
Waveform Viewer App for Android
Porting of the Hades Waveform Viewer

Bachelor Thesis

Technical Aspects of Multimodal Systems

Department of Informatics

Faculty of Mathematics, Informatics and Natural Sciences

University of Hamburg

presented by

Lars Lütcke

Student number: 6310463

Field of study: Informatics

First supervisor: Dr. Norman Hendrich

Second supervisor: Dr. Andreas Mäder

Abstract

The purpose of this bachelor thesis was to port the existing waveform viewer Styx, belonging
to the HADES simulation framework, to Android. In this context, the main focus was on the
differences between the Java and the Android platform, as well as the down-scaling of the
existing user interface, albeit maintaining its functionality.

That being said, this paper mainly describes how the necessary features of a waveform viewer
like scrolling, zooming, drag and drop and others were achieved under Android. Other than that,
the old HADES specific file format, its complications and a possible surrogate are described.

At the end of the paper the current usability of the waveform viewer will be discussed and a
small outlook of future possibilities will be given.

Contents

List of Figures II

Listings III

1 Introduction 1
1.1 Motivation . 1
1.2 State of the art . 1
1.3 Hades and Styx . 2
1.4 The Android platform . 4

1.4.1 What needs to be considered . 4

2 The Hades Waveform Viewer file format 9
2.1 Compatibility . 12
2.2 Memory usage . 15
2.3 Surrogate format . 19

3 User manual 23
3.1 Gesture detection . 23
3.2 Starting the application . 24
3.3 File picking . 24
3.4 Waveform display selection . 26
3.5 Scrolling . 26

3.5.1 Dragging . 28
3.5.2 Flinging . 28

3.6 Zooming . 31
3.6.1 Pinch zoom . 32
3.6.2 Selection zoom . 33
3.6.3 Zoom fit . 36
3.6.4 Smart zoom fit . 36

3.7 Drag and drop . 37
3.8 Searching . 38
3.9 Number format . 40
3.10 Cursor . 40
3.11 Settings . 40

4 Usability 43

5 Outlook 45

Appendix A 47

Bibliography 59

I

List of Figures

1.1 Illustration of the waveform viewer GTKWave. 2
1.2 Illustration of Hades’s GUI. The current circuit demonstrates a 1 bit full adder. . 3
1.3 Overview of Styx’s GUI. 4
1.4 Android’s build process in a nutshell [DevBSO]. 7

2.1 A very slimmed down version of the UML class diagram for the hades.styx
package. 11

2.2 Surrogate for the old Hades Waveform Viewer file format. 20
2.3 A very slimmed down version of the UML class diagram for the new styx.waveforms

package. 21

3.1 The application’s start screen, with an open menu in the action bar. 25
3.2 The file browser supplied with the waveform viewer. 25
3.3 Dialog to select which waveforms to read and display. 26
3.4 The waveform viewer displaying some example data. 27
3.5 An example for the edge glows. In this case the user reached the left and the top

edge while dragging the viewport. 27
3.6 Image showing a currently selected area for use during the selection zoom. . . . 34
3.7 Illustration of a drag and drop operation. 39
3.8 Illustration of an active search. 39
3.9 Illustration of the dialog, used to change the number format. 40
3.10 Illustration of the dialog, used to change a std_logic_1164 color. 41

II

Listings

2.1 Original source code, showing how waveforms are written to a file in the latest
version of Styx. 9

2.2 Original source code, showing how waveforms are read from a file in the latest
version of Styx. 10

2.3 Source code showing how waveforms are written to a file in the new Waveform
superclass. 13

2.4 Source code showing how waveforms are written to a file in the new WaveInteger
subclass. 13

2.5 Source code showing how waveforms are read from a file in the new Waveform
superclass. 14

2.6 Source code showing how waveforms are read from a file in the new WaveInteger
subclass. 15

2.7 Original constructor and reallocation method in the Waveform class. 16
2.8 Constructor and array reallocation in the new Waveform superclass. 17
2.9 Source code for the constructor and reallocation method in the new Wave-

formInteger subclass. 19

3.1 How to handle touch input. This skeleton can be extended to detect gestures
oneself. 23

3.2 How flinging is handled. 29
3.3 Source code for the fling() method. 30
3.4 Initiation of a pinch zoom. 32
3.5 Source code for the actual pinch zoom. 32
3.6 Source code for the initiation of a selection zoom. 34
3.7 Source code for the area selection of a selection zoom. 35
3.8 Source code used to perform the actual zoom into a selected area. 36
3.9 Source code for dropping waveforms after a drag and drop. 37

8.1 Usage of gesture detection classes, that are provided by Android. 47
8.2 How dragging is handled. 49
8.3 Source code for the computeScroll() method. 52
8.4 Source code for the smart zoom fit algorithm. 54
8.5 Source code showing how the drag and drop is initiated. 56

III

1 Introduction

1.1 Motivation

On one hand there are the users. The amount of people owning a mobile device capable of
running mobile applications is constantly growing. Many are using those devices daily for
various activities, including entertainment, communication and shopping. A great source of
information on this topic is Our Mobile Planet [GooOMP], a tool made available by Google as
part of their think with Google [GooTWG] program.

On the other hand are the mobile devices themselves. Their performance is steadily increasing,
allowing more and more sophisticated software to be run. As such the possibilities of performing
tasks while being on the road, that are usually done at home on a desktop computer are rising.

It stands to reason, that people generally like to be able to do anything on their mobile device,
that they are able to do at home on their desktop computer, assuming the controls and usability
are acceptable. The exception proves the rule.

