint is encoded in it’s joint variables.
The movement of a joint can be restricted by joint limits. Joint limits are usually
specified as upper and lower bounds on the joint variables.

A robot state can be described in joint space by assigning values to the joint
variables. A robot state can also be described in Cartesian space by specifying the
positions and orientations of the links.

2.3 Forward Kinematics

Forward kinematics maps a joint-space representation of a robot state to the
Cartesian-space position and orientation of an end effector link. Forward kine-
matics can be computed by starting at the root link, computing the relative joint
transforms of the connecting joints, and concatenating the relative joint and link
transforms.

7

Chapter 2. State of the Art

Figure 2.5: Link frames of the Universal Robots UR5 robot arm. Each frame is
specified by a local coordinate system (x red, y green, z blue). Rotation axes are
aligned to the y axes by convention

2.4 Inverse Kinematics

Inverse kinematics maps end effector poses to joint values. Single goal IK operates
on a kinematic chain and finds joint values for a single end effector link to match a
single goal pose. Multi goal IK operates on a kinematic tree and finds joint values
for multiple end effector links to match multiple goal poses. Inverse kinematics can
be generalized to finding joint values for which the corresponding Cartesian-space
robot pose matches a set of arbitrary constraints.

In some cases, the forward kinematics equations can be reversed analytically,
allowing inverse kinematics solutions to be computed directly. This approach is
mainly used for single-goal inverse kinematics on simple robot structures. Robots
can be specifically designed to simplify analytical inverse kinematics. For multi-goal
IK and/or complex robot models, analytical solutions often become impractical
and numerical approaches are preferred.

Numeric approaches iteratively improve approximate IK solutions until either
a sufficiently accurate solution has been found or the search aborts.

8

2.4. Inverse Kinematics

Figure 2.6: An inverse kinematics solution has been found for the UR5 robot arm.
The solution is visualized in RViz. The goal pose can be controlled by the user
through an interactive marker.

2.4.1 Pseudo-Inverse Jacobian Method

A popular approach for numerically solving inverse kinematics is the pseudo-
inverse Jacobian method. The algorithm iteratively minimizes a multi-dimensional
end-effector offset (residual).

minimize ‖f(j)− g‖ (2.1)

f: forward kinematics j: joint values g: goal pose

Each iteration first computes the Jacobian matrix of the forward kinematics
function at the current joint positions, differentiating the end effector pose with
respect to the joint values.

J(j) = (
δpi
δjk

(j)) =

δp1
δj1

(j) δp1
δj2

(j) . . . δp1
δjk

(j)
δp2
δj1

(j) δp2
δj2

(j) . . . δp2
δjk

(j)
...

...
. . .

...
δpi
δj1

(j) δpi
δj2

(j) . . . δpi
δjk

(j)

 (2.2)

i: goal pose dimension k: joint variable index

9

Chapter 2. State of the Art

The Jacobian matrix approximates end effector movements with respect to
joint movements.

∆p = J(j) ·∆j (2.3)

The joint value offset between the current iteration and the next iteration
should move the end effector position onto the goal position.

g − p = J(j) ·∆j (2.4)

To find the joint offset, the equation is reversed. The inverse of the Jacobian
matrix is generally not defined, since the matrix is usually not square and can
be singular. A pseudo-inverse is computed instead, which is also defined for
non-square matrices, and if the the matrix is singular and no exact solution can
be found, provides a best guess (e.g. according to least squares).

∆j = J(j)−1 · (g − p) (2.5)

The step size can optionally be adjusted by an additional line search.

The joint values are then moved by the computed joint offsets.

jn+1 = jn + J(jn)−1 · (g − f(jn)) (2.6)

In case of joint limits, joint movements can be clipped at the joint limits.

Iterations are repeated until a stop criterion is met (e.g. until the distance
between end effector pose and goal pose is below a certain threshold, or until a
timeout occurs).

2.4.2 Gradient Descent

A simpler optimization method, which does not require inverting the Jacobian
matrix, attempts to descend along the gradient directly. Gradient descent is a
popular optimization method due to it’s simplicity and low computational cost
per iteration. However, depending on the optimization problem, the gradient can
significantly deviate from the direction towards the optimum, in which case gradi-
ent descent performs poorly. For inverse kinematics, the pseudo-inverse Jacobian
method is usually preferred.

10

2.4. Inverse Kinematics

2.4.3 Issues

Inverse kinematics problems frequently exhibit local optima, which can cause the
search to converge towards incorrect solutions.

• Rotational joints can cause non-linear end effector motions. The concatena-
tion of multiple rotational transforms can lead to local optima.

• Joint limits can cause local optima by blocking paths to the global optimum.

• In the case of multi-goal IK, the problem of reaching all goals simultaneously
can lead to additional local optima.

2.4.4 Inverse Kinematics Solvers for MoveIt

MoveIt provides a plug-in interface for inverse kinematics solvers. Multiple imple-
mentations are already available. The inverse kinematics interface allows multiple
IK goals for multiple end-effectors to be passed to IK solvers. However, current
IK implementations are limited to single-goal IK. Currently, the interface does not
support specifying goal types. All goals are passed to the IK solvers as 6 DOF poses
(position and orientation). Some IK solvers support a ”position only ik” configu-
ration parameter (fetched during initialization from the ROS parameter server),
which, if enabled, causes the solver to ignore goal orientations.

KDLKinematicsPlugin

The default inverse kinematics solver for MoveIt uses the pseudo-inverse Jacobian
method. The MoveIt plugin acts as a wrapper around an inverse kinematics solver
from the Orocos Kinematics and Dynamics Library [8].

LMAKinematicsPlugin

A variant of the default IK solver (KDLKinematicsPlugin) exists, which uses the
Levenberg-Marquardt algorithm, interpolating between pseudo-inverse Jacobian
and gradient descent using a damping factor. LMAKinematicsPlugin acts as a
wrapper around an LMA based IK solver in the Orocos Kinematics and Dynamics
Library [8].

TRAC IKKinematicsPlugin

TRAC-IK [9] [10] runs a modified version of the KDL pseudo-inverse Jacobian
solver and a sequential quadratic programming method in parallel. Random jumps
have been added to the pseudo-inverse Jacobian solver to mitigate local minima
at joint limits. Sequential quadratic programming (SQP) uses a quadratic approx-
imation at each iteration.

11

Chapter 2. State of the Art

2.5 Motion Planning in MoveIt

One of the core functionalities of MoveIt is motion planning. The result of a motion
planning operations is a joint-space trajectory, consisting of a sequence of timed
joint-space poses. When executing the trajectory, the robot successively assumes
the planned intermediate poses.

Motions can either be planned from a joint-space start pose to a joint-space
target pose, or by tracking the path a Cartesian-space end effector using inverse
kinematics. Movements can be further restricted by user-defined constraints.

Motion planners in MoveIt implement a common plug-in interface. Different
implementations are available MoveIt provides a plug-in interface for motion plan-
ners. Different implementations are available, some of which integrate external
libraries, e.g. OMPL (Open Motion Planning Library) [11].

2.6 Parallelism

Modern x86 based architectures implement different types of parallelism, allowing
multiple calculations to be done simultaneously.

2.6.1 Multiprocessing

Multiple parallel threads of execution can be run on multiple processing units
(CPUs / CPU cores), each having it’s own control unit, executing an independent
instruction stream. Operating systems, program libraries and special processor
instructions provide mechanisms to control thread execution and information ex-
change. Throughput can be increased by distributing computations across multiple
CPUs / CPU cores.

Locks / Mutual Exclusion

Mutual exclusion can force a specific part of a program to be executed by only one
thread at a time (to prevent race conditions, e.g. data corruption due to multi-
ple threads modifying the same data structure simultaneously). For performance-
critical applications, locks can cause significant overhead. Performance optimiza-
tion in a multiprocessing context often attempts to limit explicit synchronization.

Barriers

Threads can by explicitly synchronized using barriers. If a thread reaches a barrier,
which has not yet been reached by all other threads, the barrier causes the thread
to wait until all other threads have reached the barrier.

12

2.6. Parallelism

2.6.2 Vectorization

SIMD parallelism (Single Instruction, Multiple Data) lets a single instruction per-
form operations on multiple values in parallel. Multiple components of a vector
can be processed by a single vector instruction.

Instruction Sets

SSE (Streaming SIMD Extensions) features 8 128bit vector registers. SSE1 defines
32bit (single precision) floating point operations on scalars and four component
vectors. SSE2 defines 64bit (double precision) floating point operations on scalars
and two component vectors.

AVX (Advanced Vector Extensions) features 16 256bit vector registers and
vector operations on 8D single precision or 4D double precision vectors [12].

FMA (Fused Multiply-Add) provides multiply-accumulate instructions, which
allow two vectors to be multiplied and added to a third vector by a single instruc-
tion. FMA instructions can work on SSE or AVX registers [12].

Alignment

For many processor architectures, loading data into registers and storing data
in memory is often faster, if the address is a multiple of the word size. While
alignment has become less important on modern x86 based CPU architectures for
scalar instructions, it usually is still significant when working with vector instruc-
tions. Vector instruction sets often provide different instructions for aligned and
unaligned memory access. Automatic alignment ensured by the compiler is not
always sufficient for vector instructions. Vector instructions often require program-
mers to ensure alignment manually, to be able to use fast aligned read and write
vector instructions.

Processor Intrinsics

C++ compilers commonly expose CPU architecture specific instructions (such as
SIMD instructions) as intrinsic functions. SIMD instructions can also be called
via assembler. Compiler intrinsics allow all code to be written in C++, typically
increase readability, and can allow the compiler to automatically re-order instruc-
tions for optimal pipelining.

Auto Vectorization

Loops can in some cases be vectorized be the compiler automatically. The loop
is first unrolled according to vector size. Multiple iterations are executed simulta-
neously and each instruction processes values from multiple different iterations at
the same time. Auto-vectorization requires loop iterations to be independent.

Popular compilers (e.g. GCC) provide different ways to request auto-
vectorization. Auto-vectorization can be enabled globally via compiler flags. In

13

Chapter 2. State of the Art

this case however, the compiler has to ensure correctness without being able to
make additional assumptions about iteration independence or memory alignment.
This often prevents efficient auto-vectorization. Some compilers also provide ways
to explicitly request vectorization of a specific loop and to specify additional loop
invariants. The OpenMP standard defines a ”#pragma omp simd” compiler direc-
tive, which can be placed in front of a loop to requests auto vectorization, and also
allows the programmer to specify explicit memory alignment hints.

