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Abstract

Stable walking is one of the most important tasks for biped robots. Within this the-
sis the focus is on robot models and especially on the inverted pendulum model in
combination with the capture step framework. It was presented by Marcel Missura
and Sven Behnke on the RoboCup world championship 2014 [MB14]. This frame-
work will be the basic approach for the development of a new walking algorithm.
The capture step framework is designed to work with more computational power,
even on low cost hardware. It’s purpose is the additional stabilization of an walking
algorithm. Due to missing knowledge about the existing walking algorithm, a new
one will be developed. Finally the results show that this is a very complex tasks.
The robots are able to walk, but the existing walking algorithm is more stable and
even faster.

Kurzfassung

Ein stabiler Gang zählt zu den schwersten Aufgaben zweibeiniger Roboter. In dieser
Arbeit wird das Hauptaugenmerk auf das Modell des inversen Pendels und das
CaptureStep-Framwork gelegt. Dieses Framework wurde von Marcell Missura und
Sven Behnke entwickelt und auf dem Symposium der RoboCup Weltmeisterschaft
in Brasilien 2014 vorgestellt [MB14]. Das Framework ist auf geringe Rechenleistung
und auf Fehlertoleranz bezüglich der eingehenden Messwerte ausgelegt. Dazu wurde
sich am Kontext des RoboCup orientiert. Das Anwendungsgebiet dieses Frameworks
ist die weitere Stabilisierung eines einfachen Laufalgorithmus, der als Basis dient. Da
uns das Wissen um die genaue Struktur des bisherigen Laufalgorithmus fehlt, wurde
mit der Entwicklung eines neuen begonnen. Letztendlich zeigen die Resultate, dass
diese Aufgabe sich als schwerer herausstellte als anfangs angenommen. Dennoch
können die Roboter laufen.
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Introduction

1
1.1 Motivation

Being a member of the student RoboCup team Hamburg Bit-Bots I learned of the
problems of a stable walking algorithm. This aspect becomes more important ac-
cording to the goal 2050. The goal for the 2050’s is to win against the current
soccer world champion in a fair match. Until then, there are still many problems
to solve, but most of all a stable reliable walking is required. In our first years,
we used a simple open loop based walking algorithm, providing sinusoidal and co-
sinusoidal trajectories. These were used in a simple inverse kinematic model. The
resulting walking gait was quite unstable and had no support for additional sensor
data. Last year, after the World Championship in Eindhoven, we took the walking
algorithm from the world champion Team DARwin. [Tea] Their framework is based
on the scripting language lua, with additional bindings to C++. We were able to
port their Lua code to C++ and integrate it into our software framework. Due
to some modifications on our robots, we still had some stability issues with this
new walking algorithm. First we tried to solve these issues by manipulating the
final robots pose, calculated by this algorithm, later on, during the GermanOpen
in Magdeburg 2014, we adjusted some meaningful configuration values. After that,
the stability improved significantly. Currently, this algorithm is able to walk reliably
stable, but the resulting walking direction differs from robot to robot. In general
the given walking parameters do not fit the resulting walking direction. That’s why
we want to implement another more reliable and stable walking algorithm. This
should be self stabilizing and ZMP based. At the symposium of World Champi-
onship in João Pessoa in Brazil 2014, Sven Behnke and Marcel Missura presented
an algorithm implemented and tested on their robot platform NimbRo[Nim]. It’s an
algorithm about balanced walking with captured steps. It is capable of generating
an omnidirectional walking gait and recovering from pushes. At the presentation
of this algorithm, Marcel Missura pronounced the low computationally cost of the
algorithm and the possibility to react very fast on changing stability. In contrast
to the current research according to ZMP based walking, they’ve chosen the very
simple model of an linear inverted pendulum, neglected the double support phase
and even don’t compute the exact ZMP to gather the necessary stability. Their
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1 Introduction

framework is also able to handle relatively high sensor noise. The mentioned sim-
plicity of their algorithm makes it an ideal algorithm for me to implement on our
robots and include it into our framework. Current research in this area is coupled
with much more computationally cost, more complex models and other techniques
e.g. machine leaning or optimized parameters computed by neuronal networks. At
least it seems like most of the algorithms were developed and tested on simulators
only, so there are almost no results gathered on real robots.

1.2 Related Walking Approaches

For quite a long time the matter of walking is an interesting research area. In the
field of the current walking approaches it’s clear that the model complexity and the
computational cost are increasing. In the case of simulated robots these results lead
to meaningful walking approaches, but most of them are of high computationally
cost and often untested on real robot devices. On the other hand, a test on a
real robot comes with much more problems than a simulation. The robots used in
the RoboCup field are mostly low cost robots based on low cost hardware. So the
computational power is limited. But more important are the hardware based limits
like accuracy of the motors or force, friction and other communication delays between
the controller and the motor. All that can be simulated, but even ignoring these
additional constrains the model complexity is already high so that these limitations
often will be left out from simulation.

1.2.1 First Walking Approaches

In this case the first walking approaches are the easiest too. The robot repeats a
simple generated walking pattern based on some velocity parameters. Such a pattern
can be based on higher level model assumptions which then are implicitly fulfilled
without causing additional computational cost. That was important for the first
walking tries due to the those days state of the art computer technology.

1.2.2 Including more Sensor Feedback and Higher Models

The next evolutionary step is including the robots sensor data to gain more stability
while walking. A dynamic process like walking on a real robot always has to deal
with noise and other disturbances, so it’s necessary to include sensor feedback into
the applied model. Then the robot has a chance to react on disturbances for self
stabilization. The first sensors to be included are the IMU sensors, the accelerom-
eter and the gyroscope providing the applied forces on the robot like acceleration,
rotation and gravity but not necessarily separated. In the context of these ideas
there are increasing model complexities like balancing the acceleration itself or step
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1.2 Related Walking Approaches

related acceleration by moving the robots trunk according to the feet movement.
[BMA04]

1.2.3 High Level Walking Models

Most recent walking approaches use ZMP based stability constrained models plan-
ning foot trajectories some steps in advance according to a pre-generated, considered
as optimal, ZMP trajectory. Such an ZMP trajectory often implies high accuracy
for the calculated motion trajectory. The referenced papers prove their approaches
using simulators and no real robots. These robot models can consider more robot
details than the previously mentioned. The model can be a relatively simple 3D in-
verted pendulum model [Shu01], or a 3 mass inverted pendulum model [Jag04], for
the basic behaviour. Furthermore the ZMP can be calculated using the differences
of all the point masses and the resulting vectors instead of approximating it or only
considering the centre of mass movement.

1.2.4 Special Situation RoboCup

The walking approaches gained in the field of the RoboCup are a little bit con-
trasting these just presented approaches. In this area the need of multiple robots
and the frequent and extensive use of the robot hardware enforce a low robot price.
Otherwise one could not participate. This means many teams cannot afford the
use of high precision servo control. The team NimbRo from the University of Bonn
published their walking algorithm that is designed for low cost robots and can han-
dle high sensor noise[MB13c]. This walking algorithm doesn’t use high level ZMP
calculations and doesn’t even use direct centre of mass control but applies a simple
pattern which were generated once. At generation, these pattern can have been
modelled to fulfil the ZMP criterion, but running on a robot and dealing with low
servo accuracy still implies instability issues while walking. The standard platform
league is the most advanced RoboCup league according to the walking approaches
[Fen12].

1.2.5 The Human Reference

The robotic walking algorithms are all more or less human inspired. As for now,
they still don’t consider running but represent a simple walking with at least one
foot on the ground. Looking forward to the goal of the 2050’s winning against the
soccer world champion, the robots will need to learn to run. Running has some
additional challenges for the walking algorithms. The step width needs to increase
significantly and there will be need of "zero support phases". On the simulation
site, one could start to work in this field. But due to limited servo power it will
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1 Introduction

take some more years, until the robotic will come close to this goal. On the soccer
playing site, the technical committee of the RoboCup still wins against the mid size
league robots which drive on wheels and play the "best" soccer and show one of the
best team behaviours as it was demonstrated on the RoboCup World Championship
in João Pessoa in Brazil.
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Basics

2
2.1 Walking Related Robot Models

It’s necessary to have a model of the robot before developing an walking algorithm.
Due to complexity issues it’s easier to use one of the following simple models as
robot representation than the whole multi joint robot-structure. This would be a
joint based model which would be hard to define properly in this algorithmic context.
Of course there should be any robot model to calculate for e.g. the centre of mass
but not necessarily as the algorithmic part of the walker.