With this information and knowing that there is currently no existing waveform viewer for
Android, at least not in the Google Play Store and not being able to find anything through search
engines as well, the motivation to write the first one seems obvious.

1.2 State of the art

The term waveform viewer henceforth references to the type of waveform viewer, used for
viewing signal levels of simulated circuit designs. As such, in the very least, a waveform viewer
should graphically provide information on transitions and relations between signals of such a
design, over a period of time. Circuit designs are normally written in a hardware description
language like VHDL.

The collection of a signal’s transitions is called a waveform, hence the name waveform viewer.
A waveform viewer is usually used to view and analyze static waveform data, but can also be
used to capture and display waveform data in real time. For example, this static data can be a
file whose content is the output of a finished simulation.

A waveform viewer should usually provide more functionality than just displaying the waveforms.
This includes, but is not limited to, features like zooming, searching, rearranging the signal order
or inspecting std_logic_vector signals, where a std_logic_vector is an array of std_logic_1164
signals [93; 1164].

Examples for professional tools are Custom WaveView (Synopsys), Simvision (Cadence Design
Systems) and GTKWave [BW]. Figure 1.1 shows what the GUI of GTKWave looks like. To the
left is an overview of all available signals and next to it a list of the currently displayed ones, as

1

well as their waveforms. In this example, the highlighted data_port[7:0] is a std_logic_vector
with 8 std_logic_1164 signals. The vector is opened for inspection.

Figure 1.1: Illustration of the waveform viewer GTKWave.

1.3 Hades and Styx

HADES or Hades is the acronym for the Hamburg Design System. It is a framework for
interactive simulation of circuits. Hades is written in Java and consists of a graphical editor, the
simulation engine, libraries of simulation components, and tools like a waveform viewer and
scripting shell [HaHo].

Figure 1.2 illustrates Hades’s GUI on the basis of an example circuit for a 1 bit full adder. At
the top is the menu providing many features like zooming, debugging, adding and removing
probes to signals and more. By adding a probe to a signal its events will be traced and can later
be analyzed with the waveform viewer. Simulation components like I/O elements, gates and
wires can be accessed from a right-click menu. Probes can also be added or removed from this
menu. At the bottom settings regarding the running time of the simulation can be made and
the user is given the currently passed time. The simulation can be stopped, paused, started or
resumed and made to run indefinitely.

2

Figure 1.2: Illustration of Hades’s GUI. The current circuit demonstrates a 1 bit full adder.

In Greek mythology Hades is the name of the god of the underworld, as well as the name of the
underworld itself. Following this naming convention the name of the waveform viewer is Styx,
which is the name of a female river god and the river that separates the realms of the living and
the dead.

The information site about Styx itself states, that waveforms play a much lesser role in Hades,
since it offers interactive simulation and circuits can be observed in real-time [StyHo]. In this
context, Styx is a light-weight waveform viewer that offers simple functionality and a simple
user interface. Styx is only able to read the Hades Waveform Viewer file format.

Figure 1.3 illustrates Styx’s GUI on the basis of some waveforms, showing at least one waveform
for each supported signal type. At the top is the menu, that offers functionality to open and save
files, change the number format of integer and std_logic_vector values and to update, clear or
remove all waveforms. The Search item is empty, but under Help→ Keys a key map can be
found, regarding the features searching, zooming and waveform movement. At the bottom are
buttons, that also offer functionality for waveform movement and zooming. Also featured at the
bottom is the time and name of the waveform at the current crosshair position and if clicked the
waveform’s current value and type.

Great features that are not supported by Styx, include the inspection of std_logic_vector signals
and the ability to only display a subset of signals.

3

Figure 1.3: Overview of Styx’s GUI.

For further information regarding Hades or Styx, consider reading the Hades tutorial [Nor06].

1.4 The Android platform

The most important thing to note is that Android and Java use different platforms. Java is still
used as the programming language and in parts of Android’s build process, but the Android
core libraries do not provide all the functionality that the Java core libraries offer. Support for
some other languages exists through the Android NDK [DevNDK], although their use is not
recommended in most cases.

The Android platform basically consists of the Android runtime (ART) and its predecessor
Dalvik, which execute Dalvik Executables (*.dex) containing Dex bytecode [DevRun]. Figure 1.4
demonstrates the build process in Android and depicts how an Android application package
(apk) is attained from the Java source. For a more detailed look at the build process consider
visiting Android’s Build System Overview [DevBSO].

1.4.1 What needs to be considered

As stated before, Android’s core libraries do not provide all the functionality that the Java core
libraries offer. An example for this is the java.awt package. Android only provides support
for java.awt.font from this package, since drawing is handled differently from Java. Both Java
and Android provide information about their APIs in form of online documentations [JavaAPI;

4

Java Android

drawing
java.awt.Graphics – – android.graphics.Canvas

– android.graphics.Paint

handling
keyboard – – gestures

mouse – – (soft) keyboard

memory

depends on OS, VM and – – Android sets a hard limit
pointers used – around 20 - 100 MB

~2 GB, 4 GB, 32 GB, 16 EB – – setting the largeHeap flag can
increase that limit (discouraged)

opening files
javax.swing.JFileChooser – – not always a built in option

– hope a file chooser is installed
– or write your own

Table 1.1: Some of the differences between the Android and Java platforms.

DroidAPI]. Table 1.1 gives a quick overview of the main differences that are of importance for
us.

A minor difference is how stuff is drawn. Java offers the java.awt.Graphics class for this, where
a Graphics object is not only used for drawing, but also for setting information about the color
to use, font sizes, etc. Android on the other hand separates between these two things. It offers
the two classes android.graphics.Canvas and android.graphics.Paint. The former is used for
drawing and the latter one is used to specify the information about color, the style and so on.
When drawing, a Paint object must always be given.