Function Multiversioning

For optimal performance across different platforms and different vector instructions
set, it may be desirable to provide different implementations of the same function.
Providing different platform-dependent implementations of the some function can
be done by manually by writing different versions of the same function and selecting
the correct one at runtime. Some compilers (e.g. gcc) support built-in function
multiversioning [13], allowing a function to be overloaded by processor instruction
set.

2.6.3 Pipelining

Processor instructions can take more than one clock cycle to complete (instruction
latency). Some of these instructions may be implemented as multiple independent
steps, so that additional instructions can be issued before the first one completes.
For optimal throughput, the instructions should be pipelined according to instruc-
tion latencies. This can usually be done by the compiler. How well a code section
can be pipelined can vary widely, depending on interdependencies between in-
structions (when the result of an instruction is needed by another instruction),
and depending on control flow.

2.7 Biologically Inspired Optimization Methods

2.7.1 Evolutionary Algorithms

Evolutionary algorithms are optimization methods that are inspired by biological
evolution. The optimization problem is defined as a fitness function, according to
which a population is evolved towards higher fitness. Each individual in the popula-
tion represents a candidate solution. Over multiple generations, the individuals are
modified through biologically inspired operators such as mutation and crossover,
and then selected for optimal fitness.

Genetic Algorithms

In a genetic algorithm, each individual stores a candidate solution in it’s genome,
typically encoded as a bit string. The genome could for example consist of mul-
tiple binary integers. Each generation involves crossover, mutation and selection.

14

2.8. Rotation Formalisms

Crossover combines parts of the genome of one parent and parts of the genome of
another parent to produce a child genome. Mutation can be implemented by ran-
domly flipping bits in the genome. Finally, the fitness function is evaluated for each
individual and individuals with high fitness are selected for the next generation.

Evolution Strategies

Evolution strategies store candidate solutions as floating point numbers. Mutation
is performed by adding normally distributed random numbers. In some variants,
each child has two or more parents, and the parent genes are randomly mixed.
In other variants, each child only has a single parent. Selection is based on fitness
ranking. Individuals are sorted by their fitness and the individuals with the highest
fitness are selected.

2.7.2 Memetic Algorithms

Memetic algorithms combine evolution with other optimization methods. To effi-
ciently solve a real-valued optimization problem, evolution can be used as a robust
way to overcome local optima and to find a rough guess close to the global opti-
mum, and then a gradient based optimization method can be used for fast local
search and to quickly converge to an accurate solution. This approach combines the
advantages of evolutionary algorithms with those of gradient based optimization
methods.

2.7.3 Particle Swarm Optimization

Another population based optimization method is particle swarm optimization.
The position of a particle represents a candidate solution. At each iteration, random
movements are tried, and if the fitness improves, are applied to the particle. In
addition to the position, each particle also has a momentum. If a random movement
improves a particle’s fitness, it is also added to it’s momentum. Conversely, the
momentum is added to the particle’s position during each iteration. This allows
the particle to accumulate momentum and accelerate towards the optimum and
thus reach the optimum faster.

2.8 Rotation Formalisms

Rotations in three-dimensional space can be represented in different ways. Choos-
ing a suitable rotation formalism depends on the application.

2.8.1 Euler Angles

An object can be brought into an arbitrary orientation by successively applying
three axis-aligned rotations. For example, the object could first be turned left or
right, then up or down, and finally around it’s forward axis (yaw/pitch/roll). Euler

15

Chapter 2. State of the Art

angles describe rotations in a way that can be interpreted by humans relatively
easily. However, this representation is for most applications computationally inef-
ficient and mathematically inconvenient.

• Correctly interpreting Euler angles depends on convention. The result de-
pends on the order in which the three rotations are applied.

• Singularities exist, in which two of the three rotation axes align, and no
parameter is available for rotating orthogonally to the first and second axis.
This can lead to problems with incremental rotations and when working with
derivatives.

• Geometrically correct concatenation of Euler angle rotations is not trivial
and has to account for possible direction changes of the latter two rotation
axes. Special care has to be taking to correctly handle singularities. Geomet-
rically correct concatenation of Euler angle rotations is often implemented
by first converting Euler angles to another representation, then performing
the operation, and finally converting the result back to Euler angles.

• Rotating a vector using Euler angles requires evaluating computationally
expensive trigonometric functions.

2.8.2 Rotation Matrices

The orientation of an object can be represented by three orthogonal basis vectors.
These basis vectors can be composed into a 3x3 rotation matrix.

Rotating a point or vector by a rotation matrix can be performed by multiplying
the rotation matrix with the vector. This makes rotation matrices the preferred
rotation formalism when large numbers of points or vectors need to be transformed
in a computationally efficient way, e.g. for computer graphics or collision checking.

Consecutive rotations by rotation matrices can be combined through matrix
multiplication.

Rotation matrices need 9 parameters for representing three-dimensional rota-
tions, requiring more storage space and in some cases more data transfer than
other formalisms.

The basis vectors that make up a rotation matrix are unit vectors of length
1 and orthogonal. For some applications, special care has to be taken to always
preserve these invariants. If for example a rotation matrix is incrementally modified
over a large number of computational steps by multiplying it with other rotation
matrices, numeric errors could in the worst case accumulate exponentially, until the
basis vectors are not of the correct length and/or not orthogonal enough anymore.
A way to prevent this is to regularly check the invariants, and if violated, re-
normalize and re-orthogonalize the basis vectors. Some other rotation formalisms
also involve invariants, but those are usually less complex.

Concatenating rotation matrices and transforming points with rotation matri-
ces does not involve computationally expensive trigonometric operations. However,

16

2.8. Rotation Formalisms

the matrix multiplications needed for concatenating rotation matrices are usually
not as efficient as concatenating e.g. rotation quaternions.

MoveIt represents most three-dimensional orientations as rotation matrices.

2.8.3 Axis-Angle

Any orientation in three-dimensional space can be represented as a single rotation
around a specific axis (Euler theorem). The axis can be encoded as a unit vec-
tor and the angle as an additional scalar, leading to a four-parameter axis-angle
representation.

(

xy
z

 , φ) (2.7)

Simple component-wise addition of two axis-angle representations does gener-
ally not lead to a geometrically correct concatenation. Rotating a point or vector by
an angle around an axis requires evaluating computationally expensive trigonomet-
ric functions. While by itself computationally not very convenient, the axis-angle
representation serves as a conceptual basis for other rotation formalisms.

2.8.4 Rotation Quaternions

The axis-angle representation can be brought into a mathematically and compu-
tationally more convenient form by replacing the angle with sines and cosines.
Euler parameters (not to be confused with Euler angles) multiply the vector
with the sine of half the angle and replace the angle with the cosine of half the angle.

qw = cos(
φ

2
)

qx = x · sin(
φ

2
)

qy = y · sin(
φ

2
)

qz = z · sin(
φ

2
)

(2.8)

The four Euler parameters can be encoded in a mathematical quaternion.

Q = cos(
φ

2
) + i · x · sin(

φ

2
) + j · y · sin(

φ

2
) + k · z · sin(

φ

2
) (2.9)

Quaternion multiplication of two rotation quaternions leads to a geometrically
correct concatenation of the two rotations.

17

Chapter 2. State of the Art

Multiplying two quaternions requires 28 scalar operations, which is less than the
45 scalar operations required for multiplying two 3x3 rotation matrices. Rotating
a vector by a rotation quaternion requires 30 scalar operations, rotating a vector
by a rotation matrix requires only 15 scalar operations. When concatenating two
transformations, each consisting of a translation and a rotation, rotation quater-
nions and rotation matrices require similar operation counts. Rotation matrices
require 60 operations (45 + 15), while rotation quaternions require 58 operations
(28 + 30).

A valid rotation quaternion is a unit quaternion. Some applications require
this invariant to be maintained explicitly. One possible solution is to periodically
compute and check the length (or square length) of the quaternion, and if it
deviates too far from 1, re-normalizing the quaternion by scaling it by the inverse
of it’s length. If the error is known to be small, the inverse square root required for
computing the length of the quaternion can be replaced by a linear approximation.

Q′ = Q · ((3.0−Q ·Q) · 0.5) (2.10)

Q, Q′: quaternions

Rotation quaternions cover all possible rotations twice. Each rotation can be
represented by two different quaternions. For an angle of φ = 0◦, the corresponding
rotation quaternion is 0i+0j+0k+1. For φ = 360◦, the quaternion is 0i+0j+0k−1.
For φ = 720◦, it is 0i+ 0j + 0k + 1 again.

2.9 Rotation Vectors

The axis-angle representation can be reduced to only three parameters by scaling
the axis with the angle. x · φy · φ

z · φ

 (2.11)

This leads to a compact, but unlike Euler angles unambiguous, representation.
Rotation vectors are commonly used to represent small relative rotations and

rotational derivatives.
For infinitesimally small angles, a rotation vector is proportional to the imagi-

nary components of a rotation quaternion.

lim
φ→0

x · sin(φ
2
)

y · sin(φ
2
)

z · sin(φ
2
)

 =

x · φy · φ
z · φ

 · 1

2
(2.12)

18

2.10. BioIK

2.10 BioIK

Recently, a multi-goal inverse kinematics solver has been developed at the TAMS
research group, based on biologically inspired optimization methods [19] [21] [22].
The solver was implemented in C# for the Unity3D game engine.

The algorithm combines evolutionary optimization methods with particle
swarm optimization. The genome of each individual encodes a joint-space robot
pose as floating point numbers. Recombination randomly interpolates between par-
ent genes. During mutation, normally distributed random numbers are added to
the genes. The mutation rate (variance of the normally distributed random num-
bers) is adjusted according to a heuristic error function, which is proportional to
the distance between the current tip frame positions and the IK goals.

Hybrid particle swarm optimization assigns a momentum to each individual.
Mutations are also added to the momentums, and during reproduction, the mo-
mentums are added back to the positions that are encoded in the genomes. Updates
to the momentums and position updates due to momentum are scaled randomly.

An exploitation function implements a local search method [22], which is ex-
ecuted for a number of high-fitness individuals (elites). The exploitation function
iterates over all genes, tries a random single-gene mutation in each direction, scaled
by the heuristic error function, and if the fitness increases, applies it to the genome.

The inverse kinematics problem is defined by a set of goals. Each goal de-
fines a partial cost function. Different goal types have been defined. Position goals
minimize the Euclidean distance between end effector position and goal position.
Rotation goals minimize the angle between end effector orientation and goal ori-
entation. Pose goals mix positional and orientational errors, weighted randomly
and by a size-dependent angular scale heuristic. The cost functions do not have
to be differentiable. Weights can be assigned to the goals, which are used to scale
the partial costs. To obtain the final fitness measure, the partial costs of all goals
are added together. At each generation, individuals are selected according to fit-
ness ranking. To evaluate Cartesian-space IK goals (position, orientation, etc.), the
joint-space representations stored in the genomes have to be converted to Carte-
sian space through forward kinematics. Most of the computation time is spent on
these forward kinematics calculations. Rotations are represented as quaternions.
Local joint frames and global link frames are cached and reused if not changed.