2.1.1 Cart-Table Model

This model can be seen as a basis to all the following models. A cart or point mass
is placed on an infinite massless balanced table with exactly one support point.

Figure 2.1: An inverted pen-
dulum on a cart [Pen]

When the cart’s centre of mass is not placed over
the support point the table would topple. So the
cart needs to move to balance the table again.

Figure 2.1 shows an inverted pendulum installed on
a cart. This is more or less the combination of
this model and the following, the inverted pendulum
model.

2.1.2 Linear Inverted Pendulum

The linear inverted pendulum model (LIPM) is the
easiest of the here presented models. It’s an easy ex-
tension of the cart-table model based on the differ-
ential equation X ′′ = c2X. In this model, the table
height and mass of the cart are part of the constant in the differential equation.
The differential equation itself is based on the physical constrained that the table
remains stable. This leads to an exponential term solving this equation. For this
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model the dependencies of a point’s position, speed and the time to reach a specified
position or speed given a state can be calculated easily using linear equations.

x(∆t) = x0 cosh(C∆t) +
ẋ0

C
sinh(C∆t) (2.1)

=
x0

2

(
eC∆t + e−C∆t

)
+
ẋ0

2C

(
eC∆t − e−C∆t

)
ẋ(∆t) = Cx0 sinh(C∆t) + ẋ0 cosh(C∆t) (2.2)

=
Cx0

2

(
eC∆t − e−C∆t

)
+
ẋ0

2

(
eC∆t + e−C∆t

)
In some walking algorithms this model is used to decouple the sagittal and the lateral
walking direction. In those walking algorithms the basic assumption is that the two
walking directions do not interfere so that decoupling does not influence the model
accuracy. Then the two axis of movement are considered separately with their own
pendulum as reference.

2.1.3 3D Linear Inverted Pendulum

The 3D linear inverted pendulum model can be derived from the basic two dimen-
sional LIPM extending the known equations with a third dimension. The basic
constrains remain the same as for the LIPM with the point mass that needs to be
supported by the pendulum. This model makes no assumptions about decoupling
the movement into the x and y axis. This separation can be derived from the models
equations. Finally, it can be solved by linear equations that were derived from a
complex non linear term. [Shu01]

2.1.4 3 Mass Linear Inverted Pendulum Model

The 3 mass linear inverted pendulum model (3MLIPM) is another extension to the
models mentioned above. It considers the robot as a structure of 3 linked point
masses instead of a single point mass. The 3 points represent the centre of gravity
of the two legs and the trunk/torso. In contrast to the other pendulum models this
model shows a more complex behaviour for the calculation of the future states. This
model can be translated to a single mass case by assuming the leg masses as zero.
In a modelled example [Jag04] the two point masses for the legs were classified as
support/stance and swing leg. The support leg is considered as relatively static link
from the ground to the hip meanwhile the swing leg performs further movements to
achieve the next support exchange location.
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2.2 Kinematics

2.2 Kinematics

The implemented algorithm is based on the control loop proposed by Marcel Missura
and Sven Behnke [MB14]. This algorithm provides goal positions for the centre of
mass and the swing leg. To calculate the robots joint angles a kinematic framework
is used which is capable of providing forward and inverse kinematics. Now I want
to introduce the main principles of the forward and inverse kinematics:

2.2.1 Forward Kinematics

The forward kinematic is a transformation of a robot configuration in form of mo-
tor positions into 3D space. This transformation requires an accurate robot model.
This model is a link-wise description from effector to effector. A link between two
effectors can be formulated as transformation matrix. Then the calculation of for-
ward kinematics is a multiplication of linear transformation matrices of the following
types. They can be combined using matrix multiplication:

• Translation matrix:


1 0 0 x
0 1 0 y
0 0 1 z
0 0 0 1



• Roll rotation matrix:


1 0 0 0
0 cos(φ) sin(φ) 0
0 − sin(φ) cos(φ) 0
0 0 0 1



• Pitch rotation matrix:


cos(φ) 0 − sin(φ) 0

0 1 0 0
sin(φ) 0 cos(φ) 0

0 0 0 1



• Yaw rotation matrix:


cos(φ) sin(φ) 0 0
− sin(φ) cos(φ) 0 0

0 0 1 0
0 0 0 1


These matrices represent linear transformations. Transformation matrices are closed
under multiplication.

Before we can calculate any position we need to describe the robot model:

Basically the robot model is a description of effectors and their connections which
represent the robot’s parts e.g. the head, the arms and the legs. These groups
can be considered as kinematic chains. Before defining these chains we choose an
arbitrary point best positioned between the starting points of the listed chains as
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root point of all the chains. Then we have to order the members of the chain so that
there are no movable components between chain neighbours.

Figure 2.2: An exam-
ple for an 4 joint kine-
matic chain.

Then we start the effector wise model description:
At first we define the root as start with no special transfor-
mation matrix, the identity matrix, with an arbitrary defined
coordinate system, best equivalent to the global coordinate
system. After that we continue with the first member of the
chain to build up the basic transformation matrix: This ma-
trix consists of a translation part from the so called parent
effector, in this case the root, and a rotation part to align
the local coordinate systems. Both parts are expressed in the
parent’s coordinate system using the transformation matrices
mentioned above. Due to the fact that matrix multiplication
is associative but not commutative the order of the rotations
is important and has to be in a fixed order e.g. roll, pitch
and yaw rotation. For each effector in the kinematic chain except the root, we align
the coordinate system so, that ideally the x-axis points to the next effector. If the
effector is a joint the joints real rotation axis represents the local coordinate systems
y-axis. Finally the kinematic chains should have defined end points. For these end-
points we have free choice of the coordinate system, but I would align it with the
global coordinate system for the robots "zero" pose.

Figure 2.3: The basic chain
layout for the DarwinOP
with the 12 Leg Components
and the Root[PBS14a]

Now we have our kinematic model and can start with
the calculation given the robots joint angles. For the
first example we start the calculation at the root joint.
Then we proceed with the transformation matrix of the
first chain member of our kinematic chain and apply
an additional pitch rotation with the joints angle on
the right. Then we proceed with the next joint and
it’s transformation and rotation matrix until we reach
the joint of interest. When our start point is not just
the root, respectively start and end belong to different
chains we have to use inverse transformation matrices
and go partly in inverse direction through the kinematic
tree. In this case, the joint angles need to switch their
sing as long as we use inverse transformation matrices.
Alternatively we can calculate both the start and end
effector’s position using the forward chains and invert
the start effector’s final position matrix. Then we apply
the end effector’s position matrix on the right and have
the real relative position.

8



2.2 Kinematics

2.2.2 Inverse Kinematics

The inverse kinematic is based on the forward kinematics. Now we have the problem
in the opposite definition, given is a target’s goal position and we have the robot
configuration as input. The result can be either an angle differences or real joint
angles which kind is ever needed by the hardware communication model.

The given task can be described as optimisation problem using ~v as target position
and φ(q) as forward kinematic function:

~e = ~v − φ(q) (2.3)
L(∆q) = ||∆q||2 + ||φ(q + ∆q)||2C (2.4)

Given a local approximation we can formulate:

φ(q + ∆q) = φ(q) + J ∆q (2.5)

With the jacobian J representing the local change on the end effector according
to an angle manipulation at the considered joint. Reformulating and solving this
equation we finally can derive the following equation:

∆q = J#e

J# = JT (JJT + C−1)−1 (2.6)
C = lim

ε→∞
ε1

With the pseudo inverse J#. In the ideal case J# is the inverse of JJT . This matrix
is a square matrix, but may be not of full rank. To ensure invertibility we add the
error term C−1. Now we need to derive our jacobian matrix:

J(q) =
δφ(q)

δq
=


δφ1(q)
δq1

δφ1(q)
δq2

. . . δφ1(q)
δqn

δφ2(q)
δq1

δφ2(q)
δq2

. . . δφ2(q)
δqn

...
...