Another minor difference would be the ability to browse through the existing file structure and
selecting file(s). Java provides the class javax.swing.JFileChooser for this, so here it is possible
out of the box. Android offers no such class and although the Storage Access Framework
[DevSAF] was introduced with Android 4.4 (API level 19), there is no guarantee that on a device
running an older version a (pre-)installed application for this purpose exists. Since this ability is
a requirement for our purposes, we will have to ensure its availability by providing our own file
browser.

A bigger difference is the handling. In the original version of Styx this is achieved with the
use of a physical mouse and keyboard, but these are often not available on a mobile device,
especially the mouse. Instead, they offer a soft keyboard for certain aspects of an application,
have a touch screen and are otherwise handled via touch input. This input must then be translated
into gestures which are used to identify what action to perform. This is also the main topic of

5

this thesis. The supported gestures, their features and the logic behind them are explained in
great detail in chapter 3.

Last to be mentioned is the memory availability. Limits obviously exist for desktop computers
as well as for mobile devices, but they are usually much lower in the latter case. In both cases
the limits are defined by the overall available RAM. In Java they are furthermore depending on
the operating system, virtual machine and the pointers used [JavaVM]. Android however sets a
hard limit for each application only depending on the overall RAM available [DevMem]. Tests
on a few devices reported limits around 20 MB to 100 MB. Android additionally allows to set a
largeHeap flag that can increase the limit in some cases, but does not guaranteed to do so and its
use is strongly discouraged. The memory availability is of importance for us, because waveform
data can grow very fast. This will be explained in more detail in section 2.2.

6

Figure 1.4: Android’s build process in a nutshell [DevBSO].

7

8

2 The Hades Waveform Viewer file format

After having introduced Hades and Styx and having outlined what we need to consider during
the port to Android, we will now explain the Hades Waveform Viewer (hwv) file format.

The main waveform class is hades.styx.Waveform, all other waveform classes extend this class,
as shown in Figure 2.1. The diagram confines itself to the parts needed for reading and writing
waveform data. The array reallocation will be shown later in the paper, in form of source code,
the rest can generally be disregarded and is therefore not shown. For more information about
the Hades API, consider reading the online class documentation [HaAPI]. This documentation
can also be downloaded as a zip archive from the homepage.

Listing 2.1 shows the part of the source code, of the Waveform class, that is responsible for
the writing of waveform data. It implements the Serializable interface which means that it
possesses a serialVersionUID which is used to identify a class during deserialization. Here it
is commented in line 3, because it is not explicitly set to a value and its consequences will be
explained in section 2.1. The same holds true for all the subclasses of Waveform. In order to
write the waveform data an ObjectOutputStream is used to basically just write the important
fields, together with some meta information (e.g. the serialVersionUID), to a file. So the file
format is just a series of serializable objects. No optimizations whatsoever are made before
writing to a file.

1 public class Waveform implements Serializable
2 {
3 //private static final long serialVersionUID = -1L;
4
5 protected double[] times; // stores event times
6 protected Object[] events; // stores event values
7 protected int size; // current array sizes
8 protected int fill; // how many events there are
9 protected String name; // short name
10 protected String fullName; // full name
11
12 // ...
13
14 private final void writeObject (ObjectOutputStream out)
15 throws IOException
16 {
17 out.writeObject(name);
18 out.writeInt(fill);
19 out.writeObject(fullName); // new as of 02.07.03
20 out.writeObject(times);
21 out.writeObject(((Object) (events)));
22 }
23 }

Listing 2.1: Original source code, showing how waveforms are written to a file in the latest
version of Styx.

9

The reading process works analogue to the writing process. The serialVersionUID is used to
identify the currently read object and whether a compatible class exists. If no such class exists, a
ClassNotFoundException is thrown. The only exception to the writing process is the conditional
statement, in order to support both an old and a “newer” format.

1 public class Waveform implements Serializable
2 {
3 // ...
4
5 private final void readObject (ObjectInputStream in)
6 throws IOException, ClassNotFoundException
7 {
8 name = (String) in.readObject();
9 fill = in.readInt();
10
11 Object tmp = in.readObject();
12
13 // handle the new format (fullName present)
14 if (tmp instanceof String)
15 {
16 fullName = (String) tmp;
17 times = (double[]) in.readObject();
18 events = (Object[]) in.readObject();
19 }
20 // handle the old format (fullName not present)
21 else
22 {
23 times = (double[]) tmp;
24 events = (Object[]) in.readObject();
25 }
26 }
27 }

Listing 2.2: Original source code, showing how waveforms are read from a file in the latest
version of Styx.

10

ha
de

s.
st

yx

W
av

ef
or

m

#
tim

es
:d

ou
bl

e
[]

#
ev

en
ts

:O
bj

ec
t[

]
#

si
ze

:i
nt

#
fil

l:
in

t
#

na
m

e
:S

tr
in

g
#

fu
llN

am
e

:S
tr

in
g

... -w
ri

te
O

bj
ec

t(
ou

t:
O

bj
ec

tO
ut

pu
tS

tr
ea

m
)

-r
ea

dO
bj

ec
t(

in
:O

bj
ec

tI
np

ut
St

re
am

)
...

W
av

eS
td

L
og

ic
11

64

-i
nt

V
al

ue
s

:i
nt

[]
...

...

W
av

eI
nt

eg
er

... ...

W
av

eD
ou

bl
e

... ...

W
av

eS
td

L
og

ic
V

ec
to

r
...