19

Chapter 2. State of the Art

2.11 Robot Models

A number of different already existing robot models is used in this work for exper-
iments and for comparing IK algorithms.

Figure 2.7: Robot models: PR2 [14] (top left), UR5 [15] (top right), KUKA iiwa
[35] (bottom left), NASA Valkyrie [16] (bottom right)

20

Chapter 3

BioIK for ROS and MoveIt

3.1 Requirements

• Robot applications typically require high accuracy. Existing inverse kinemat-
ics solvers for MoveIt allow a default maximum error of 10−5m (or 10µm)
and 10−5rad. For game development, accuracy is usually not as important.

• Many robotics applications require finding large numbers of inverse kinemat-
ics solutions, e.g. to accurately follow a Cartesian-space trajectory with an
end effector for motion planning. Performance is therefore extremely impor-
tant. In MoveIt, the runtime of an IK solver is limited by a timeout (default:
5ms).

• For robotics applications, the solver has to be able to find accurate solutions
reliably. On a virtual game character, it would typically not be a problem
to display sub-optimal IK solutions. On a real robot, wrong or inaccurate
solutions could damage the robot or it’s environment, or injure humans.

3.2 Performance Measurement

The performance of inverse kinematics solvers can be measured by success rate
and average solve time. Reachable end effector poses are generated by computing
forward kinematics for a random joint-space robot pose. The robot is then reset
to a different random robot pose, and the inverse kinematics solver is invoked
with the reachable end effector poses as inverse kinematics goals. Performance
characteristics can now be measured. The test is repeated for a large number of
iterations and the results are averaged. Success rate measures the percentage of
IK queries that where successfully completed within a specific timeout. IK queries
can also succeed before the timeout is reached. Average solve time measures the
average runtime of the IK solver regardless of success or failure.

An FK-IK test framework has been implemented for MoveIt, which implements
the described procedure, and is used in this work for comparing different IK solvers
and implementations, and for measuring the effects of specific optimizations.

21

Chapter 3. BioIK for ROS and MoveIt

If not specified otherwise, performance measurements are taken with an inverse
kinematic timeout of 5ms (MoveIt default) and a maximum error of 10−5m and
10−5 radians.

3.3 C++ Port

The first method implemented in this work is a C++ port of the original BioIK
algorithm. Only minor changes were made. Numerical precision has been increased
from 32 bit single precision to 64 bit double precision. The robot model has been
adapted to the MoveIt robot model, adopting MoveIt-specific features such as
mimic joints.

The implementation is able to successfully solve single-goal and multi-goal in-
verse kinematics problems.

However, for single-goal IK, for which MoveIt already provides IK solvers, per-
formance is below that of already available gradient-based solvers.

Evolution KDL TRAC-IK

PR2 51.5% 50.6% 99.9%

UR5 24.1% 41.8% 99.7%

Table 3.1: IK success rate for the evolutionary method, KDL, and TRAC-IK, on
the robots PR2 and UR5

The success rate degrades especially towards workspace boundaries.

Figure 3.1: IK success/failure distribution across the workspace (PR2 robot): evo-
lutionary method (left) and KDL (right)

3.4 Optimization

Optimizations have been made, which increase the overall performance while still
maintaining the general structure of the algorithm.

22

3.4. Optimization

3.4.1 Quadratic fitness function

The original algorithm used linear cost measures, namely Euclidean distance for
positions and angles for orientations. For pose goals, positional and rotational
errors were mixed randomly.

Faster convergence could be achieved by replacing linear cost measures with
quadratic ones. For positions, squared vector distances are used. For orientations,
the squared distance between the rotation quaternions is computed. Since rotation
quaternion represent the set of all possible rotations twice, one of the quaternions
is wrapped around (by negating each component) if necessary.

Usage of a quadratic fitness function already increased the performance above
that of the gradient-based inverse kinematics solver provided by KDL.

Linear Fitness Quadratic Fitness KDL TRAC-IK

PR2 51.5% 57.0% 50.6% 99.9%

UR5 24.1% 43.2% 41.8% 99.7%

Table 3.2: IK success rate comparison: evolution with linear fitness, evolution with
quadratic fitness, KDL, TRAC-IK, on the robots PR2 and UR5

3.4.2 Islands / Parallelization

The algorithm is parallelized by spreading the population across multiple islands
and running each island independently from the other islands on a separate thread.
This allows for efficient parallelization with minimal synchronization overhead,
while still maintaining correctness and preventing race conditions. Once a suffi-
ciently good solution has been found, evolution is stopped on all islands, and the
best solution is returned.

Original Modified 1 Thread Modified 4 Threads KDL TRAC-IK

PR2 51.5% 57.0% 77.4% 50.6% 99.9%

UR5 24.1% 43.2% 53.4% 41.8% 99.7%

Table 3.3: IK success rate comparison: original algorithm, modified evolution on
a single island, modified evolution on 4 islands and 4 concurrent threads, KDL,
TRAC-IK, on the robots PR2 and UR5

Overall performance is further increased. However, at the workspace boundary,
the success rate is still relatively low.

23

Chapter 3. BioIK for ROS and MoveIt

Figure 3.2: IK success/failure distribution across the workspace (PR2 robot): first
version of the evolutionary algorithm (top left), modified evolution on 4 threads
(top right), KDL (bottom left), TRAC-IK (bottom right)

24

3.5. Gradient Based Methods

3.5 Gradient Based Methods

Several gradient based optimization methods have been implemented for compar-
ison and to identify candidates for memetic optimization.

Each method can optionally be run on multiple threads. Initial guesses from
MoveIt are used on the first thread or if multi-threading is disabled. The other
threads are initialized randomly.

3.5.1 Pseudo-Inverse Jacobian Method

A custom multi-goal version of the popular pseudo-inverse Jacobian method has
been implemented for comparison. The Jacobian matrix is computed analytically.
Support is limited to pose goals.

Jac 1 T Jac 4 T KDL TRAC-IK

PR2 67.3% 82.5% 50.6% 99.9%

UR5 87.9% 95.5% 41.8% 99.7%

Table 3.4: IK success rate: custom Jacobian solver on 1 thread, custom Jacobian
solver on 4 threads, KDL, and TRAC-IK, on the robots PR2 and UR5

3.5.2 Gradient Descent

Gradient descent methods have been implemented by numerically differentiating
the fitness function that is used by the evolutionary algorithm. The implementation
supports multi-goal IK and all available goal types.

During each iteration, the fitness function is differentiated with respect to each
joint variable by offsetting each joint variable by a small increment, re-evaluating
the fitness function, and computing the difference quotient. The resulting vector
is normalized and used as the descent direction. Next, a step size is estimated by
differentiating and linearly extrapolating along the descent direction.

s = f ÷ df
dx

, s: step size, f : fitness, df
dx

: gradient
The current position is then moved by the step size along the descent direction

and the new joint positions are clipped at joint limits.
It may seem reasonable to reject position updates with increasing cost. How-

ever, this could cause the optimization to be stuck at a local optimum due to de-
terministic descent direction and step size. Local minima can be mitigated through
random resets. Alternatively, steps can be always accepted, regardless if the so-
lution improves or not, which proved to be most effective. The custom gradient
descent solver showed similar performance as the custom pseudo-inverse Jacobian
solver. On the PR2, gradient descent performs slightly better, on the UR5, the
pseudo-inverse Jacobian method performs slightly better.

25

Chapter 3. BioIK for ROS and MoveIt

GD GD R GD C GD C 4 Jac 1 Jac 4 KDL TRAC-IK

PR2 7.7% 36.9% 67.8% 85.0% 67.3% 82.5% 50.6% 99.9%

UR5 1.4% 10.9% 83.8% 90.5% 87.9% 95.5% 41.8% 99.7%

Table 3.5: IK success rate (on the PR2 and UR5 robots): gradient descent, gradient
descent with random resets, gradient descent with continuation, gradient descent
with continuation and multi-threading on 4 threads, custom pseudo-inverse Jaco-
bian solver on 1 thread, custom pseudo-inverse Jacobian solver on 4 threads, KDL,
TRAC-IK

3.5.3 CppNumericalSolvers

In addition to the custom-implemented methods specifically optimized for solving
inverse kinematics problems, several generic gradient based optimization methods
from the CppNumericalSolvers library were systematically tested. The fitness func-
tion is used as the cost function. Some solvers support box constraints. These are
used for specifying joint limits.

UR5 PR2

BFGS 92.5 13.9

Conjugate GD 35.4 13.5

Gradient Descent 35.6 6.9

L-BFGS-B 0.4 1.7

L-BFGS 0 0.1

Nelder-Mead / Simplex 30.7 15.8

Newton Descent 18.1 3.1

Table 3.6: IK success rate on the PR2 and UR5 robots using several implementa-
tions from the CppNumericalSolvers library

26

3.6. Neural Networks

3.6 Neural Networks

Artificial neural networks [17] were considered for local search and memetic op-
timization. Two neural network based approaches were implemented and tested.
FANN (Fast Artificial Neural Network Library) is used for implementation.

A simple approach to neural network based inverse kinematics is to learn a
mapping from end effector poses to joint angles. However, this usually leads to
inaccurate solutions. Furthermore, the network fails to learn correct solutions at
discontinuities (small end-effector movements can in some cases lead to large jumps
in joint-space positions).

A different approach has been developed, which learns relative offsets. The
network receives the current joint-space robot pose as well as the Cartesian-space
differences between tip frame and effector poses as inputs. Joint-space offsets are
used as outputs. The network is trained to return joint-space offsets that minimize
goal offsets. During inference (to solve an inverse kinematics problem), the network
is run in a feedback loop together with a forward kinematics solver, inspired by
recurrent neural networks. If the goal offsets are very small, the inputs are scaled
up and the outputs are scaled down again to reduce the effect of constant errors.
During each iteration, the network tries to bring the end effector as close to the
goal as possible. Iterations are repeated until a sufficiently good solution is found.
This approach allows arbitrarily accurate inverse kinematics solutions to be found
using artificial neural networks.

Compared to gradient based methods, the idea was to let the neural network
learn problem-specific heuristics about non-linearities, about how to resolve redun-
dancies, and about how to avoid joint limits.