δφm(q)
δq1

δφm(q)
δq2

. . . δφm(q)
δqn

 (2.7)

In the described case using the model presented above the jacobian matrix is filled
with local derivatives of the joints angle difference effect. This positional manipu-
lation can be computed locally using the vector cross product between the y-axis
and the difference vector to the manipulated target effector in the considered joint’s
coordinate system. To insert this into the jacobian the vector needs to be trans-
formed into the start joints coordinate system. This transformation matrix is the
inverse matrix of the rotational part of the joint’s position matrix according to the
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actual traversed kinematic tree. This calculation is that easy due to the kinematic
modelling.

For a given task the jacobian is most often not a square matrix, so it’s not invertible.
This is why the pseudo inverse matrix J# is used in the formulas above. This matrix
can represent a under-determined system of equations, so we add an error term C−1

to ensure an almost valid inverse matrix (see equation (2.6)).

The inverse kinematic is not restricted to positional manipulation. It can be applied
on every other kind of effector manipulation. In these extra cases the jacobian ma-
trix needs to be created accordingly. E.g. to manipulate an effector’s orientation
given another effector’s orientation we can use other columns of the used transfor-
mation and position matrices mentioned in the example above, where the positional
difference is the fourth column of the position matrix.[PBS14b]

2.3 Extending the Inverse Kinematics

Basic tasks for the inverse kinematics are position manipulation and with small ad-
justments even orientation based manipulations. Manipulation of the centre of mass
can be calculated in a similar way, there is only need to express the joint’s effect of
the positional change on the "centre of mass" movement. The next interesting step
is combining more than one target into a batch task. The easiest way to do this is
extending the jacobian. Thereby one should consider that all effect vectors lay in a
comparable range. Otherwise a given task type is preferred by maths. In our case,
the angle adjustment tasks are ranged from -1 to 1, so the position manipulation
tasks should fit to this too. Therefore the robot’s sizes and offsets should be mea-
sured in meter. For the Darwin this may be not the optimal measurement because
of it’s assumed maximum height of 50 cm.

This method is sufficient to solve tasks of equal priority but what if there is a
hierarchy for the tasks? Then we need to formulate some preconditions so that the
lower valued tasks can be performed without interfering in the results of the higher
prioritised tasks.

Lutz Freitag from the FUmanoid RoboCup team presented his kinematic approach
from forward and inverse kinematics up to batch tasks and lower prioritized subspace
tasks. The part I want to explain is his extension of the kinematic from the batch
tasks up to the subspace tasks, a feature our kinematic framework is not capable of.

I want to start this with the basic jacobian matrix J . In the simplest case J has three
rows and as many columns as effectors are involved into the task. So J is usually not
a square matrix and not invertible. But we can compute an pseudo inverse matrix
J#, which can be an inverse in the euclidian sense for case the rank of the Jacobian
is three. Otherwise we have to add an error term to guarantee invertibility.

10



2.4 Stability Constraints

J# = (JTJ + ε1n)−1JT

In the ideal case J#J = 1n the identity matrix. But in most cases, the Jacobian is
not of full rank, so this is not an identity matrix. So, this observation introduces
a degree of freedom we can use to formulate for another task. When the Jacobian
is of full rank 1n − J#J is an zero matrix, otherwise it defines a nullspace we can
work with, without interfering in our previous results.

N = 1n − J#J

Now I want to consider two hierarchical tasks having J1 and J2 of dimension m× n
and the error vectors e1 and e2:

J#
1 = JT1 (J1J

T
1 + ε1m)−1

∆q1 = (JT1 J1 + ε1n)−1JT1 e1

∆q1 = J#
1 e1

N1 = 1n − (JT1 J1 + ε1n)−1

∆q̂2 = N1(JT2 J2 + ε1n)−1JT2 e2

∆q = ∆q1 + ∆q̂2

Now we want to derive the general formula:

J#
i = JTi (JiJ

T
i + ε1m)−1

Ni = Ni−1 −Ni−1J
#
i Ji

∆qi = Ni−1J
#
i ei

∆q =
∑
i

qi

N0 = 1n

This way it’s possible to order kinematic batch tasks hierarchically and solve them
in the given order. The order is guaranteed and no further special cases need to be
considered.

2.4 Stability Constraints

Walking is a dynamic process that has to be stabilized. There are many approaches
that fulfil this goal. They all are based more or less on the same few constraints.
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2.4.1 Centre of Mass

The first and easiest idea to keep a robot stable is assuring that it’s centre of mass
is always supported by the feet’s support polygon. The robot’s feet touching the
ground define a polygon having at least 4 edge points. Connecting them to an convex
structure gives the support polygon. To check this criterion we have to calculate
the robot’s centre of mass for the x and y axis, but not for the z-axis which is
independent for this approach. In the end this is a static stability because we ignore
any dynamic components to achieve this kind of robot stabilization. Considering
these components too would lead to the second, more general, stability approach, the
ZMP approach which will be explained afterwards. The stability gained using this
approach is not suited for fast dynamic walking because the restriction of keeping
the centre of gravity supported forces the robot to walk with a short step width.
Furthermore walking with many fast very short steps is not human like. Usually
human increase the step width at higher velocity. Due to limitations of the leg
movement abilities and the motors, this kind of walking was sufficient as a start but
now should be replaced by less restrictive approach according to the step width or
achievable speed. For every component of the robot we have to know it’s mass mc

and relative position Tc, then we can calculate an offset vector, or the resulting force
vector according to the given root position. Fc = Tc · mc Summing up all these
partial forces leads to the relative mass vector and centre of gravity Fcom.

Fcom =

∑
Fc∑
mc

We can always change the view of the centre of mass by multiplying a transforma-
tion matrix of another robot’s component. For e.g. we want to know the position
of the centre of gravity relative to the right foot, then we multiply the transforma-
tion matrix from the right foot to the given root component of the centre of mass
calculation with our given centre of gravity offset vector. Now we have the relative
position for another component.

2.4.2 Zero Moment Point

As mentioned above, the zero moment point is based on the ideas of the centre of
mass approach but is less restrictive in some points limiting some basic walking gait
properties. In a static non moving case, this approach is reduced to the centre of
mass approach. The advantages of the zero moment point come into play, when
the desired step width is too high to keep the centre of mass supported for all
the time during walking. The zero moment point is defined as the point with no
inertia when summing up all forces applied in this model. The ZMP model considers
the gravitation and acceleration related forces. In the static case, the acceleration
forces are zero, but they are essential for the dynamic walking process. The model
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constraints of the ZMP is that the point calculated as sum of the gravitation and
the acceleration forces, always remains inside the support polygon. In mathematical
terms:

TZMP = Tcom + T ′′com

This has the following consequences for the walking pattern: either the trajectory is
calculated computationally expensive some steps in future, or the the model com-
plexity needs to be reduced. Theoretically we can always compute a future centre
of mass state from the current motion and inertia state. In contrast to the centre of
mass approach, it’s not always possible to stop at any time, because now the centre
of mass can be unsupported during walking, or especially when it’s supported stop-
ping would result in falling, because of remaining velocity and inertia. The ability
to stop at any time for the centre of mass approach results in the simpler model and
lower achievable walking speeds. [BS08]

2.4.3 The Inverted Pendulum

The model of the inverted pendulum implicitly follows the constrains of the ZMP
approach. This model combines a designed position and the speed for every time
according to a given starting position so that the centre of mass is moving on a line,
so that the resulting ZMP stays at the zero position. [hNHI02]
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The Capture Step Model

3
3.1 The Implemented Algorithm

This is the description of the capture step framework presented by Marcel Missura
and Sven Behnke [MB14].