.
...

W
av

eS
tr

in
g

... ...

«e
xt

en
ds

»

«e
xt

en
ds

»
«e

xt
en

ds
»

«e
xt

en
ds

»

«e
xt

en
ds

»

Figure 2.1: A very slimmed down version of the UML class diagram for the hades.styx package.

11

2.1 Compatibility

As previously mentioned, none of the Waveform classes explicitly set the serialVersionUID.
This causes the serialization runtime to calculate one for us, but this calculation is sensitive to
certain class details. Which changes can affect the calculation can be looked up in the Java(TM)
Object Serialization Specification [JavaOSS]. Different compiler implementations can also
cause a different result to be computed, for the same class. Because of these reasons it is
strongly advised to manually set a serialVersionUID and ensure that changes do not affect the
operability.

Now that we know about the role of the serialVersionUID and how waveform data is read
and written we can talk about the compatibility of files between different Hades versions.
Unfortunately, the lack of an explicit serialVersionUID is exactly the reason why there are
incompatibilities between many different Hades versions, even though the files might actually
be compatible in the end. The hades-applet.jar, hades-signed.jar and the standard hades.jar,
which are all available from the Hades homepage, are just three examples for this.

Providing support for all versions might possibly still be attained, by writing the process of
reading a byte stream of serialized objects from the ground up or by using a custom classloader
to try and load the appropriate class for the current version. Rather than going this direction two
other approaches will be showcased.

Approach 1 would be to just clean up the classes and remove all dependencies of classes that are
not supported under Android. This is quick and easy to implement and there will not even be
any changes that have to be made in the Java version. When trying to read an object with an
incompatible class, the exception thrown will state the different serialVersionUIDs. The correct
one will just have to be set explicitly in the new class and it needs to be ensured that the reading
order of objects is correct for the current version. By doing this we would again only support one
version at a time, but we would have a quick “fix” for our problem. This can then be extended to
use the same serialVersionUID in all Hades versions, to support all files from this point onward.
Older files before this would either have to be migrated or will no longer be supported.

In the second approach the ObjectOutputStream will be replaced with a DataOutputStream,
thereby losing the necessity to implement the Serializable interface. Reading and writing to files
would largely remain the same, but some changes would need to be made in the Java versions,
mainly for writing the arrays that are storing the event data. With this approach there would
also be no support for older files or they would have to be migrated first. Ultimately this is the
approach that was used. It has been further extended to try and reduce the subsequent memory
usage which will be explained in the next section. The final source code showing the writing and
reading processes of the new Waveform superclass and exemplary for one if its subclasses can
be seen in Listing 2.3, Listing 2.4, Listing 2.5 and Listing 2.6. Since this approach was chosen,
a migrater for the currently latest standard hades.jar version has been written. The migrater
is a simple, but integral tool for this project. Without it we would not have files to use under
Android. All this migrater does is, it uses the appropriate class files of the Hades version to read
a waveform file, creates a corresponding correct new Waveform object and then adds each event
from the old waveform to this new one. After it has finished this process for all waveforms, it
creates a new file into which it writes the new waveforms, using the new file format.

The new Waveform class is now abstract, because the values variable is now of the Object type
that will later hold a reference to the actual values array of the subclass and not all methods can

12

be implemented here because of that. Whenever possible, shared logic was implemented in this
superclass, otherwise an abstract method was declared.

Therefore, the writing process is now split up into a part that the superclass performs and a part
that is specific to each subclass. The superclass writes the waveform’s names, its amount of
events and all the event times. The writeData() method is always invoked through a subclass.

1 public abstract class Waveform
2 {
3 private String fullName;
4 private String name;
5 protected int size;
6 protected int fill;
7 protected double[] times;
8
9 // will hold a reference to an array whose type depends
10 // on the subclass
11 private Object values;
12
13 // ...
14
15 public void writeData (DataOutputStream dos)
16 throws IOException
17 {
18 dos.writeUTF(fullName);
19 dos.writeUTF(name);
20 dos.writeInt(fill + 1);
21
22 // the values array will be written by the subclass
23
24 // write all event times to the file,
25 for (int i = 0; i < fill + 1; i++)
26 {
27 dos.writeDouble(times[i]);
28 }
29 }
30 }

Listing 2.3: Source code showing how waveforms are written to a file in the new Waveform
superclass.

The subclass’s writeData() method is always the one that gets invoked externally. Each subclass
possesses a TAG that is used to identify the type of waveform while reading from a file. It can
somewhat be compared to the serialVersionUID. At the beginning the subclass writes its TAG to
the file, it then invokes the writeData() method of the superclass and afterwards writes all the
event values.

1 public class WaveInteger extends Waveform
2 {
3 public static final int TAG = 2;
4 private int[] values;
5
6 // ...
7
8 public void writeData (DataOutputStream dos)
9 throws IOException

13

10 {
11 // write the tag for later identification
12 dos.writeInt(TAG);
13
14 // let superclass write important data
15 super.writeData(dos);
16
17 // write the values array
18 for (int i = 0; i < fill + 1; i++)
19 {
20 dos.writeInt(values[i]);
21 }
22 }
23 }

Listing 2.4: Source code showing how waveforms are written to a file in the new WaveInteger
subclass.

As with the original version, the reading process here is analogue to the writing process as well.
The superclass reads the fields in the order they were written. Its readData() method is always
invoked by a subclass.