The main drawback is that the network has to be trained for each robot setup.
The performance varied between different training runs (around 20% to 40% for
the PR2, a few minutes training, and standard 5ms timeout and 10−5 maximum
error).

27

Chapter 3. BioIK for ROS and MoveIt

3.7 Modified Algorithm

The BioIK algorithm has been re-designed for high accuracy and improved perfor-
mance, according to the robotics-specific requirements mentioned above.

PR2 UR5 Valkyrie
arm

Valkyrie
foot

iiwa

BioIK 2 100.00% 99.93% 99.93% 100.00% 99.93%

TRAC IK 99.91% 99.29% 99.64% 99.98% 99.88%

KDL 53.10% 41.70% 41.13% 91.68% 51.62%

Table 3.7: IK success rate: re-designed evolutionary algorithm, TRAC IK, KDL

Figure 3.3: IK success/failure distribution across the workspace (PR2 robot): BioIK
1 (top left), KDL (top right), TRAC IK (bottom left), BioIK 2 (bottom right)

28

3.7. Modified Algorithm

3.7.1 Genome

The genome encodes joint-space robot poses as double precision floating point
numbers. Only variables that are used as parameters by an IK goal and variables
that influence the pose of a end effector are included (mainly to allow for optimized
memory access patterns, see Implementation).

3.7.2 Mutation

Mutations are scaled by a random exponential term. The random number used
for generating the exponential term is only generated once per individual offspring
and stays the same for all genes of the same individual.

m = r · 2−s (3.1)

m: mutation r: normally distributed random number
s: random integer, generated once per individual offspring

For a single gene, the random exponential term leads to a similar distribution as
would be the result of randomly mutating bits of an integer. While large mutations
are still possible, many small mutations are generated as well, allowing accurate
results to be found efficiently.

To efficiently find accurate solutions to non-linear optimization problems, an
optimization algorithm should ideally be able to converge to an optimum exponen-
tially, cutting the error to a fraction of it’s prior value during each iteration. The
exponential scaling term allows this to happen by ensuring that, for reasonable
mutation sizes, for each mutation a roughly half-sized mutation is possible with a
similar probability.

Other possible solutions for allowing high accuracy would be monotonically
decreasing scales or heuristic error functions.

After each successful mutation which lead to a fitness increase, a monotonically
decreasing scale could be reduced to a fraction of it’s prior value. However, this
might lead to two issues. First, it would depend on a problem-specific parameter,
which would have to be manually adjusted for optimal performance. Secondly, it
could cause evolution to be stuck at local minima. Once the mutation scale would
be decreased at a local minimum, it could become impossible to leave the local
mimum again.

A heuristic error function could also be used to adjust mutation scales. How-
ever, for optimal performance, this would require a heuristic error function to be
implemented for each goal type. The heuristic error function would also have to
account for non-linearities. If, for example, a robot arm consisting of several revo-
lute joints is fully extended and the IK goal is offset inwards, an optimal mutation
would have to be much larger than if the goal would be offset sidewards, so an op-
timal heuristic error function for position goals would be direction dependent. The

29

Chapter 3. BioIK for ROS and MoveIt

heuristic error function of the first BioIK algorithm was not direction dependent,
causing slow convergence at workspace boundaries.

In many cases, two or more genes have to mutate simultaneously to increase
fitness. For example, reducing the distance between an end effector position and
a goal position for a fully or almost fully extended revolute joint robot arm can
require simultaneous reciprocal mutations to multiple joints. Only mutating one
of the joints would increase the distance, e.g. moving too much sidewards, even if
the inwards or outwards directed part of the movement would be correct. If the
random mutation scale would be generated per-gene (or if integer genes would be
mutated by flipping random bits), most mutations would move a single joint by a
significantly larger amount than the other joints, making similarly scaled simulta-
neous mutations to multiple genes very unlikely. The problem could be solved using
a large population size. A first mutation would then be allowed to temporarily de-
crease the fitness, until a second mutation increases the fitness again. However, this
would increase the computational cost substantially. Instead, the issue is solved by
generating random mutation scales only once for each individual offspring and
keeping the mutation scale the same for all genes of the same individual.

PR2 UR5

BioIK 2, with memetics, per-individual mutation size 100.00% 99.93%

BioIK 2, no memetics, per-individual mutation size 100.00% 99.86%

BioIK 2, no memetics, per-gene mutation size 76.38% 35.85%

TRAC IK 99.91% 99.29%

KDL 53.10% 41.70%

Table 3.8: IK success rate comparison for per-gene and per-individual random
mutation sizes

3.7.3 Selection

At each generation, the best individuals are selected according to the fitness func-
tion.

The algorithm can distinguish between primary and secondary objectives. If
goals have been specified as secondary objectives, individuals are first pre-selected
according to the secondary objectives, and then the final selection is made accord-
ing to the primary objectives. For a fixed number of survivers after pre-selection,
the optimization could be stuck at points where primary and secondary objectives
cancel each other out, if the number of survivers would be too small. If the number
of survivers would be too large, the secondary objectives would be ignored. So for
a fixed number of survivers, the number of survivers would have to be configured
manually. Therefore, a random number of survivers is used for pre-selection.

30

3.7. Modified Algorithm

3.7.4 Islands

The population is spread across multiple islands. Evolution on each island is run
independently from the other islands on a separate thread. When a solution is
found, evolution is stopped on all islands and the best result is selected.

PR2 UR5

BioIK 2, 4 islands (4 threads) 100.00% 99.93%

BioIK 2, 2 islands (2 threads) 100.00% 99.81%

BioIK 2, 1 island (1 thread) 99.99% 99.34%

TRAC IK (2 threads) 99.91% 99.29%

KDL (1 thread) 53.10% 41.70%

Table 3.9: IK success rate comparison for different numbers of islands and threads

3.7.5 Species and Wipeouts

Evolution could be temporarily stuck at a local optimum. If the fitness of the local
optimum is only slightly worse than that of the global optimum, and/or if the
local optimum is significantly larger than the global optimum, it can be relatively
unlikely for a random mutation to move an individual from the local optimum
close enough to the global minimum for the fitness to improve and for the search
to continue towards the hard-to-find global optimum. Wipeouts are used to reliably
move out of local optima.

Each island is home to two competing species. Individuals are only allowed
to mate within their own species. Among the two species that are living on each
island, only the less fit species can be wiped out, measured by the fitness of the
fittest individual within each species. A wipeout re-initializes all individuals within
a species from a randomly generated genome. A wipeout is triggered if a species fails
to improve for several generations, or with low probability at random. Evolving two
competing species on each island and only wiping out the less fit species prevents
good solutions from being wipeout out accidentally.

PR2 UR5

BioIK 2, with wipeouts 100.00% 99.93%

BioIK 2, no wipeouts 95.39% 96.42%

TRAC IK 99.91% 99.29%

KDL 53.10% 41.70%

Table 3.10: IK success rate comparison: wipeouts

31

Chapter 3. BioIK for ROS and MoveIt

3.7.6 Initialization

In MoveIt, initial guesses are provided for inverse kinematics queries. If multiple
solutions are possible, applications generally expect a solution that is close to the
initial guess to be returned. To allow for fast convergence towards a solution that
is close to the initial guess, the genes of all individuals are initialized with the
joint values that were provided as the initial guess. If a bad initial guess is given,
wipeouts are eventually triggered, which randomly re-initialize the population.

Performance can be further increased by only initializing the population on
the first island with the initial guess and initializing the populations on the other
islands randomly. However, this can cause possible solutions close to the initial
guess to be missed. Therefore, all islands are initialized with the initial guess,
despite a small performance decrease.

PR2 UR5

BioIK 2, initial guess 100.00% 99.93%

BioIK 2, random initialization 100.00% 99.97%

TRAC IK 99.91% 99.29%

KDL 53.10% 41.70%

Table 3.11: IK success rate comparison: initial guess vs. random initialization

3.7.7 Termination

The algorithm terminates if a sufficiently good solution is found, or if a timeout
occurs. Whether a solution is good enough could be determined by a fitness thresh-
old. For compatibility, and to allow performance to be accurately compared with
other solvers, special acceptance criteria are implemented for pose goals, position
goals, and orientation goals. For other goal types, the individual cost of each goal
is compared to the square of the maximum allowed error (assuming most cost
functions to be roughly quadratic).

3.7.8 Particle Swarm Optimization

Hybrid particle swarm optimization is also used in the modified algorithm.
In addition to the genome, each individual also has a momentum. The momen-

tum has the same dimensionality as the genome.
In the first version of the BioIK algorithm, two real-valued random scalings

were applied to each component of each individual’s momentum at each generation.

g′ = g +m · r1
m′ = m · r2

(3.2)

g: genome vector m: momentum vector r1, r2: random vectors

32

3.7. Modified Algorithm

Scaling each component differently can cause the momentum to lose direction.
This is avoided by choosing a random scale only once per individual. If a good
direction has been found, optimization can efficiently continue into the same direc-
tion, until a good position is found along the direction of the momentum, causing
the error to become mostly orthogonal to the momentum, and the momentum can
be discarded and re-initialized. Also, the direction of the momentum can be refined
over multiple iterations more efficiently. Per-gene randomization could prevent mu-
tation randomness from being smoothed out enough.

Optimal momentum depends on position. Some position updates can invalidate
the momentum. For example, after a large random mutation, the local fitness land-
scape and the relative directions towards the optima could be completely changed.
Also, if an individual has accumulated momentum in the rough direction towards
an optimum and has reached a good position along the direction of the momen-
tum, the error would now be mostly orthogonal to the momentum. In these cases,
it could be most effective to completely remove all momentum. However, random
real-valued scales would never be exactly zero, and if the scales would be different
for each dimension, it would be very unlikely for all scales to be small enough
simultaneously.

Instead, a small integer is used for scaling, which is generated only once per
individual. For each individual offspring, an integer from 0 to 2 is selected and
before the mutation is applied, the momentum is scaled by the random integer.
The momentum is thus either kept unchanged, doubled, or removed.

PR2 UR5

BioIK 2, with particle swarm optimization 100.00% 99.93%

BioIK 2, no particle swarm optimization 99.41% 91.24%

TRAC IK 99.91% 99.29%

KDL 53.10% 41.70%

Table 3.12: IK success rate comparison: particle swarm optimization

3.7.9 Memetics

Gradient based optimization is added for fast local search. After running evolution
for a number of generations, a gradient based method is run on the best individual
of each species. Local search stops either if it fails to further improve the solution,
or if a fixed maximum number of iterations is reached. Afterwards, evolution con-
tinues. Gradients are computed by numerically differentiating the fitness function
with respect to joint values. Different gradient based optimization methods have
been tested.