The capture step framework implemented within this bachelor thesis is based on
the following model. The robot is represented as two uncoupled linear inverted
pendulums. The pendulum state can be described using the following equations:

x(∆t) = x0 cosh(C∆t) +
ẋ0

C
sinh(C∆t) (3.1)

ẋ(∆t) = Cx0 sinh(C∆t) + ẋ0 cosh(C∆t) (3.2)

t(x) =
1

C
ln

(
x

c1

±

√
x2

c2
1

− c2

c1

)
(3.3)

t(ẋ) =
1

C
ln

(
ẋ

Cc1

±

√
ẋ2

c2
1

+
c2

c1

)
(3.4)

c1 = x0 +
ẋ0

C
(3.5)

c2 = x0 −
ẋ0

C
(3.6)

C =

√
g

hCoM
(3.7)

Using the equations (3.1) - (3.4) the robot can be modelled as a combination of
two independent linear inverted pendulums. The sagittal pendulum represents the
forward movement and the lateral pendulum represents the stable stepping and the
sidewards movement. Both inverted pendulums are used to describe the robots state
and calculate the desired future states. When starting with a new step, the desired
support exchange location s is calculated. The calculation of this state s requires
four walking inherent parameters α, δ, ω and σ.
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3.1.1 The Default Walking Parameters

Figure 3.1: A visual description of
all important parameters and values
used and calculated by the capture
step framework. On the left side the
calculated values, on the right side the
most important parameters. [MB13a]

The trajectory generation of the framework
is mainly influenced by the four parameters
α, δ, ω and σ. These four parameters rep-
resent meaningful restrictions to the generated
trajectory. The meaning can be observed re-
garding the explanations and figure 3.1. Now
I want to describe them in the given order:

• α the distance between the centre of the
support foot and the position of the cen-
tre of mass (CoM) in the step apex. α is
a security parameter for the lateral step-
ping cycle.

• δ represents the nominal desired support
exchange location for zero lateral veloc-
ity. It’s most like the foot offset to the CoM in lateral direction.

The next two parameters require a bit more calculation than these two given pa-
rameters. Therefore I want to use a simplified version of the value τ , the half step
time. τ , as it will be calculated during the trajectory generation cycle, represents
the time, the lateral pendulum needs to reach the desired support exchange loca-
tion δ starting in the apex with zero velocity. τ is calculated using the positional
pendulum equation (3.3).

τ =
1

C
ln

(
δ

α
+

√
δ2

α2
− 1

)
(3.8)

• ω: ω is the support exchange location used when walking with maximum
lateral velocity. The calculation of this value is not the easiest and for now
I will use an approximation. In every stepping cycle composed of two single
steps, only one step can generate lateral velocity. Each step S1 and S2 has its
own duration t1 = 2τ1 and t2 = 2τ2. This leads to the following equation:

V max
y =

ω − δ
t1 + t2

(3.9)

ω = δ + (t1 + t2)V max
y (3.10)

(3.11)

Let the second step generate lateral velocity. So t2 and τ2 are unknown, while
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τ1 can be calculated using the default approximation (3.8).

τ2 =
1

C
ln

(
ω

α
+

√
ω2

α2
− 1

)
(3.12)

τ2 =
1

C
ln

δ + (t1 + t2)V max
y

α
+

√(
δ + (t1 + t2)V max

y

)2

α2
− 1

 (3.13)

As shown, this leads to a circular dependency. For now, I consider solving this
problem approximately with a simple iteration starting with τ2 = τ1 according
to the precondition τ2 > τ1, because τ1 is already representing zero lateral
velocity.

• σ: σ is the maximum of sagittal speed reached in the step apex for the robot,
while walking. It depends on the given maximum of sagittal velocity the robot
can walk with and the nominal half step time τ . The model as an inverted
pendulum makes it hard to define the velocity the CoM should have in the
step apex to walk with a defined sagittal speed. Therefore σ is the parameter
for an easy approximation of the needed saggital velocity in the step apex.
This parameter works fine for zero lateral velocity, because any other speed
increases the half step time, and also increases the real sagittal velocity with
a slower stepping frequency.

sx = τV max
x =

σ

C
sinh(Cτ) (3.14)

σ =
CτV max

x

sinh(Cτ)
(3.15)

3.1.2 Reference Trajectory

sy =

{
λξ ifλ = sgn(Vy)

λδ else
(3.16)

ṡy = λC
√
sy2 − α2 (3.17)

sx =
σVx

CV max
x

sinh(Cτ) (3.18)

ṡx =
σVx
V max
x

cosh(Cτ) (3.19)

ξ = δ +
|Vy|
V max
y

(ω − δ) (3.20)

τ =
1

C
ln

(
ξ

α
+

√
ξ2

α2
− 1

)
(3.21)
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The first calculated value sy (3.16), the desired lateral step position, is set to δ as
long as no disturbing incident occurred or lateral velocity is not zero. Otherwise, a
middled value between δ and ω is chosen depending on the lateral velocity. The next
value ṡy (3.19) is the result of using the pendulum equations (3.2) and (3.3). The
calculated time from (3.3) is used as input for (3.2), starting with zero velocity in
the step apex α. The sagittal positions are calculated using the pendulum equations
(3.1) and (3.2), starting with at a zero position and taking the half step time τ as
input.

The quantities ξ (3.20) and τ (3.21) have the following meaning: ξ is an intermedi-
ate distance for the support exchange. It is calculated from a linear interpolation
between δ and ω according to the actual speed in relation to the maximum value.
Note: ξ = δ when the lateral velocity is 0. τ , the so called half step time, is the
calculated time (3.3) the pendulum needs to reach the position ξ starting in the
apex with zero velocity.

The calculated step state is not updated during the step. It’s calculated once for a
single stepping cycle. To maintain stability, the balance controller updates the step
state with current motion data.

3.2 Balance Control

Now I want to calculate some values to improve the robots stability. First the lateral
ZMP offset is calculated. Some of the following values depend on this quantity.

Zy =
sy2Ce

CT̆ − cyC
(

1 + e2CT̆
)

+ ċy

(
1− e2CT̆

)
C
(
e2CT̆ − 2eCT̆ + 1

) (3.22)

T̆ = 2τ (3.23)

T̆ is set on support exchange and decreased afterwards during the following itera-
tions. So T̆ can be negative when the assumed step time is exceeded. As described
we need the real remaining time until the CoM reaches the desired support exchange
location. The remaining time T is calculated using the following formula:

T =
1

C
ln

 sy − Zy
cy − Zy + ċy

C

+

√√√√ (sy − Zy)2

(cy − Zy + ċy
C

)2
−
cy − Zy − ċy

C

cy − Zy + ċy
C

 (3.24)

Finally to determine the sagittal ZMP offset I use the capture step formula proposed
by Engelsberger [Joh11].

Zx =
sx + ṡx

C
− eCT (cx + ċx

C
)

1− eCT
(3.25)
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After that, we are able to calculate the achievable end of step:

c′x = (cx − Zx) cosh(CT ) +
ċx
C

sinh(CT ) (3.26)

ċ′x = (cx − Zx)C sinh(CT ) + ċx cosh(CT ) (3.27)

c′y = (cy − Zy) cosh(CT ) +
ċy
C

sinh(CT ) (3.28)

ċ′y = (cy − Zy)C sinh(CT ) + ċy cosh(CT ) (3.29)

This produces the footstep location and the step to step location

Fx =
ċ′x
C

tanh(Cτ) (3.30)

Fy = λ

√
ċ′y

2

C2
+ α2 (3.31)

S = F + (c′x, c
′
y)
T (3.32)

This a description in my own words of the algorithm which is presented in [MB14].
The meaning of the calculated values s, c and F can also be observed in figure 3.1.