1 public abstract class Waveform
2 {
3 private String fullName;
4 private String name;
5 protected int fill;
6 protected int size;
7 protected double[] times;
8
9 // ...
10
11 public void readData (DataOutputStream dis)
12 throws IOException
13 {
14 fullName = dis.readUTF();
15 name = dis.readUTF();
16
17 size = dis.readInt();
18 fill = size - 1;
19
20 times = new double[size];
21
22 // the values array will be read by the subclass
23 for (int i = 0; i < size; i++)
24 {
25 times[i] = dis.readDouble();
26 }
27 }
28 }

Listing 2.5: Source code showing how waveforms are read from a file in the new Waveform
superclass.

The subclass’s readData() method is always the one that gets invoked externally. At the
beginning the subclass invokes the readData() method of the superclass, so that the read order

14

coincides with the write order. Afterwards it reads all the event values. The TAG will neither be
read in a subclass, nor in the superclass. The TAG will be read at some other point and will be
used to create a new waveform of the according type. It is a minor detail, but worth being noted
in case someone wants to write their own reader for the new file format.

1 public class WaveInteger extends Waveform
2 {
3 private int[] values;
4
5 // ...
6
7 public void readData (DataOutputStream dis)
8 throws IOException
9 {
10 // let superclass read important data
11 super.readData(dis)
12
13 values = new int[size];
14
15 // read the values array
16 for (int i = 0; i < size; i++)
17 {
18 values[i] = dis.readInt();
19 }
20 }
21 }

Listing 2.6: Source code showing how waveforms are read from a file in the new WaveInteger
subclass.

All these read and write operations would also be possible with an ObjectOutputStream, but
using one would implicate implementing the Serializable interface. Since there no longer is a
need for this, the change for a DataOutputStream occurred.

2.2 Memory usage

As it has already been mentioned, the new classes also aim to reduce the memory usage. To
give two related examples, the ring-oscillator demo (accessible in Hades via Help→ demo→
ring-oscillator) has once been run for about 11 ms and once for about 15 ms, probes had been
added to all signals. The 11 ms run consisted of about 2200 events and the 15 ms run of about
1091000. The following snippet of some console output illustrates the size differences between
the original and the migrated files:

1 ->[~] % du -h ring-oscillator-1∗

2 23M ring-oscillator-11ms.hwv
3 28K ring-oscillator-11ms-migrated.hwv
4 23M ring-oscillator-15ms.hwv
5 13M ring-oscillator-15ms-migrated.hwv

Granted, since both of the original files have the exact same file size, the simulation was part
of the demos and it is one of those examples where the waveform data grows rapidly, it might

15

have been that the initial array sizes were chosen generously to counter often reallocations.
These examples still hold some value, since the ObjectOutputStream writes objects as they are
and the waveforms would take up the 23 MB of memory every time they are viewed. The
migration process, and generally the new way of writing data to a file, strips all this unnecessary
garbage. This is especially important, since Android sets a pretty tight limit on the memory an
application can use. A more appropriate example demonstrating the memory reduction might be
the following:

1 ->[~] % du -h paper-example∗

2 12K paper-example.hwv
3 8.0K paper-example-migrated.hwv

The paper-example.hwv file is a file containing waveforms that are pretty much completely filled
with events. The waveforms were already shown in Figure 1.3. After migrating the file it is still
roughly 33% smaller. This can partly be attributed to the use of primitive arrays instead of their
Object counterparts. The amount of saved memory depends from case to case. As of yet, some
small tests have not identified a case where a file is bigger after a migration.

In order to be able to use primitive arrays instead of their Object wrappers, some changes in the
code are needed, the most important ones being in the constructor and the array reallocation.

Listing 2.7 shows the original source code. In the constructor a double array and an Object array
are created to store event times and values. If the reallocate() method is triggered, while trying
to add a new event, it is first tried to simply create a new array of twice the size and copying the
values into the new array. If this fails, the existing array will be reused by overwriting the first
half of the events with the last half, and then reusing the last half for new events.

1 public class Waveform
2 {
3 protected int size;
4 protected double[] times;
5 protected Object[] events;
6 protected int fill;
7
8 // ...
9
10 public Waveform ()
11 {
12 size = 10;
13 times = new double[size];
14 events = new Object[size];
15
16 fill = 0;
17 times[0] = 0.0;
18 events[0] = "";
19 fullName = "no full name set";
20 }
21
22 public void reallocate()
23 {
24 try
25 {
26 int newsize = 2 * size;
27 double[] newtimes = new double[newsize];

16

28 Object[] newevents = new Object[newsize];
29
30 for(int i = 0; i < size; i++) // copy old values
31 {
32 newtimes[i] = times[i];
33 newevents[i] = events[i];
34 }
35
36 times = newtimes;
37 events = newevents;
38 size = newsize;
39 }
40 catch(OutOfMemoryError outofmemoryerror)
41 {
42 int half = fill / 2;
43
44 for(int i = 1; i < half; i++) // move last to first halve
45 {
46 times[i] = times[i + half];
47 events[i] = events[i + half];
48 }
49
50 fill = half - 1;
51 }
52 }
53 }

Listing 2.7: Original constructor and reallocation method in the Waveform class.

In the original program everything is handled by the Waveform superclass. The new approach is
a bit different. The Waveform superclass defines the method newValuesArray(), which is used in
the constructor and during the array reallocation. Instead of trying to create a values array itself,
it delegates this task to the subclasses. Other changes that have been made are the introduction
of a lower maximum capacity for arrays and the use of System.arraycopy() instead of loops, to
copy arrays or parts thereof. Other than that the classes are pretty much identical on this part.
The source code for the new superclass can be seen in Listing 2.8.