33

Chapter 3. BioIK for ROS and MoveIt

PR2 UR5 Vk arm Vk foot iiwa

BioIK 2, quadratic memetics 100.00% 99.93% 99.93% 100.00% 99.93%

BioIK 2, linear memetics 99.99% 99.90% 99.94% 99.99% 99.91%

BioIK 2, LBFGS-B memetics 99.99% 99.90% 99.91% 100.00% 99.92%

BioIK 2, no memetics 99.98% 99.75% 99.50% 99.99% 99.71%

TRAC IK 99.91% 99.29% 99.64% 99.98% 99.88%

KDL 53.10% 41.70% 41.13% 91.68% 51.62%

Table 3.13: IK success rate: no memetics, linear memetics, quadratic memetics

The linear method is based on the custom gradient descent method described
above.

Quadratic memetics uses a variant of the custom gradient descent method
with quadratic step size estimation. The fitness landscape is approximated along
the gradient by a parabola via numeric differentiation and the distance to the
extremum is calculated.

v1 = f2 − f1
v2 = f3 − f2

v = (v1 + v2)/2

a = v2 − v1
s = v/a

(3.3)

f1, f2, f3: three fitness values, sampled at three close points along the gradient
s: step size scale (as a multiple of the step size used for sampling f1, f2 and f3)

LBFGS-B based memetics uses an LBFGS implementation from the CppNu-
mericalSolvers library.

The final version of the algorithm uses the custom quadratic gradient descent
method.

3.7.10 Extrapolated Forward Kinematics

Most of the computation time is spent on calculating forward kinematics. First,
for each joint that has been moved, a local joint transform has to be computed.
For some joint types (e.g. revolute joints), this involves computationally expensive
trigonometric operations. Then, local joint transforms and local link transforms
have to be concatenated, not just requiring computationally simple component-
wise vector operations, but also computationally more heavy matrix or quaternion
multiplications. To save computation time, forward kinematics is extrapolated for
most mutations.

34

3.7. Modified Algorithm

First, an exact forward kinematics solution is calculated for the best individual
of each species. Next, positions and orientations are differentiated with respect
to joint variables at the joint positions encoded in the best individual’s genes.
Evolution and memetrics are then run for a few generations. Forward kinematics
is not re-computed for each mutation. Instead, the forward kinematics problem is
extrapolated using the gradients and the last full forward kinematics computation.
After running evolution and memetics for a few generations using extrapolation,
another exact forward kinematics solution is computed and the gradients are re-
initialized.

The extrapolator uses the Jacobian matrix of the forward kinematics problem,
consisting of first order derivatives of the end effector positions and orientations
with respect to joint values. The Jacobian matrix is multiplied with the joint offsets
and the result is added to the last known end effector poses.

35

Chapter 3. BioIK for ROS and MoveIt

3.8 Goal Types

Several inverse kinematics goal types were developed. Each goal defines a partial
cost function. The fitness function is obtained through summation of the goal costs.

Position Goal

The position goal tries to match the position of an end effector with a goal
position. The cost function is defined as the square distance between end effector
position and goal position.

c = ‖PE − PG‖2 (3.4)

PE: end effector position PG: goal position c: cost

Orientation Goal

The orientation goal tries to match the orientation of an end effector with a
goal orientation. The cost function computes the square distance between two
rotation quaternions. Rotation quaternions represent the set of all rotations twice.
ai + bj + ck + d represents the same orientation as −ai− bj − ck − d. Therefore,
the distance is computed twice, once with the positive and once with the negative
of the second rotation quaternion, and the minimum is selected.

c = min(‖QG −QE‖2, ‖QG +QE‖2) (3.5)

QE: end effector rotation quaternion QG: goal rotation quaternion c: cost

Rotational distances between rotation quaternions can also be computed via
the dot product. The angle between two normalized rotation quaternions is
a = acos(Q1 · Q2). A distance measure which does not require trigonometric op-
erations can be defined as d = 1− (Q1 · Q2). However, these methods can be less
stable if the quaternions are not exactly normalized. For example, the dot prod-
uct could become slightly larger than one, in which case the arcus cosine in the
first formula would be undefined, and the second formula would compute a nega-
tive distance. Also, if denormalization of the quaternions is proportional to their
magnitudes, the results could be inverted. For two zero-rotation quaternions, the
result would be 0, but for slightly larger (proportinally denormalized) quaternions,
the dot product could become larger than 1, and the result could become less
than zero. This can be the case even for very small errors, since cos′(0) = 0 and
limα→0 acos(α)′ = −∞. These issues are usually solved by explicitly normalizing
the quaternions before computing the dot product. However, this would involve
calculating computationally expensive square roots.

Also, if the dot product is used as a distance measure, the gradient becomes
zero if the angle between both quaternions is 180◦. If the minimum square distance

36

3.8. Goal Types

is used instead, the gradient is always large if both quaternions are pointing away
from each other, ensuring fast divergence away from incorrect solutions. This would
also be the case if the square angle would be used, but computing the exact angle
via trigonometry would be computationally more expensive.

PR2 UR5 Vk arm Vk foot iiwa

Square distance 100.00% 99.93% 99.93% 100.00% 99.93%

Norm and dot product 100.00% 99.83% 86.30% 97.21% 99.73%

Square angle 99.95% 97.08% 98.97% 100.00% 98.77%

TRAC IK 99.91% 99.29% 99.64% 99.98% 99.88%

KDL 53.10% 41.70% 41.13% 91.68% 51.62%

Table 3.14: IK success rate comparison: rotational distance measures

Pose Goal

The pose goal tries to match both position and orientation. Position and rotation
errors are computed the same way as for position and orientation goals, and are
then added to obtain the combined pose goal error. The weighting of position and
orientation errors can be adjusted via a rotation scale parameter.

c = ‖PE − PG‖2 +min(‖QG −QE‖2, ‖QG +QE‖2) · s2r (3.6)

PE: end effector position PG: goal position
QE: end effector rotation quaternion QG: goal rotation quaternion

sr: rotation scale

Line Goal

The line goal tries to move the position of a link onto a line. The line is specified
via a point p and a direction vector d.

The cost function computes the square distance between the line and the link
position. A plane is constructed at the point p with the line direction d as it’s
normal. The link position is then projected onto the plane and the square distance
between the point p and the projected link position is computed.

c = ‖f − d · (d · (f − p))− p‖2 (3.7)

c: cost p: point on the line d: line direction f : link position

37

Chapter 3. BioIK for ROS and MoveIt

Minimal Displacement Goal

The minimal displacement goal tries to keep each joint variable as close as
possible to the last robot pose (the joint values provided as the initial guess by
MoveIt). The cost function is computed as a sum of squared distances. For each
joint variable, the difference between it’s current position and the initial guess is
computed. The differences are weighted by the reciprocals of the maximum joint
velocities. Joint velocities are specified in the URDF robot model and are accessed
via the MoveIt RobotModel interface. The cost function then squares each scaled
distance and computes the sum.

c = ‖j − i‖2 (3.8)

j: current joint positions i: initial guess

Center Joints Goal

The center joints goal tries to keep all joints at the center between their joint
limits. The cost function is computed as a sum of squared errors.

c = ‖j − h+ l

2
‖2 (3.9)

j: current joint positions h: upper joint limits l: lower joint limits

Avoid Joint Limits Goal

The avoid joint limits goal tries to keep each joint variable within the center half
of each joint’s joint limits. The cost function is similar to that of the CenterJoints,
but the center half of each joint’s range is ignored.

c =
N∑
i=1

((|ji −
hi + li

2
| · 2− hi − li

2
)2) (3.10)

j: current joint positions N : number of active joint variables

h: upper joint limits l: lower joint limits

Joint Variable Goal

The joint variable goal tries to match the value of a joint variable with a specified
goal. The cost function is computed as a squared difference.

38

3.8. Goal Types

c = (j − g)2 (3.11)

j: current joint position g: goal joint position

Look At Goal

The look-at goal aligns a link axis with the direction towards a goal position. The
cost function rotates the axis by the link orientation, computes the direction from
the link position to the goal position, and finally calculates the square distance
between the directions.

Minimum Distance Goal

The minimum distance goal tries to keep the position of a link away from the goal’s
position by at least a minimum distance.

Maximum Distance Goal

The maximum distance goal tries to keep the position of a link within a maximum
distance to the goal’s position.

Direction Goal

The direction goal tries to match a link axis with a goal direction. The axis is
transform by the link’s current orientation and then the square distance between
the axis and the goal direction is computed.

Link Function Goal

The link function goal evaluates a user-specified cost function for the link’s current
position and orientation.

Joint Function Goal

The joint function goal tries to meet a user-specified joint variable constraint. The
constraint is defined through a function, which receives joint variable positions and
can modify them. The cost function is defined as the sum of square errors between
the current joint values and the results of the constraint function.

39

Chapter 3. BioIK for ROS and MoveIt

Side Goal

The side goal tries to keep a link-space direction vector and a goal direction pointing
away from each other. The cost function rotates the link-space direction by the link
orientation, computes the dot product with the goal direction, cuts off negative
values, and computes the square.

Cone Goal

The cone goal tries to keep a link-space direction vector with a cone specified by a
goal direction and a maximum angle. The cone goal can also simultaneously match
the link position with a goal position.

Touch Goal

The touch goal tries to touch the surface plane of a half space with the link’s
collision model without intersecting the half space. The plane is specified via a
point on the plane and a normal.

Different collision detection methods are used depending on the type of the
link’s collision model. For geometric primitives, implementations from the Flexible
Collision Library (FCL) [18] are used.

For collision meshes, different methods have been implemented and tested. Us-
ing the FCL collision model provided by MoveIt was relatively slow. FCL provides
fast collision detection methods for convex shapes, but MoveIt does currently not
distinguish between convex and concave shapes and always builds a relatively slow
bounding volume hierarchy out of individual triangles, which should only require
O(log(n)) complexity, but the implementation apparently comes at a relatively
high cost per iteration. Manually iterating over all vertices and computing the dot
product between plane normal and vertex position was for typical robot models
already faster, despite theoretically higher complexity of O(n2).

To further improve the performance, a fast method was implemented, which
has only O(1) complexity for small mutations. The method walks on the convex
hull of the collision mesh towards the minimum.

The problem must be convex, even for concave objects. The touch goal searches
for a point on the object for which the dot product with the normal is minimal. If a
point is part of the object, but does not lie on the convex hull, it can be represented
as a linear combination of two points that lie on the convex hull. Thus, for any
direction vector, the dot product with one of the two points that lie on the convex
hull must be at least as small as the dot product with the point that does not lie
on the convex hull. So for each possible solution that does not lie on the convex
hull, another solution exists which is at least as good and does lie on the convex
hull. Therefore, for this problem, it is sufficient to only search for solutions on the
convex hull of the collision model.