3.2.1 Walking Algorithm

The capture step walking framework as described in [MB14] controls an open loop
self-stable walking algorithm. In this case it’s the following: [MB13c]. The capture
step framework calculates end of step positions for the assumed centre of gravity
and the foot. Then these target are transformed into relative amplitudes as input
parameters for the open loop compliant joint walking algorithm. This algorithm
is described as a self-stable walking algorithm and follows the concepts of minimal
computational costs. This walker is as simple as possible just reproducing ampli-
tudes and joint angles according to the input parameters. All the balance control
and sensor feedback is evaluated in the capture step balance control layer. The mo-
tion algorithm produces its joint angles without special robot knowledge. This needs
to be implicitly included in the angle generation model. In the paper presenting this
walker [MB13c] there are some parameters listed which have proved stable on the
authors’ robot the NimbRoOP. These parameters should make the algorithm usable
on robots with a similar kinematic layout. This layout is implicitly assumed by the
way of calculating the motor position from the input parameters.
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Implementation and Integration

4

4.1 Programming Languages

4.1.1 Python

[Pyt] Python is a highly dynamic scripting language. it’s easy to learn and can han-
dle most of common programming paradigms like objective and functional program-
ming. Most parts of the BitBots software are written in it. The robot’s behaviour is
written in Python. Furthermore many of our additional tools we use to work with
the robots are written in this language. E.g. it’s possible to work with the robot
out of an interactive Python shell.

4.1.2 Cython

[Cyt] Within the BitBots project Cython is used in two functions. On the one hand
it’s the connecting language between Python and C++ and on the other hand it’s
optimized Python. The Cython syntax is comparable to Python. In Cython it’s
possible to work with explicit types of the objects, a feature I really can recommend
as a C++ developer. To achieve most of the performance optimization the Cython
code should be typed. In some cases one can capsule methods so that they are
not accessible from Python. Therefore they have to be declared as Cython defined
functions. Finally it’s possible to include C and C++ libraries and even work with
data structures defined in this library. In contrast to Python, Cython is a compiler
language. In a first step the Cython file is compiled into a C or C++ file. Then in
a second step this file is compiled into a shared object. Now a Python process can
import the defined functions from this library. This is possible due to the CPython
interpreter. This is an interpreter written in C and executing the Python code. This
is why it’s easy to add additional libraries written in C or C++.
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4.1.3 C++

[C++] C++ is a powerful high performance compiler language. In the BitBots
project all computationally expensive calculations are performed using C++. The
parts are accessible for the Python programs using a Cython wrapper mentioned
above.

4.2 The Hamburg-BitBots Software Framework

The code running on the robots is separated into a few programs. During a RoboCup
soccer game there are two programs performing the typically BitBot behaviour.
First there is the motion process handling the low level hardware communication.
Second there is the behaviour process evaluating the game information and deciding
what to do. This second process also handles the image processing. They are both
written in Python. They communicate with each other using a file based inter
process communication (IPC). The communication relies on continuous updating of
all important data from this shared memory file. For e.g. the behaviour evaluates
the ball data and decides to run to it. So it tells the motion process to run forward
writing new velocity parameters into this shared file. On the other side of the IPC the
motion process reads the parameter update and acts accordingly. The calculation
of the walking algorithm lies within our motion process to reduce communication
time overhead. This loose coupled structure has many advantages. It enables us to
parametrize the motion without starting a robot behaviour. We can execute a little
script which only needs to write velocity parameters into the motion process. This
little script can also be an interactive Python shell.

4.2.1 Software Structure

As described above the BitBots software is Python based and only the performance
critical parts are implemented in C++. Furthermore there are some Cython imple-
mented connector classes like the image processing. In this case the Cython class is
only a wrapper. This wrapper takes the Python handled camera image and some
small parameters and flags. Then the image is unwrapped and passed into the C++
implementation. Afterwards some C++ data structures holding the image process-
ing results are extracted, wrapped and converted into Python objects. The motion
and walking algorithm is implemented in a different way. The motion is completely
written in Cython and manages the hardware communication, walking algorithm
and animation framework. The motion server holds and controls the open loop
walking implementation in its own closed loop. This closed loop handles the motor
communication and iteratively updates the walking state.
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4.2.2 The Motion Process

The motion process is an infinite closed loop. Mainly this loop consists of the
hardware communication update part, the internal parameter update and then again
the write out of the new motor goal positions. Internally the motion is a state
machine deciding whether an external given command can be performed or not. E.g.
when the robot lies on the ground then the motion tries to stand up. Meanwhile
every other action will be blocked and ignored. Another example is the penalty
handling. When a robot is penalized during a game it’s not allowed to move. For
security reasons the motion has this flag. When it’s set there won’t be any movement.
This flag can be set manually, too. But most time of a game the motion process’s
most important task is the update of the walking algorithm. The motion process
runs the walking implementation in an open loop between the hardware update
phase and the writeout phase. This way the walking implementation receives the
current robot pose and velocity as update cycle parameters.

4.3 The Capture Step Framework Integration

The implemented Capture Step framework runs within the motion process. At
startup the framework is initialized with the robot’s kinematic representation. In-
ternally the trajectory generator uses this representation to achieve a basic robot
pendulum height. Later on this height is reduced using a configuration value. The
pendulum height is the parameter determining the basic step behaviour for any
given velocity. Using the required velocity and the pendulum height the trajector
generator calculates new step targets. This generator runs exactly once after each
support exchange. A step target is valid until the next support exchange. The next
module of the framework is the motion observer. This observer is executed every
motion cycle and determines the current motion state according to the step targets.
Then there is the balance controller evaluating whether the step targets can be ful-
filled or not and adjusting them if not. Finally the motion generator produces the
new joint target angles using the balanced step targets. On our robots we achieve
around 90 motion update cycles per second.

Figure 4.1 describes the implemented framework layout. On the right side you can
see the external controller. This can be a BitBots soccer behaviour or a small script.
This controller writes new velocity parameters into the shared memory file, the IPC.
Then the motion process reads these new parameters from the IPC. This is the entry
point for the capture step framework. The motion server handles the hardware
communication and walking update. The capture step controller is updated with
the current robot configuration in joint space and the required walking speeds. The
internal process of the capture step framework is described in 4.3.
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Figure 4.1: The components of the capture step framework and the binding components
MotionServer, IPC and the behaviour

4.3.1 Implementation of the Capture Step Walking Framework

The implementation started with the balancing layer 3.1. This was quite easy and
took a relatively short period of time due to the good described theoretical back-
ground. The main classes were the inverted pendulum, some data connector classes,
the balancing controller and a simple observer for the motion state. These classes
were implemented using the C++ language. Then the new classes were integrated
into the existing Cython based motion implementation. According to the paper
description I imagined and implemented some small test cases for the balancing
layer. But then there was the main problem: How to use the stepwise generated
and periodically updated target values to calculate the next robot gaol pose. On the
NimbRo, the reference implementation is a low cost hand-tuned self-stable walking
algorithm which is optimized for exactly this robot hardware. So I started to write
an inverse kinematic based simple walking algorithm applying trajectory functions
for the robot’s feet. The most difficult task is the definition of these functions and
the timed update.

4.4 Designing the Motion Algorithm

The existing walking implementations are working, but we have the problem, that
we do not know how to parametrise them. In the beginning we used the basic
standard Darwin walking algorithm, which is not especially stable, and now we use
the team Darwin walking algorithm which is reliable stable, but has a constant drift
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to the left. So, there is no motion algorithm to work on. Due to that, I tried to
implement a motion generation algorithm using inverse kinematics.
First of all, the balance controller which is described above generates target positions
for the centre of mass and the foot, but these are only end of step targets. So there
are many foot states and centre of mass states left to be defined. Now it’s the task
to find continuous functions describing the foot and the centre of mass trajectory.
Therefore I want to use the inverse kinematics which was developed this year. That
was inspired by Lutz Freitag from the team FUmanoids. The idea in this chapter is
on the one hand describing the implementation and on the other hand showing the
parameter space of the goal to develop a walking algorithm.

4.4.1 First Simple Implementation:

As described in the paper [MB14], the trajectories are based on the inverted pen-
dulum model. According to the feet: The robots centre of mass should be moved as
described by the inverted pendulum. Then the swing leg needs to reach a calculated
position in time. This first version described the foot to foot distance as the twice
foot to centre of mass distance. Furthermore the trunk orientation and the foot
orientation were aligned with the global coordinate system. A first try on the robot
showed the robots feet do not have enough grip to be stable. But finally I found out
that this behaviour resulted from my overcautious choice of the walking parameter
for α and δ which are described in 3.1.1.