The maximum capacity is still experimental and is there to try and further reduce memory
usage under Android. Setting a lower limit obviously has some drawbacks. Only a look at the
ring-oscillator example from before is needed, where the overall event count already exceeded
1000000 events, after only 15 ms. Because of this, support to turn this feature off or at least
the ability to modify the limit should be added, as it does not yet exist. But since the Android
version only supports reading waveform data from a file for now, the whole data will always be
read anyway and the limitation is not important. It is relevant in case the Waveform classes in
the original Styx version should be replaced by these.

1 public abstract class Waveform
2 {
3 private static final int START_CAPACITY = 10;
4 private static final int MAX_CAPACITY = 1000000;
5 protected double[] times;
6 private Object values;
7 protected int size;
8 protected int fill;
9 private String fullName;

17

10 private String name;
11
12 // ...
13
14 public Waveform (String fullName, String name)
15 {
16 this.fullName = fullName;
17 this.name = name;
18
19 times = new double[START_CAPACITY];
20 values = newValuesArray(START_CAPACITY);
21
22 fill = 0;
23 size = START_CAPACITY;
24 }
25
26 protected abstract Object newValuesArray (int arraySize);
27
28 protected void reallocate ()
29 {
30 try
31 {
32 if (size == MAX_CAPACITY) // experimental
33 {
34 throw new OutOfMemoryError();
35 }
36
37 int newSize = Math.min(2 * size, MAX_CAPACITY);
38 double[] newTimes = new double[newSize];
39 Object newValues = newValuesArray(newSize);
40
41 // use System.arraycopy instead of a loop
42 System.arraycopy(times, 0, newTimes, 0, size);
43 System.arraycopy(values, 0, newValues, 0, size);
44
45 times = newTimes;
46 values = newValues;
47 size = newSize;
48 }
49 catch (OutOfMemoryError e)
50 {
51 int half = size / 2;
52 System.arraycopy(times, (size + 1) / 2, times, 1, half);
53 System.arraycopy(values, (size + 1) / 2, values, 1, half);
54
55 fill = half;
56 }
57 }
58 }

Listing 2.8: Constructor and array reallocation in the new Waveform superclass.

A subclass’s newValuesArray() method simply returns a new array of the appropriate type with
the given arraySize. In the constructor, as well as the reallocate() method, the reference to the
new values array will be obtained by using the super.getValues() method. The corresponding
source code is depicted in Listing 2.9.

18

1 public class WaveInteger extends Waveform
2 {
3 private int[] values;
4
5 // ...
6
7 public WaveInteger (String fullName, String name)
8 {
9 super(fullName, name);
10
11 // get the reference
12 values = (int[]) super.getValues();
13 values[0] = 0;
14 }
15
16 @Override
17 public int[] newValuesArray (int arraySize)
18 {
19 return new int[arraySize];
20 }
21
22 @Override
23 protected void reallocate ()
24 {
25 super.reallocate();
26 values = (int[]) super.getValues();
27 }
28 }

Listing 2.9: Source code for the constructor and reallocation method in the new WaveformInteger
subclass.

Two further possibilities to reduce the memory usage, that have not been implemented, will
be briefly addressed now. In order to use either or both of these methods, greater changes
would need to be made regarding operations like adding and finding an event or accessing an
event’s value. The higher complexity of the algorithms would also increase their access time
and computation costs. These are examples for a time-memory tradeoff.

By looking at Listing 2.1 again, it is easily understandable that a double array to store event
times will be created for each waveform. This can be cause for redundancy, because often times
many waveforms have events at the same time. Instead of storing the event times in a central
place, each waveform stores this information for themselves.

Memory usage to store std_logic_1164 event values can be reduced by packing them. Internally
an integer is used to store one of its values, but since they can only take the values U, X, 0, 1, Z,
W, L, H and D, only requiring 4 bits to represent all possible values, an integer can be used to
actually store 8 std_logic_1164 event values.

2.3 Surrogate format

The new surrogate for the old Hades Waveform Viewer file format offers even more features. The
first 8 bytes and the last 8 bytes represent the magic number for *.hwv files. The magic number
is simply the string “HWV-File” or as a number in hexadecimal format “0x4857562d46494c45”.

19

A file’s first and last bytes should be checked against this number to identify whether the file to
read is actually using the new file format and therefore supported. After the first magic number,
the amount of waveforms, stored in the file, follows. This number is immediately followed by
the last byte position of each waveform inside the file. This information can be used to skip
waveforms while reading waveform data. After this meta information, blocks of waveform data
follow. Each block begins with a TAG, followed by the full name and then the name of the
waveform. After this, the amount of events is stored. Afterwards all event times and lastly all
the event values follow. Figure 2.2 illustrates this, once more, graphically.

magic number waveform count end byte 1 end byte 2 ... end byte N

TAG full name name event count event times event values ... magic number

waveform count times

waveform count times

Figure 2.2: Surrogate for the old Hades Waveform Viewer file format.

For convenience the styx.io.StyxFileReader and styx.io.StyxFileWriter exist.

A StyxFileReader can be used to read files with the new format. It performs checks to make sure
that the new format is actually used, before attempting to read the file. It offers the two methods
loadWaveforms() and readWaveforms(). The former is used to load waveform information
regarding the actual waveform count, all their names and all their approximated sizes. The latter
is used to either read all waveforms, or a subset thereof. The loadWaveforms() method needs to
have been called at least once before making calls to readWaveforms(). Furthermore, the class
offers methods to retrieve the waveform count, the names and the approximated sizes.

A StyxFileWriter can be used to write waveform data to a file, using the new file format. It
offers the method writeToFile() for this purpose. When calling this method, the waveform data
to write needs to be given.