Solutions are temporarily stored and used as the initial guess for the next
query. For small mutations, the vertex with the smallest dot product with the

40

3.8. Goal Types

plane normal remains the same and the amortized complexity is O(1). This method
performs significantly better than the other two methods.

Balance Goal

The balance goal tries to keep the robot’s center of gravity above the goal position.
To compute the current center of gravity of the robot, mass and center of gravity of
each link is fetched from the URDF model and a weighted average is computed of
the centers of gravity weighted by mass. The cost function then projects the center
of gravity and the goal position onto a plane orthogonal to a user-specified gravity
vector and computes the square distance between the projected goal position and
the projected center of gravity.

41

Chapter 3. BioIK for ROS and MoveIt

3.9 Implementation

3.9.1 Goal Types

The goal types are implemented as C++ classes. All goal classes are derived from
a common Goal base class and implement an evaluate method and a describe
method. Information is exchanged via a GoalContext object, allowing the interface
to be extended at a later time without breaking the API. The evaluate method
is called after each mutation and returns a fitness measure for the current joint
values and link poses. Which joints and links a goal depends on is queried by the
IK solver during initialization by calling the describe method.

BioIK can be easily extended by implementing new goal classes. Additional
goal classes do not have to be implemented withing the BioIK package, but can be
implemented within the package that calls the BioIK solver.

For goals which only depend on a single link, a LinkGoalBase class is pro-
vided, which implements the describe method. Most link goals are derived from
LinkGoalBase. To implement a new link goal type, only the evaluate method has
to be implemented, if the new goal type is derived from LinkGoalBase.

42

3.9. Implementation

Goal
+Weight: double

+describe(context:GoalContext&): void
+evaluate(context:GoalContext const&): double

LinkGoalBase
+LinkName: std::string

+describe(context:GoalContext&): void

PositionGoal
+Position: Vector3

+evaluate(...): double

OrientationGoal
+Orientation: Quaternion

+evaluate(...): double

PoseGoal
+Position: Vector3
+Orientation: Quaternion

+evaluate(...): double

LookAtGoal
+Axis: Vector3
+Target: Vector3

+evaluate(...): double

MaxDistanceGoal
+Target: Vector3
+Distance: double

+evaluate(...): double

MinDistanceGoal
+Target: Vector3
+Distance: double

+evaluate(...): double

LineGoal
+Position: Vector3
+Direction: Vector3

+evaluate(...): double

TouchGoal
+Position: Vector3
+Normal: Vector3

+evaluate(...): double

GoalContext
+LinkFrames
+VariablePositions

JointVariableGoal
+VariableName: std::string
+VariablePosition: double

+evaluate(...): double
+describe(...): void

JointFunctionGoal
+VariableNames
+VariableFunction

+evaluate(...): double
+describe(...): void

BalanceGoal
+Target: Vector3
+Axis: Vector3

+evaluate(...): double
+describe(...): void

LinkFunctionGoal
+Function: std::function

+evaluate(...): double

SideGoal
+Axis: Vector3
+Direction: Vector3

+evaluate(...): double

DirectionGoal
+Axis: Vector3
+Direction: Vector3

+evaluate(...): double

ConeGoal
+Axis: Vector3
+Direction: Vector3
+Position: Vector3
+PositionWeight: double
+Angle: double

+evaluate(...): double

MinimalDisplacementGoal

+evaluate(...): double

CenterJointsGoal

+evaluate(...): double

AvoidJointLimitsGoal

+evaluate(...): double

Figure 3.4: Goal class hierarchy

43

Chapter 3. BioIK for ROS and MoveIt

3.9.2 Inverse Kinematics Interface

The inverse kinematics plugin interface in MoveIt originally only accepted a list of
goal poses, assuming all goals to be pose goals. The goal poses are stored by-value
in a list, which prevents them from being extended for other goal types. The in-
terface is implemented by BioIK for compatibility, but can only be used to specify
pose or position goals. In addition to the goal poses, the MoveIt inverse kinematics
plugin interface also accepts a KinematicsQueryOptions parameter. This param-
eter is extended by a BioIKKinematicsQueryOptions class to pass BioIK specific
information to the solver. A goals parameter specifies a list of BioIK goals. It can
be used for all existing BioIK goal classes as well as for new user-defined goal
types. The goal pose list accepted by the IK methods can be disabled by setting a
replace option in the BioIKKinematicsQueryOptions. A new fixed joints pa-
rameter can be used to prevent a list of joints from being mutated by BioIK. The
final fitness of the best found BioIK solution is returned in a solution fitness field.

IKBase

+initialize(problem:const Problem&)
+step()

IKOptLib

+initialize(problem:const Problem&)
+step()

IKEvolution

+initialize(problem:const Problem&)
+step()

IKEvolution2

+initialize(problem:const Problem&)
+step()

IKJacobian

+initialize(problem:const Problem&)
+step()

IKGradientDescent

+initialize(problem:const Problem&)
+step()

IKNeural

+initialize(problem:const Problem&)
+step()

IKNeural2

+initialize(problem:const Problem&)
+step()

IKTest

+initialize(problem:const Problem&)
+step()

Figure 3.5: Solver classes

44

3.9. Implementation

3.9.3 Solver Types

During research, several different solvers have been implemented (different variants
of the evolutionary algorithm, gradient based methods for comparison, etc.). An
internal abstraction has been implemented for different BioIK solvers. This allows
faster iteration time, since new solvers do not have to be declared as ROS plugins,
and it prevents the workspace from being needlessly cluttered (e.g. otherwise the
MoveIt setup dialog would be listing a dozen different experimental implemen-
tations). The internal abstraction also provides a simpler interface, allowing easy
experimentation with new IK methods. The implementation can be selected by set-
ting a mode parameter on the ROS parameter server under the robot’s kinematics
namespace.

3.9.4 Multithreading

BioIK supports multithreading. During initialization, solver threads are started
and paused using a thread barrier. When an inverse kinematics query arrives, the
threads are resumed by triggering the barrier. A finished flag is used to signal
completion, upon which all threads deliver their best results and enter the barrier
again. Data structures which are concurrently modified are copied once for each
thread to prevent data races without needing additional synchronization.

3.9.5 Vectorization

Forward Kinematics

Most of the computation time is usually spent on forward kinematics extrapo-
lations. These computations have been manually vectorized for different vector
instruction sets (SSE2, AVX, FMA) using SIMD intrinsics. A non-vectorized ver-
sion is retained compatibility. Function multiversioning is used to automatically
select an appropriate implementation for the current CPU model when BioIK is
loaded.

Alignment

For SIMD load and store operations, the aligned load and store instructions are
used for optimal performance. By default, the GCC runtime library aligns memory
allocations at 128bit boundaries. However, AVX has 256bit wide vector registers.
Data which is accessed by AVX SIMD code is therefore explicitly aligned at 256bit
boundaries.

Mutation

Reproduction and mutation have been optimized using auto vectorization. Manual
vectorization has been avoided to not obfuscate the evolutionary algorithm. The
reproduction and mutation function iterates over gene arrays stored in consecutive

45

Chapter 3. BioIK for ROS and MoveIt

memory and is thus a good candidate for auto vectorization. Code generation has
been verified by disassembling the function using GDB. Auto vectorization and
aligned memory access is requested using the OpenMP #pragma simd directive.

3.9.6 Source Tree

Public headers

/include/bio_ik/frame.h defines a fast coordinate frame class, which consists
of a position vector and a rotation quaternion. It is used throughout BioIK for
coordinate transformations.

/include/bio_ik/goal.h defines the Goal base class, a GoalContext

class for communication between goal classes and solvers, and a
BioIKKinematicsQueryOptions structure for passing BioIK specific infor-
mation through the MoveIt interface.

/include/bio_ik/goal_types.h contains the different goal types. The IK
solvers only include goal.h, but not goal_types.h. This allows the goal types to
be changed without having to re-compile the solvers.

/include/bio_ik/robot_info.h defines a robot information class which
stores joint limit data and is used by some of the goal types.

/include/bio_ik/bio_ik.h includes the other BioIK headers. Other pack-
ages should simply include this header.

Internals

/src/goal_types.cpp defines some of the goal class methods. Most goal methods
are directly defined in the goal_types.h header, but some of the methods use
specific library functions (e.g. for collision detection), so if they would be defined
in the public header, and the public header would be included in another package,
that other package would also have to explicitly link to the same libraries.
This is avoided by defining some methods in goal_types.cpp, so that indirect
dependencies are resolved implicitly through ROS package dependencies and
the operating system’s dynamic library loader. Defining the most complex goal
methods separately also helps against code bloat and reduces compilation time.

/src/forward_kinematics.h contains classes for computing and extrapo-
lating forward kinematics.

/src/ik_base.h contains a base class for the different optimization meth-
ods implemented in this work.

46

3.9. Implementation

/src/ik_parallel.h implements multi-threading.

/src/kinematics_plugin.cpp contains the BioIK implementation of the
MoveIt kinematics::KinematicsBase plugin interface.

/src/problem.h contains an IK problem description class, which manages
goal lists and cached information about each goal, as well as additional infor-
mation about the IK problem such as the initial guess and a list of active variables.

/src/problem.cpp implements methods related to IK problems; mainly ini-
tialization and determining active variables as well as end effector frames.

/src/utils.h defines internal utility classes and functions. This includes
mathematical helper functions, a profiler which was used during optimization, a
factory template for managing the different optimization methods, and an aligned
vector class.

/src/ik_evolution_1.cpp implements the original BioIK algorithm, as well as
minor optional optimizations.

/src/ik_evolution_2.cpp contains the re-designed BioIK algorithm.

/src/ik_gradient.cpp implements a custom multi-goal pseudo-inverse Ja-
cobian solver as well as custom gradient descent methods for comparison.

/src/ik_neural.cpp implements neural network based IK methods.

/src/ik_cppoptlib.cpp implements IK solvers using different optimization
methods provided by the CppNumericalSolvers library for comparison.

/src/ik_test.cpp defines a dummy IK solver, which—instead of solving
IK problems—implements a self-test for the forward kinematics extrapolator.

47

Chapter 3. BioIK for ROS and MoveIt

3.10 Configuration

MoveIt can be configured to use BioIK using the MoveIt Setup Assistant.