4.4.2 Ideas for a Better Version

Inspired by watching the team NimbRo demo videos [M. a] and [M. b] I assumed
the trunk to behave like an inverted pendulum and performing the pendulum swing
in a fixed manner. So the second idea to work in the solution space was achieving
all described end of step positions by manipulating mainly the orientation from foot
to trunk and vice versa. This second version still had the fault of the overcautious
choice of parameters, so the approach didn’t show. Due to bugs and incomplete
features, the kinematic chain design was chosen to represent every chain as a direct
chain. This way it’s hard to formulate a kinematic task with a trunk position and a
desired orientation to the foot, which is not the identity. In this case it’s necessary
to calculate a combination of position and ankle angle to be applied from the root,
to represent the desired position starting in the joint. But finally even this version
proved to be unstable and incapable of walking.

4.4.3 Final Idea of the Algorithm

The motion generator accepts the state parameters of the capture step balancing
framework. Using this as input this part defines trajectories for the legs, the stance
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leg and the swing leg. The input state parameters only represent end of step po-
sitions, so the motion generator also has the task of interpolating the trajectories
over time. Now I want to explain the single parts of the trajectories for the swing
leg and the support leg:

support: x-axis The inverted pendulum robot model implies a basic reference for
the trajectory the support foot should perform. This is similar to the
inverted pendulum itself, a combination of exponential functions. The
basic behaviour of this function is the assumption of maximum speed in
x direction for the support exchange and then an exponential decrease
until reaching the zero position with perfect support of the trunk. After-
wards there is an exponential increase until the support exchange with
maximum speed.

y-axis For the y-axis there is a similar behaviour but no passing of the apex.
The centre of mass is described moving on it’s exponential curve towards
the zero position while slowing down until the step apex and then in-
creasing speed while heading to the support exchange location.

These two behaviours are implemented using explicit pendulum behaviour.
The z-axis is assumed to be constant.

swing: For the swing leg there is no model defined behaviour to find inspiration. At
first the foot should reach it’s end of step position in time and second we need
to lift the swing leg because it’s not the support leg. I assume both behaviours
to be linear.

x-axis The x-axis is described by the linear trajectory with an additional
sinusoidal smoothing as described for the support leg.

y-axis The y-axis is ignored for the interpolation which needs to be treated
in a future version.

z-axis Regarding the z-axis we need a lift and a return to the ground. The
final lift height is a runtime parameter and the trajectory is a little more
complex trigonometric function. I wanted to have a fast lift directly after
support exchange and a smooth curve before touching the ground. The
lifting part should be as fast as possible and the final ground contact
should be smooth too. So this trajectory is a shifted sinus in the range
of [−π

2
, 3

2
π]. See figure 4.2.

4.5 Unmentioned NimbRo Paper Problems

Figure 4.2In theory the capture step concept looks plausible and simple,
but the reality is different. For example the framework explicitly models no double

26



4.5 Unmentioned NimbRo Paper Problems

support phase and neglects the dynamics according to the support exchange. Fur-
thermore the description on basis of the inverted pendulum is hard to find within
the pendulum like compliant joint walker. In this reference implementation it seems
like none of these simplifications were known. The first results, which really relied
on this simplified model constraints weren’t satisfying and showed that reality is
far more complicated. In the main referenced paper only the balancing layer is
described. The real stability providing interface is the compliant walker running
in an open loop parametrized by the balancing layer. This compliant joint walker
is based on a model as easy as possible just periodically repeating a simple joint
angle manipulation. But the description makes clear that in fact it’s not that easy
to provide stability. There are many parts where the simple periodic behaviour is
manually adjusted, which indicates a hand-made approaches only running reliable
on one robot model.

4.5.1 Model and Implementation Differences

support phases The capture step model neglects the double support phase and
doesn’t consider inertia and friction on support exchange. There are no ex-
plicit constraints on a trajectory that should fulfil this model. The imple-
menting compliant joint walker introduces a small double support phase and
even pushes a little into the ground to compensate energy reducing effect on
support exchange which were ignored in the model.

y-axis trajectory the model is based on the inverted pendulum. This implies ex-
ponential behaviour for every function which is based on this. Especially the
trajectory functions for the x- and y-axis which should match this pattern need
exponential components. But the motion generating compliant joint walker is
based on sinusoidal functions without any exponential behaviour.

As just described the generated and the modelled trajectory seem to differ sig-
nificantly but there is no word about this is mentioned describing papers. On the
NimbRo robot, the walker provides a reliable stable walking which is omnidirectional
and easy parametrizable producing the expected walking directions and velocities.
Having this as a basis to work on reduces the complexity of the new implemented
balancing layer but doesn’t guarantee to be reliable working as flexible on different
robots with different walking algorithm bases.

4.5.2 Motion Generator Implementation

The motion generator controls the applied trajectories according to the given tar-
get positions. It interpolates the positions so that the trajectories are continuous
functions. Basically there are 3 axes for the centre of mass trajectory and another
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three axes for the swing leg. The centre of mass thereby should remain in the pen-
dulum height on the z-axis. The x- and y-axis have other non-static targets. From
modelling they are constrained with the inverted pendulum behaviour. On the
robot, this trajectories caused instability and other problems. Now the trajectories
on these axes are inspired by a normal pendulum and described by trigonometric
functions. This implementation comes close to the idea behind the compliant joints
[MB13c]. On the y-axis the centre of mass should move from it’s unsupported posi-
tion at support exchange towards the support point This trajectory is exponential
from modelling but regarding the compliant joint implementation it’s solved with
trigonometric functions. So this part is now implemented with a sinus function with
an amplitude which is comparable to the inverted pendulum amplitude.

The x-axis comes up with a similar approach. To reach the final end of step position
the motion generator interpolates the step distance with two functions. A linear
function for some kind of base speed and a trigonometric function inspired by the
pendulum behaviour.

The other part is the description of the foot trajectory. In this case the capture
model provides no implicit behaviour. There are end of step positions but no model
how to apply them. I want to describe the trajectories along the three axes x, y
and z. First of all I want to describe the y axis the future step width. There is
no requirement but the end of step location, so the trajectory along the y-axis is
a linear function. The trajectory along the x-axis is comparable to the centre of
mass trajectory along this axis but the end of step targets differ. Finally the foot
trajectory along the z-axis, the robot height. The capture step model doesn’t require
a double support phase but the compliant joints implement a short double support
phase. For this behaviour I tried a few interpolation functions with a trigonometric
basis. The first implementations were likely to the model assumption with no double
support phase but the provided walking was quite unstable. The robot always had
problems to remain stable during the pendulum swing. So the idea behind the short
double support phase is to support the centre of mass as long as the ZMP is outside
the new support foot’s support polygon. This results in a small delay of the point
when lifting the swing leg from the ground.

4.6 Leaving the Exponential Functions

Many trials and breakdowns convinced me, that the exponential modelling of the
trajectories is the correct way in theory, but doesn’t really work on a real robot. For
now on the trajectory functions are based on trigonometric functions and represent
more or less a normal pendulum instead of the inverted.

Even for this decision the team NimbRo from Bonn is still the role model. But in this
case not for the theoretic aspect, which is error prone as shown is the chapters above.
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4.6 Leaving the Exponential Functions

(a) The foot trajectory on x-axis with
the highest speed at support exchange

(b) The foot trajectory on z-axis with
the small push into the ground and
implicit double support phase

Figure 4.3: Two foot trajectory interpolation functions

Now I will give an example of the functions describing the step target interpolations:

x-axis The trajectory along the x-axis is the sum of a linear and a cosine function.
The cosine is used in a range of [−π, 0] and of course additional scaled so that
the resulting trajectory doesn’t conflict with the end of step position. This
function is plotted in figure 4.3a.

y-axis The trajectories according the y-axis are described by a sinus function in the
range of [0, π] with a comparable amplitude to the inverted pendulum inspired
exponential function.

z-axis The foot trajectory on the z-axis is the most complex one as you can see in
figure 4.3b. The main idea behind this trajectory function is a sine in range of
[0, 1.7π]. To guarantee that the trajectory function is 0 at its ends, there is a
linear part in it too. Finally the internal sine argument is modified so it’s not
linear at all. This function is plotted in figure 4.3b. This functions provides a
"push" into the ground which is described as useful in [MB13c].