A diagram depicting the class hierarchy for the new Waveform classes is given in Figure 2.3.
It is very similar to the one shown in Figure 2.1. It shows the type for the values array
of each Waveform type. Notice the StdLogicVectorDummy array for WaveStdLogicVector
waveforms. This class replaces the styx.models.StdLogicVector class, which is originally used
for hades.styx.WaveStdLogicVector values. Do keep in mind that some methods also changed
their access modifier, or got their logic changed and that a few new methods were introduced.
All this is not shown, to keep the diagram clear.

20

st
yx

.w
av

ef
or

m
s

W
av

ef
or

m
«a

bs
tr

ac
t»

#
tim

es
:d

ou
bl

e
[]

-v
al

ue
s

:O
bj

ec
t

#
si

ze
:i

nt
#

fil
l:

in
t

-n
am

e
:S

tr
in

g
-f

ul
lN

am
e

:S
tr

in
g

... +
w

ri
te

D
at

a
(d

os
:D

at
aO

ut
pu

tS
tr

ea
m

)
+

re
ad

D
at

a
(d

is
:D

at
aI

np
ut

St
re

am
)

...

W
av

eS
td

L
og

ic
11

64

-v
al

ue
s

:i
nt

[]
...

...

W
av

eI
nt

eg
er

-v
al

ue
s

:i
nt

[]
...

...

W
av

eD
ou

bl
e

-v
al

ue
s:

do
ub

le
[]

...
...

W
av

eS
td

L
og

ic
V

ec
to

r

-v
al

ue
s

:S
td

Lo
gi

cV
ec

to
rD

um
m

y
[]

...
...

W
av

eS
tr

in
g

-v
al

ue
s

:S
tri

ng
[]

...
...

«e
xt

en
ds

»

«e
xt

en
ds

»
«e

xt
en

ds
»

«e
xt

en
ds

»

«e
xt

en
ds

»

Figure 2.3: A very slimmed down version of the UML class diagram for the new styx.waveforms
package.

21

22

3 User manual

This chapter addresses the main topic of this thesis. It lists all of the features that are supported,
explains what they do and how to use them and additionally offers source code regarding their
implementation. Because the code examples can get very long, some of them will be found
in Appendix A. All the images supplied in this chapter were taken on a smartphone, with a
diagonal screen size of only 4.5 inches and a resolution of 1280x720 pixels. Devices with higher
screen resolutions are able to show more than just 5 waveforms, in either orientation.

3.1 Gesture detection

In order to be able to handle gestures performed by the user, the touch input needs to be
intercepted. The android.view.View class is the root for all classes, used to visually present data
on the screen. When implementing a custom view, this class or a more appropriate one of its
subclasses, should be extended. This View class offers the onTouchEvent() method, that is called
if a touch has been registered in the bounds of the view. A very low level way of translating
touch input and detecting gestures is to overwrite this method and implement the needed logic
oneself. Listing 3.1 shows a skeleton for this purpose. The onTouchEvent() method accepts an
argument of the MotionEvent type. This motion event contains information related to a touch
event, like the position on screen, the action performed, the time of the event and so on. This
event must then be correctly interpreted, and if possible, be translated into a gesture. It must
then be ensured that the correct action is performed, based on the detected gesture.

1 public class MyView extends View
2 {
3 // ...
4
5 @Override
6 public boolean onTouchEvent (MotionEvent event)
7 {
8 switch (event.getActionMasked())
9 {
10 case MotionEvent.ACTION_DOWN: // a pointer went down
11 break;
12 case MotionEvent.ACTION_MOVE: // a pointer moved
13 break;
14 case MotionEvent.ACTION_UP: // a pointer went up
15 break;
16 // case ...
17 }
18 return true;
19 }
20 }

Listing 3.1: How to handle touch input. This skeleton can be extended to detect gestures oneself.

23

When extending or creating a new ViewGroup, the onInterceptTouchEvent() method needs to be
considered as well, but this is not case for the given problem.

For convenient and basic gesture detection, Android provides the two gesture detection classes
ScaleGestureDetector and GestureDetector, in conjunction with the four gesture listeners. Two
of those are OnScaleGestureListener and OnGestureListener. The other two are just variants of
the first two, returning false for every event. They are equal to the implementation of the first
two listeners, as depicted in Listing 8.1.

Listing 8.1 furthermore shows what type of gestures are detected, and how the detectors can be
created and used. The creation happens in one of the view’s constructors. To use the detectors,
the current motion event received in the onTouchEvent() method, will be passed on to them. In
case one of the supported gestures is detected, the appropriate method is invoked, for example
the onScroll() method if the user dragged his finger across the screen.

Android’s provided gesture detection is sufficient for the need of this project. For anyone
wanting to support custom gestures beyond that scape, the first method is definitely the way to
go.

3.2 Starting the application

When starting the application, the user is greeted with an empty waveform viewer. This start
screen is shown in Figure 3.1. The only thing possible to interact with, at this point, is the menu
in the Action Bar. Opening up the menu reveals 6 items. Only the items Open File, Zoom fit,
Smart zoom fit, Number Format and Settings are enabled for now. The zoom fit and smart zoom
fit items will not do anything, since no waveforms are visible, but the number format can already
be used to set the number format for integer and std_log_vector values. Clicking on the Settings
item opens the settings window and allows the user to make some adjustments, but this will be
discussed in section 3.11. So for now we will start by opening a new file and dive right into
section 3.3 about file picking.