Figure 3.6: BioIK selected in the MoveIt Setup Assistant

BioIK can also be selected by editing the config/kinematics.yaml con-
figuration file and manually setting the kinematics_solver property to
bio_ik_kinematics_plugin/BioIKKinematicsPlugin.

Listing 3.1: kinematics.yaml manually edited for using BioIK on the PR2 robot

l e f t a rm :

k in ema t i c s s o l v e r : kd l k i n emat i c s p l ug i n /KDLKinematicsPlugin
k i n ema t i c s s o l v e r : b i o i k k i n ema t i c s p l u g i n /BioIKKinematicsPlugin

k i n ema t i c s s o l v e r s e a r c h r e s o l u t i o n : 0 .005
k in emat i c s s o l v e r t imeou t : 0 .005
k in emat i c s s o l v e r a t t empt s : 1

The kinematics.yaml file is typically loaded by a launch file onto the ROS pa-
rameter server. So instead of editing the configuration file, it would also be possible
to set the parameter on the parameter directly (e.g. using rosparam set ...).

Finally, the BioIK implementation of the kinematics::KinematicsBase

MoveIt interface can also be instantiated programmatically via the ROS plugin
interface or using the kinematics_plugin_loader::KinematicsPluginLoader

class provided by MoveIt.

48

Chapter 4

Experiments

4.1 Forward Kinematics - Inverse Kinematics

Forward kinematics is used to generate goal poses that are guaranteed to be reach-
able. All joints are set to random joint values, forward kinematics is computed, and
the end effector poses are used as the goal poses. The inverse kinematics solver is
then called for the generated goal poses and the success rate as well as the average
solve time is recorded.

PR2 UR5 Valkyrie
arm

Valkyrie
foot

iiwa

BioIK 2 100.00% 99.93% 99.93% 100.00% 99.93%

BioIK 1 75.69% 51.20% 29.13% 70.14% 66.84%

TRAC IK 99.91% 99.29% 99.64% 99.98% 99.88%

KDL 53.10% 41.70% 41.13% 91.68% 51.62%

Table 4.1: FK/IK benchmark: success rate

PR2 UR5 Valkyrie
arm

Valkyrie
foot

iiwa

BioIK 2 0.45ms 0.50ms 0.51ms 0.28ms 0.47ms

TRAC IK 0.77ms 0.52ms 0.73ms 0.18ms 0.41ms

BioIK 1 3.93ms 4.12ms 4.67ms 3.14ms 3.49ms

KDL 4.68ms 4.59ms 3.50ms 0.91ms 3.17ms

Table 4.2: FK/IK benchmark: average solve time

49

Chapter 4. Experiments

4.2 Grid Test

Goal poses are generated on a regular grid and the inverse kinematics solver is
called for each generated goal pose. The timeout is set to 5ms, and the maximum
error to 10−5. The TRAC IK and the re-designed BioIK algorithm both achieved
100% success rate on the PR2 and on the UR5 robot.

Figure 4.1: PR2 grid test - KDL (top left), BioIK 1 (top right), TRAC IK (bottom
left), BioIK 2 (bottom right)

50

4.2. Grid Test

Figure 4.2: UR5 grid test - KDL (top left), BioIK 1 (top right), TRAC IK (bottom
left), BioIK 2 (bottom right)

51

Chapter 4. Experiments

4.3 Minimal Displacement

The PR2 robot can move it’s upper body up and down using a vertical prismatic
joint. However, the prismatic joint is relatively slow compared to e.g. the revolute
joints in the arms. For many applications, good IK solutions should therefore try to
avoid moving the vertical prismatic joint and instead prefer arm movements. This
can be achieved using BioIK via a MinimalDisplacementGoal, which respects the
maximum joint velocities. If possible, only the arms are movement. The relatively
slow vertical prismatic joint is only moved if necessary. The default MoveIt IK
solvers would either generate large vertical prismatic joint movements for most
IK queries, even if not necessary, or the vertical prismatic joint would have to be
manually disabled, in which case the workspace of the robot would be restricted
and many goals which would be reachable otherwise could not be reached anymore.

In many cases, the KDL solver mainly moves the vertical prismatic joint.
With a MinimalDisplacementGoal, BioIK minimizes movement in the relatively

slow vertical prismatic joint and mainly moves the arms, and only moves the ver-
tical prismatic joint if necessary.

52

4.3. Minimal Displacement

Figure 4.3: PR2 vertical prismatic joint movement - KDL

53

Chapter 4. Experiments

Figure 4.4: PR2 vertical prismatic joint movement - BioIK with MinimalDisplace-
mentGoal

54

4.4. Valve Turning

4.4 Valve Turning

A valve turning motion is generated for the PR2 robot through multi-goal inverse
kinematics. One position goal is attached to each finger tip. The goals are moved
on a circular path in front of the robot. The arms are controlled implicitly through
multi-goal. IK goals are only defined for the fingers, but not for the arms or hands.

While turning in one direction, the finger tip goals at each hand are placed at
a small distance from each other to grab the object. While rotating back in the
other direction, the object is released by placing the finger tip goals at a larger
distance from each other.

BioIK generates suitable arm and body poses to satisfy the position goals at
the finger tips. A MinimalDisplacementGoal and a AvoidJointLimitsGoal are used
to generate smooth motions.

Figure 4.5: PR2 valve turning test - finger motions

55

Chapter 4. Experiments

Figure 4.6: PR2 valve turning test - arm motions

56

4.5. Balanced IK

4.5 Balanced IK

The BioIK solver is used to compute gravitationally balanced IK solutions for the
NASA Valkyrie humanoid robot. The solutions are tested using the Gazebo sim-
ulator. Position goals are placed at the robot’s wrists. A BalanceGoal is used to
keep the robot’s center of gravity above the feet. The BalanceGoal evaluates all
links and their centers of gravity and affects all joints. Additional goals are added
to pelvis, torso and head. Otherwise, solutions might be generated, which would
require too large joint efforts. In principle, it should be possible to use the BioIK
solver to automatically minimize joint efforts, but this has not yet been imple-
mented. The additional goals also help with correctly initializing the simulation
(Gazebo spawns the robot with the pelvis joint being upright). Additional foot
reflexes have been added to the feet using a simulated IMU (inertial measurement
unit) and a PD controller to counter dynamic forces which result from the inertia
of the robot links during acceleration and deceleration, as well as outside forces,
simulation instabilities, and joint controller inaccuracies. The position goals at the
wrists can be moved interactively through interactive markers in RViz and the
robot arms follow the position goals. The BalanceGoal automatically generates
body movements which counter the arm movements to keep the robot’s center of
gravity above the feet. The simulated robot in the Gazebo simulation is able to
keep standing without falling over. If the BalanceGoal is removed, the robot loses
balance and falls over when the position goals are moved.

Figure 4.7: Balanced IK test - Gazebo simulation

57

Chapter 4. Experiments

Figure 4.8: Balanced IK test - RViz controls

58

4.6. Shadow Hand

4.6 Shadow Hand

A robot setup with a C5 Shadow Dexterous Hand (humanoid robot hand) mounted
to a KUKA LWR industrial robot arm is used at the TAMS research group.

Figure 4.9: Shadow Hand setup

The BioIK solver is used to plan hand and arm motions for turning a wheel
on an audio mixer. Each of the first three fingers is controlled via a TouchGoal, a
LineGoal, and a LookAtGoal.

The TouchGoal is used to place the origin of the finger tip frame at the correct
distance from the object for the finger to touch the object. The position of the finger
tip could also be controlled via a simple position goal. In this case, an offset away
from the surface would have to be added manually to account for the thickness of
the finger. Since the finger tip is not a perfect sphere, the ideal finger tip offset
depends on the position and orientation of the finger, and a constant offset would
lead to inaccurate results. If a TouchGoal is used, a manually configured fixed offset
is not needed, and the position and orientation dependent ideal offset is computed
automatically and accurately from the finger’s collision model.

The LineGoal points out of the object and is used to control the contact point.
BioIK keeps the position of the finger tip link on the line defined by the LineGoal.
The contact point can be rotated around the object by rotating the LineGoal.

59

Chapter 4. Experiments

Figure 4.10: Shadow Hand experiment - Gazebo simulation

Figure 4.11: Shadow Hand with one position goal at each finger tip

60

4.6. Shadow Hand

The LookAt goal is used to make sure that the object is touched with the
correct side of the finger.

The motion is generated by rotating the finger tip goals around the object.
Before rotating the object, the finger tips start at a small outward offset and
slightly above the object. The goals are then lowered and closed to grab the object.
A joint trajectory is generated by computing a sequence of 200 inverse kinematics
solutions and combining them into a trajectory.

A MinimalDisplacementGoal is used to prefer small joint movements from one
step to another and to generate a smooth trajectory.

A CenterJointsGoal keeps solutions away from joint limits. Reaching the joint
limits could force solutions to be generated that would result in velocity disconti-
nuities. These could cause the joint controllers and joint motors to be unable to
accurately follow the trajectory and the fingers would slip off. A trajectory with
velocity discontinuities could be transformed into a trajectory which would be exe-
cuted accurately by adjusting the timing. But then, the wheel could not be turned
at a constant speed anymore.

The MinimalDisplacementGoal and the CenterJointsGoal are specified as sec-
ondary objectives. If defined as primary objectives, the results would be skewed
towards the center of each joint’s operating range and towards previous solutions,
and the finger tips would not accurately follow the finger tip goals.

Since a human arm is attached to the side of the body, it has an intrinsically
preferred direction for accessing positions withing the workspace. In the robot setup
used for this experiment, the arm is mounted vertically on a table. JointVariable-
Goals assigned to the first two robot links and defined as secondary objectives are
used to prefer one direction and to generate movements that roughly match the
behavior of the right arm of a human.

Before executing the trajectory, the robot is moved to the start pose by calling
a standard MoveIt motion planner.

The generated trajectories are tested in a Gazebo simulation. The robot is able
to smoothly turn the wheel without slipping off.

61

Chapter 4. Experiments

Figure 4.12: Shadow Hand experiment - Gazebo simulation

62

Chapter 5

Conclusion

In this work, an evolutionary multi-goal inverse kinematics solver has been imple-
mented for MoveIt and ROS. Performance has been optimized through algorithmic
improvements and efficient implementation. In many cases, the newly developed
method outperforms existing gradient-based methods, including single-goal inverse
kinematics solvers which were already available in MoveIt, as well as other multi-
goal solvers which have been implemented in this work for comparison. The imple-
mentation has been tested through benchmarks and experiments. Several different
IK goal types are provided, many of which were not previously available in MoveIt.
The functionality can be extended by adding new goal classes and implementing
cost functions.