The function for the z-axis results from testing on a real robot, there this function
behaved best. It was inspired by the previous and the description of the implicit
double support phase in the compliant joint walker.

Remark

All the described functions have in common, that they are defined on [0, 1] and at
the interval boundaries they have either the value 0 or 1. This makes it easy to apply
them as a interpolation function. Then by having a relative timer according to the
step and the step target position, the function provides the current interpolation.
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4 Implementation and Integration

In conclusion I implemented every inverted pendulum behaviour with a normal
pendulum. The modelled inverted pendulum defines the ranges for the implemented
functions. This decision is inspired by the reference implementation of the capture
step framework, the compliant joint walking algorithm. In this implementation there
is no inverted pendulum behaviour, just implicitly modelled pendulums.
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Problems and results

5
5.1 Design of Kinematic Tasks

The kinematic framework is a powerful tool to work with. Unfortunately it’s not
a direct inversion, but an iterative algorithm working with local derivatives in the
joints. In most cases, the kinematic behaves as expected, but there are other exam-
ples:

1. The result may look like a random pose meaning the algorithm could not
converge to a result.

2. The algorithm converges, but the result doesn’t look as expected either.

To avoid these cases, the design of the task becomes more important.

5.1.1 Possibilities to Reduce the Result Space

There are some ways to influence the calculations:

1. The chain to work with, but this one has the smallest influence, otherwise we
wouldn’t need that chain.

2. We could loose generality of the calculations and use our knowledge about the
layout. This way we can influence the kinematics to ignore some joints.

3. But best is the formulation of a batch task, so that the kinematic framework
solves multiple subtasks at once.

5.1.2 Task Components

I want to give an example, where the correct kinematic behaviour looks wrong.
Given is the chain, starting in the right foot going upwards through the knee and
hip to the central root joint. This is the inverse chain to the normal leg chain.
Using this chain, the position of the root should be moved slightly to the left, as
it is needed for walking. For this task, there are two joints the robot can use: the

31



5 Problems and results

(a) A simple task definition to move the
centre of mass slightly to the left from the
foot’s point of view. The task is incom-
plete defined to match the expectation

(b) Moving the centre slightly to the left
using the properly defined task, respect-
ing the distance and the orientation

Figure 5.1: The Robot performing the same task with a little significant adjustment, so
that one looks right, but not the other one, although both are solved correct

hip roll and the ankle roll joint. If a human would try to solve this task, he would
automatically use the hip to reach the distance and use the ankle to keep the right
foot alignment. This is where the implicit error lies: First I will consider the simple
task definition: In this case the target is just the movement. So the kinematic uses
the joint with the highest effect, in this case the ankle roll joint as you can see in
figure 5.1a. This results is a correct result and in the point of view of the kinematics
it’s the optimal result. The kinematic framework is a bit "lazy" trying to minimize
the angular differences. From the human perspective this result looks wrong due to
the implicit additional task of keeping the trunk orientation unchanged.

To achieve this we need to modify our target vector for the kinematic task. This
needs to contain information so that the trunk orientation remains. This can be
solved as a batch task with the positional target part and a rotational target de-
scribing the relative y-axis from foot to trunk as (0, 1, 0)T or the current relative
y-axis. Then the kinematics produce a result matching the human expectation and
human way to solve this task.

Furthermore this task could be described in an inverse way. Instead of using the
inverse chain, the direct chain could be used. In this case the simple task result is
more similar to the expectation. It just looks incomplete with a wrong ankle roll
angle.
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5.2 Problems with the Motion Generation

5.2 Problems with the Motion Generation

During the implementation I had various problems with the motion generation.
Most of them belonged to the functions I used for the trajectories or robot hardware.
There were less problems with the integration into the BitBots software framework.

In every calculation and assumption I’ve made before, I never needed to consider
any forces and friction at ground contact. This changed with the first version of
the walker: The robot’s feet had rarely enough grip on the ground to remain stable.
The reason why I had this issue is mentioned in 4.4.1. At some times I thought
about computation time as another factor for my problems, but for now I didn’t
really notice it.

5.2.1 The Robot’s Representation’s Chain Layout

I wanted to use inverse kinematics to apply the calculated walking pattern. On
the one hand this has the advantage that there is no need to consider the robot’s
kinematic layout. On the other hand it’s computationally quite expensive and it’s
necessary to work with metrical distances. The capture step framework provides
some positions like the desired end of step centre of mass location or the foot to foot
distance. These positions are already in a metric measure.

In the first version I used an inverse chain from the support foot to the centre.
Using this chain caused some errors explained in 5.1. The second chain was a long
chain from the support foot to the swing foot. Somehow I had some problems with
the chain layout, mainly with the inverse chain. Using inverse chains sometimes
produces unexpected results as described in 5.1. Due to that I changed the layout
to two direct kinematic chains. The problems related to this layout seemed to be
easier to handle. Since then I have to invert some positions or apply additional
manipulations to the target. This are modifications which were implicitly included
in the more complex chain layout.

5.2.2 The First State of the Walking Pattern

In the first version the applied walking pattern kept the robot’s orientation fixed
and never applied any changes. Belonging to the x-axis and the y-axis the feet’s
orientation is the same as the robot’s torso. As I will mention below, this first
version was not able to provide a stable walking pattern.

Adjustments to Solve this Local Problem

As described above, I don’t use the natural looking chain layout using the inverse
chain, due to some implementation errors. Then I had to emulate the behaviour of
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5 Problems and results

R

H

B D F

Figure 5.2: Very simple robot model representing the root, the hips, a nominal foot point
and the foot position

the inverse chain using the direct one. Watching the NimbRo walking videos made
me believe I could work primary using a static pendulum behaviour only using the
ankle rolls to reach the target positions.

Figure 5.2 is the solution I applied. I want to manipulate the angle ∠BFR in Figure
5.2, so that the on the ground distance |BF | has the desired value for the distance
|BD|.

|BF | = cos(α)|RF | (5.1)

|BD| = cos(α′)|RF | (5.2)

α′ = arccos

(
|BD|
|RF |

)
(5.3)

5.3 Further Steps with the Robot Angular Manipulation

As expected a simple angular manipulation is not enough to produce a walking
pattern. In this case the moments of inertia which were ignored from modelling come
into play. The capture step model neglects moments of inertia and assumes a zero
time double support phase with no loss of energy at support exchange. Using such a
low dynamic implementation is cursed to fail. But reading the paper describing the
compliant walker [MB13c] resulted in the idea of pushing into the ground to gain
the necessary inertia.

5.3.1 Experiment with the Compliant Joint Inspired Leg Extension

As for the first 2 versions there was the problem that the code was executable, but
the robot was unable to walk. The state of implementation looked like a minimal
complexity walking solution which I feared to be computationally too expensive.
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5.3 Further Steps with the Robot Angular Manipulation

So I thought of further ideas of how to improve the generated walking pattern and
maybe use even more robot model based assumptions and direct angle manipulating
bypassing the kinematics. Then I tried to copy the idea of modelling a phase depen-
dent leg extension for the support and the swing leg as described in [MB13c]. For
the leg extension I manipulated the pose angles directly without using the inverse
kinematics because there I already had some problems: The base situation was a
quite stretched leg with an additional roll angle. Then the local derivatives to solve
the leg extension problem must have been higher for the hip roll than for the com-
bination of the three pitch joints in hip knee and ankle. In fact the robot applied a
roll angle difference instead of equal manipulation for hip and ankle angle and the
doubled angle manipulation for the knee. To avoid this problem I manipulated the
pitch angles directly and finally applied the foot’s target position starting from this
improved better fitting start point. But neither the idea was good, nor the function
I tried to apply.