63

Bibliography

[1] Morgan Quigley, Ken Conley, Brian P. Gerkey, Josh Faust, Tully Foote,
Jeremy Leibs, Rob Wheeler, and Andrew Y. Ng. Ros: an open-source robot
operating system. In ICRA Workshop on Open Source Software, 2009.

[2] Robot Operating System. http://www.ros.org/. Accessed: 2017-07-21.

[3] ROS packages. http://www.ros.org/browse/list.php. Accessed: 2017-07-
21.

[4] MoveIt. http://moveit.ros.org/. Accessed: 2017-07-21.

[5] Sachin Chitta, Ioan Alexandru Sucan, and Steve Cousins. Moveit! [ros topics].
IEEE Robot. Automat. Mag., 19:18–19, 2012.

[6] Nathan Koenig and Andrew Howard. Design and use paradigms for gazebo,
an open-source multi-robot simulator. In IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2149–2154, Sendai, Japan, Sep 2004.

[7] Gazebo. http://gazebosim.org/. Accessed: 2017-07-21.

[8] Orocos Kinematics and Dynamics Library. http://www.orocos.org/kdl.
Accessed: 2017-07-21.

[9] Patrick Beeson and Barrett Ames. TRAC-IK: An open-source library for
improved solving of generic inverse kinematics. In Proceedings of the IEEE
RAS Humanoids Conference, Seoul, Korea, November 2015.

[10] TRAC-IK. https://bitbucket.org/traclabs/trac_ik.git. Accessed:
2017-07-21.

[11] Open Motion Planning Library. http://ompl.kavrakilab.org/. Accessed:
2017-07-21.

[12] Intel Intrinsics Guide. https://software.intel.com/sites/landingpage/
IntrinsicsGuide/. Accessed: 2017-07-21.

[13] GCC Function Multiversioning. https://gcc.gnu.org/onlinedocs/gcc/

Function-Multiversioning.html. Accessed: 2017-07-21.

64

http://www.ros.org/
http://www.ros.org/browse/list.php
http://moveit.ros.org/
http://gazebosim.org/
http://www.orocos.org/kdl
https://bitbucket.org/traclabs/trac_ik.git
http://ompl.kavrakilab.org/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html
https://gcc.gnu.org/onlinedocs/gcc/Function-Multiversioning.html

Bibliography

[14] PR2 Robot. http://wiki.ros.org/pr2_description. Accessed: 2017-07-
21.

[15] UR5 Robot. http://wiki.ros.org/ur5_description. Accessed: 2017-07-
21.

[16] Valkyrie Robot Wiki. https://github.com/NASA-JSC-Robotics/valkyrie.
Accessed: 2017-07-21.

[17] Raúl Rojas. Neural Networks: A Systematic Introduction. Springer-Verlag
New York, Inc., New York, NY, USA, 1996.

[18] Flexible Collision Library. https://github.com/

flexible-collision-library/fcl. Accessed: 2017-07-21.

[19] S. Starke. A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kine-
matics. 2016.

[20] Sebastian Starke, Norman Hendrich, Sven Magg, and Jianwei Zhang. An
efficient hybridization of genetic algorithms and particle swarm optimization
for inverse kinematics. In 2016 IEEE International Conference on Robotics
and Biomimetics, ROBIO 2016, Qingdao, China, December 3-7, 2016 [21],
pages 1782–1789.

[21] 2016 IEEE International Conference on Robotics and Biomimetics, ROBIO
2016, Qingdao, China, December 3-7, 2016. IEEE, 2016.

[22] Sebastian Starke, Norman Hendrich, and Jianwei Zhang. A memetic evolu-
tionary algorithm for real-time articulated kinematic motion. 2017.

[23] C. Natale. Interaction Control of Robot Manipulators: Six degrees-of-freedom
tasks. Springer Tracts in Advanced Robotics. Springer Berlin Heidelberg,
2003.

[24] B Durmuş, H Temurtaş, and A Gün. An inverse kinematics solution using par-
ticle swarm optimization. In International Advanced Technologies Symposium
(IATS’11), pages 16–18, 2011.

[25] Samuel R. Buss. Introduction to inverse kinematics with jacobian transpose,
pseudoinverse and damped least squares methods. 2004.

[26] Thomas Collins and Wei-Min Shen. Paso: An integrated, scalable pso-based
optimization framework for hyper-redundant manipulator path planning and
inverse kinematics. 2014.

[27] Omar Alejandro Aguilar and Joel Carlos Huegel. Inverse kinematics solution
for robotic manipulators using a cuda-based parallel genetic algorithm. In
Ildar Z. Batyrshin and Grigori Sidorov, editors, MICAI (1), volume 7094 of
Lecture Notes in Computer Science, pages 490–503. Springer, 2011.

65

http://wiki.ros.org/pr2_description
http://wiki.ros.org/ur5_description
https://github.com/NASA-JSC-Robotics/valkyrie
https://github.com/flexible-collision-library/fcl
https://github.com/flexible-collision-library/fcl

Bibliography

[28] James Kennedy and Russell C. Eberhart. Particle swarm optimization. In
Proceedings of the IEEE International Conference on Neural Networks, pages
1942–1948, 1995.

[29] S. Nissen. Implementation of a fast artificial neural network library (fann).
Technical report, Department of Computer Science University of Copenhagen
(DIKU), 2003. http://fann.sf.net.

[30] B. Siciliano and O. Khatib. Springer Handbook of Robotics. Springer Hand-
books. Springer International Publishing, 2016.

[31] F. Dunn and I. Parberry. 3D Math Primer for Graphics and Game Develop-
ment. Wordware game math library. Wordware Pub., 2002.

[32] Tully Foote. tf: The transform library. In Technologies for Practical Robot
Applications (TePRA), 2013 IEEE International Conference on, Open-Source
Software workshop, pages 1–6, April 2013.

[33] Gaël Guennebaud, Benôıt Jacob, et al. Eigen v3. http://eigen.tuxfamily.
org, 2010.

[34] Shadow Robot. https://github.com/shadow-robot. Accessed: 2017-07-21.

[35] KUKA iiwa. https://www.kuka.com/en-us/products/robotics-systems/
industrial-robots/lbr-iiwa. Accessed: 2017-07-21.

[36] Unity3D. https://unity3d.com. Accessed: 2017-07-21.

[37] C++ Reference. http://en.cppreference.com/w/. Accessed: 2017-07-21.

[38] CppNumericalSolvers. https://github.com/PatWie/

CppNumericalSolvers. Accessed: 2017-07-21.

[39] Agner Fog. Instruction Tables. http://www.agner.org/optimize/

instruction_tables.pdf. Accessed: 2017-07-21.

66

http://eigen.tuxfamily.org
http://eigen.tuxfamily.org
https://github.com/shadow-robot
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://www.kuka.com/en-us/products/robotics-systems/industrial-robots/lbr-iiwa
https://unity3d.com
http://en.cppreference.com/w/
https://github.com/PatWie/CppNumericalSolvers
https://github.com/PatWie/CppNumericalSolvers
http://www.agner.org/optimize/instruction_tables.pdf
http://www.agner.org/optimize/instruction_tables.pdf

Erklärung der Urheberschaft

Hiermit versichere ich an Eides statt, dass ich die vorliegende Masterthesis
im Studiengang Informatik selbstständig verfasst und keine anderen als die
angegebenen Hilfsmittel - insbesondere keine im Quellenverzeichnis nicht benan-
nten Internet-Quellen – benutzt habe. Alle Stellen, die wörtlich oder sinngemäß
aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht. Ich
versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsver-
fahren eingereicht habe und die eingereichte schriftliche Fassung der auf dem elek-
tronischen Speichermedium entspricht.

Ort, Datum Unterschrift

67

Erklärung zur Veröffentlichung

Ich stimme der Einstellung der Masterthesis in die Bibliothek des Fachbereichs
Informatik zu.

Ort, Datum Unterschrift

69

	1 Introduction
	2 State of the Art
	2.1 Robot Operating System (ROS)
	2.1.1 Packages
	2.1.2 Nodes
	2.1.3 Topics and Messages
	2.1.4 Services
	2.1.5 Libraries
	2.1.6 Package Repository
	2.1.7 MoveIt
	2.1.8 Gazebo
	2.1.9 RViz
	2.1.10 URDF
	2.1.11 SRDF
	2.1.12 SDF

	2.2 Kinematic Chains and Kinematic Trees
	2.3 Forward Kinematics
	2.4 Inverse Kinematics
	2.4.1 Pseudo-Inverse Jacobian Method
	2.4.2 Gradient Descent
	2.4.3 Issues
	2.4.4 Inverse Kinematics Solvers for MoveIt

	2.5 Motion Planning in MoveIt
	2.6 Parallelism
	2.6.1 Multiprocessing
	2.6.2 Vectorization
	2.6.3 Pipelining

	2.7 Biologically Inspired Optimization Methods
	2.7.1 Evolutionary Algorithms
	2.7.2 Memetic Algorithms
	2.7.3 Particle Swarm Optimization

	2.8 Rotation Formalisms
	2.8.1 Euler Angles
	2.8.2 Rotation Matrices
	2.8.3 Axis-Angle
	2.8.4 Rotation Quaternions

	2.9 Rotation Vectors
	2.10 BioIK
	2.11 Robot Models

	3 BioIK for ROS and MoveIt
	3.1 Requirements
	3.2 Performance Measurement
	3.3 C++ Port
	3.4 Optimization
	3.4.1 Quadratic fitness function
	3.4.2 Islands / Parallelization

	3.5 Gradient Based Methods
	3.5.1 Pseudo-Inverse Jacobian Method
	3.5.2 Gradient Descent
	3.5.3 CppNumericalSolvers

	3.6 Neural Networks
	3.7 Modified Algorithm
	3.7.1 Genome
	3.7.2 Mutation
	3.7.3 Selection
	3.7.4 Islands
	3.7.5 Species and Wipeouts
	3.7.6 Initialization
	3.7.7 Termination
	3.7.8 Particle Swarm Optimization
	3.7.9 Memetics
	3.7.10 Extrapolated Forward Kinematics

	3.8 Goal Types
	3.9 Implementation
	3.9.1 Goal Types
	3.9.2 Inverse Kinematics Interface
	3.9.3 Solver Types
	3.9.4 Multithreading
	3.9.5 Vectorization
	3.9.6 Source Tree

	3.10 Configuration

	4 Experiments
	4.1 Forward Kinematics - Inverse Kinematics
	4.2 Grid Test
	4.3 Minimal Displacement
	4.4 Valve Turning
	4.5 Balanced IK
	4.6 Shadow Hand

	5 Conclusion
	Bibliography