5.3.2 Motor Delay and Friction

The DarwinOP is a quite cheap robot, so called low-cost hardware. The hardware
is designed functionally, but according to high precision movements it’s not well
suited. The team NimbRo from Bonn published an interesting paper about motor
signal manipulation to make the joints reach the desired position in time. There is
always friction and the motor bus time delay[SB13]. Their approach is to generate
a sample reference trajectory and apply it with the used motors, always comparing
required and real position. Then they iteratively apply these trajectories and learn
how to parametrize the motors, so that they apply the desired position in time.
The motor parameters deviate from the target positions over time, but finally the
motor position matches the algorithmic requirement. The older a motor becomes
the stronger are the friction effects. Our DarwinOP robots have a mean age of about
three years. Some motors are a bit younger, but the main problem remains. So I
fear my new algorithm needs to consider this implicitly, because we don’t have this
low level motion signal manipulation.

Simple Hand-Made Solution

The walking trials also had problems with the applied trajectories. The trajectories
on the robot and in the simulator looked different. Now to reduce the error level
I implemented a small motor goal position correction. The walking algorithm runs
with a quite high frequency so that any new angle for the motors should be relatively
small. Using this assumption I increase the target angle and motor speed when the
difference is higher than a defined threshold. This simple solution improved the
resulting walking pattern in a manner, so that the robot seemed to be stronger in
the knees. Before that, the walking pattern looked like the robot would be too
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5 Problems and results

(a) The relative position of the foot
on the z-axis in relation to the robot’s
root. Without using any afterwards
correction

(b) The relative position of the foot
on the z-axis in relation to the robot’s
root. Using the afterwards correction

Figure 5.3: The difference of the applied and real position with or without an afterwards
pose correction

weak in the knees, unable to lift his feet. The effect of this afterwards applied
correction can be seen in the following two plots figure 5.3a and figure 5.3b. The
first plot shows the weakness and the second plot the improved angular behaviour
on positional basis.

The "Weak" Knees

Now I want to focus the phenomenon of the weak knees while walking. I think
this problem is caused by design and the hardware communication delay. The key
problem of the weak knees is that the robot doesn’t apply the right angles in his
knees and leg pitches. The real angles the robot should apply are in a small range
around zero. This is an area where it takes quite a long time for the kinematics
to converge. Now I want to describe the problems: The kinematics converge faster
to the right solution when the initialization is good. So I take the current robot
pose as initialization for the kinematics. This is the error part by design, I could
use the last result as initialization. The other problem is the hardware, because in
the simulator the trajectories looked better. The effect of the weak knees always
appeared in situations with almost stretched legs. Due to the performance there are
only a few iterations allowed for the kinematics to converge. Now I assume that the
calculated angle difference until the next step is so small, so that the motors are
too lazy to perform anything under force of the robots weight. So the kinematic
framework solved the same task multiple times without any progress. This can be
seen as a reason for the different ranges in the figures 5.3a and figure 5.3b.
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5.4 First Walking Results

Finally the robot is able to walk in some kind of configuration. The walker has some
problems with stability and motion dynamics but provides a reliable movement to
the front. On the real robot, there are in some terms huge differences between
the needed and the applied joint positions. This fact can be observed regarding
figure 5.3a.

Another plot shows the trajectory of the centre of mass according to the foot posi-
tion: figure 5.4

5.5 Improved Walking Results

Figure 5.4: The x-axis trajectory of
the centre of mass in a global coordi-
nate system plotted in walking direc-
tion over time

Within the last days I was able to improve
the walking pattern running on the real robot.
Now the robot performs sinus function inspired
trajectories to interpolate between the gener-
ated step targets. E.g. the foot trajectory for
the x- or y-axis. This time our robot Fiona was
able to walk relatively stable and reliable for-
wards and backwards. Additional movements
in the sidewards directions were possible too.
Although there are still some problems with
the DarWinOP robot hardware. The target
trajectories still differ in some parts from the
real applied motor angles. But for now it’s pos-
sible to walk without falling to the side. Prior
versions of the walking implementation had the
problem that the robot almost fell over to the side. I was able to solve this problem
by reducing the step-time and adjusting the trajectory in z-axis. Before lifting the
foot, the trajectory function describes a little push into the ground. This introduces
a short double support phase and helps with the dynamics. This way the centre of
mass is almost supported by the support leg when the swing leg leaves the ground.

5.6 Comparison of the walking Algorithm Implementations

The target of the implementation was a more reliable self-stable walking with a
natural parametrization. This ambitious goal could not be reached. The existing
walking algorithm provides a more stable and faster walking than the new imple-
mented walking algorithm based on the capture step balancing layer. On a 1m
simple test-run I compared the two walking implementations on the aspect of speed.
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(a) The self tracked and theoretically
reached stepwise distance of the 1m
sprint of the existing walking algo-
rithm

(b) The self tracked and theoretically
reached stepwise distance of the 1m
sprint of the new developed walking
algorithm

Figure 5.5: The two walking algorithms in comparison of their self tracking while per-
forming the 1m run. The existing algorithm is faster and more accurate according to the
requirements of speed

Algorithm Medium Speed Full Speed
existing 10s 5s
new 16s unstable

Table 5.1: Times measured for the robot to
walk a distance of 1 Meter

Table 5.1 presents the walking speed
performance in comparison. Thereby
the existing walking algorithm runs
faster, more reliable and more stable.
Finally the new developed algorithm
performed really unstable and unable to
walk at full speed.

Figure 5.5 shows the self tracking results of the performed 1m run. On the left,
figure 5.5a is the self tracked run of the existing walking implementation. The
robots real velocity is in this case the average of the self-tracked and speed and
the required speed defined by the input parameters. On the left side, figure 5.5b,
there are the comparable results for the new developed capture step based walking
algorithm. In this case the discrepancy between the parameters and the self-tracked
result are significantly higher.

5.6.1 The Existing Walking Algorithm

This thesis had the goal to come up with a more reliable walking algorithm, than the
existing one. The current walking implementation is an algorithm which is based
on the Team DARwin code release of 2013 [Tea]. This code release provided an
ZMP based walker. We were able to integrate this implementation into the BitBots
software framework. After a long period of time we were able to tune the right
parameters so that the robots could walk reliable stable. But we still don’t know how
to extend this algorithm. It’s not documented and we rarely understand the internal
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5.6 Comparison of the walking Algorithm Implementations

behaviour. We are quite happy with the stability of this algorithm but we have
problems with the parametrization. The robots often drift away when they try to
optimize their position to the ball before kicking. This parameter reliability was the
main goal of the new walking implementation. This existing walking implementation
is stable and can handle relatively high velocities.
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Conclusion

6
6.1 Conclusion

The capture step framework is a promising approach and has a simple theoretical
basis. It can be implemented easily. But the core of the stability approach of
the framework comes from the stability of the underlying walking implementation.
Finally, this walker will be parametrized using the capture step framework results. In
this case the framework’s mentioned independence of this underlying walker must be
analysed critically. To be able to calculate the updated end of step positions, there
is some kind of motion observation included within the framework. For instance the
underlying walker generates a significantly different kind of trajectory, the balancing
options of the capture steps are dramatically reduced.
The reference walker implementation [MB13c] basically follows this model. So this
approach can be applied in this case. The results and models show that there is
much adjusting necessary to have this framework running on a NimbRo like robot. In
conclusion the framework can increase the stability of a running self-stable walking
algorithm. But the trajectories generated by this algorithm should be similar to
the modelled inverted pendulum. The absence of such an implementation within
the BitBots software library made it very difficult for me to reach some kind of
approach. Now our robots can walk on this new algorithmic basis. Finally the in
game performance will prove the usability.

6.2 Outlook

I could try to solve my problems with the kinematics described in section 5.3.2. To
do so I could use less general approaches including assumptions about the robot
layout. Furthermore I could try to use another walking algorithm as basic walker.
Maybe even the existing but I think that this one is not well suited. This walking
algorithm already performs active stabilization and simplified ZMP tracking. As far
as we know any parameter adjustment is performed once per step. The balancing
effect of the capture step framework is the online parameter adjustment of the open
loop basic walking algorithm.
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