3.3 File picking

It was already explained that there is no guarantee for the existence of a file picker/browser on
Android devices. Styx Android comes with its own small file picker, for this reason. This file
picker offers only the bear necessities of moving between directories, providing information
about the current directory path, canceling the process of picking a file and actually picking a
file. The file picker overlays the current view like a dialog, as can be seen in Figure 3.2. Moving
up a directory, is achieved by clicking on the folder with the “..” label, but anyone who has at
least once seen or worked with an Unix-like system will most likely know this already. When
clicking on any other directory, the file browser will try to move into that directory. If this is not
possible, the user will be notified about this. When clicking on a file, that file will be picked and
the waveform viewer will try to read it. If reading the file is not possible for whatever reason, the
user will be notified as well. Clicking the “Cancel” button at the bottom will stop this process.
Once a valid file has been selected, the application will move over to the selection of which
waveforms to read and display from that file.

24

Figure 3.1: The application’s start screen, with an open menu in the action bar.

Figure 3.2: The file browser supplied with the waveform viewer.

25

Figure 3.3: Dialog to select which waveforms to read and display.

3.4 Waveform display selection

The user has the possibility to select which waveforms to read and display. To help the user
decide during this process, the application will not only display the waveform names, but also
an approximation of their sizes and the remaining available memory for the application. This
is by no means an accurate result, but it is enough to let the user know in case the memory
limit might be about to be reached. What this selection dialog looks like is shown in Figure 3.3.
Changes in the selections will only be applied if they are confirmed by clicking the “OK” button,
in all other cases will the changes be discarded. If at least one waveform is selected for display,
the necessary waveforms will be read from the file. The displayed data looks very similar to
that of the Java version, and some example data is illustrated in Figure 3.4. If the user wishes
to change the selections at a later point in time, the dialog can be reopened via the Displayed
Waveforms item from the menu. This item will become enabled, as soon as a valid waveform
file is picked.

3.5 Scrolling

Android labels the possibility of scrolling in both the x and y axes as panning, whereas scrolling
itself defines the general act of moving a viewport. So this chapter should more specifically
be called Panning, but Scrolling was chosen because this term is more familiar to most users
and includes panning as well. The application supports two types of scrolling, these two being
dragging and flinging. When a user reaches an end of the viewport while scrolling, it will be
indicated by an edge glow, see Figure 3.5 for an example.

26

Figure 3.4: The waveform viewer displaying some example data.

Figure 3.5: An example for the edge glows. In this case the user reached the left and the top
edge while dragging the viewport.

27

3.5.1 Dragging

As the name implies, Dragging describes the type of scrolling by dragging ones finger across the
touch screen. If the gesture detector detects this, the onScroll() method is invoked. The source
code showing how the gesture is handled can be seen in Listing 8.2.

First it is checked whether the user is currently selecting an area for the selection zoom feature
and cancels it if necessary. It then adds the currently detected travel distance on each axis to the
appropriate counter. The reason for using these counters is to also support scrolling on only one
axis.

Afterwards another check is performed to determine where the pointer went down before any
scrolling was detected. If the pointer went down in the area dedicated for the waveform names,
one more check needs to be done. This check is used to verify if a drag and drop operation is
currently active and makes some adjustments for this operation if necessary. The method then
returns prematurely to disable any other kind of scrolling. If no drag and drop operation is active
at least the horizontal scrolling will be disabled. Horizontal scrolling should only be available if
the pointer went down in the area used to draw the waveform events.

After having determined on which axes scrolling is allowed, it is checked whether the user is
already scrolling or not. In case the user is not scrolling it is determined on which axis the longer
distance was traveled and scrolling is initiated on it. If on the other hand the user is already
scrolling on exactly one axis, a check is performed to see whether scrolling on the second axis
should be initiated as well.

Once these checks are done the actual scrolling will be performed. This is done by adjusting a
variable used to store the current scroll position. The counter needs to be adjusted as well, and a
flag is set to indicate that scrolling has actually happened.

The last part is only executed if the viewport needs adjusting. This is done to reduce calls to
postInvalidateOnAnimation(), which will update the screen. Other checks are also performed to
see if an edge of the viewport was reached, and whether the user needs to be notified about this.
What this can look like can bee seen in Figure 3.5.

3.5.2 Flinging

Flinging starts out like dragging and is then initiated by quickly lifting the finger during the
drag. The viewport will then keep on scrolling without further touch input. The scroll speed
decreases over time, until it finally stops moving. If the gesture detector detects a fling, the
onFling() method is invoked. Flinging is split up into three parts, the source codes can be found
in Listing 3.2, Listing 3.3 and Listing 8.3.

The source code for the onFling() method can be found in Listing 3.2. In this method a check is
first performed to determine whether a drag and drop operation is in action. Flinging is only
available when this is not the case. Upon availability, another check is performed to determine
where the pointer went down, likewise to the test for the dragging operation. If the finger went
down in the area dedicated for the waveform names, the possibility of flinging will be disabled.
As with the dragging, a horizontal fling should only be allowed if the pointer went down in the
area used to draw the waveform events.

28

When horizontal flinging is allowed, further checks are performed to determine whether the user
wants to fling on only one axis or both. In either case will the fling be delegated to the fling()
method.

1 @Override
2 public boolean onFling (MotionEvent e1, MotionEvent e2, float

velocityX, float velocityY)
3 {
4 // only allow flinging if we are not currently performing a drag
5 // and drop operation
6 if (!mDragAndDropActive)
7 {
8 if (hitTestNames(e1.getX(), e1.getY()))
9 {
10 //only allow flinging vertically
11 fling(0, (int) -velocityY);
12 }
13 else if (e1.getX() > mContentRect.left)
14 {
15 if (mFlingFactor > 0 &&
16 Math.abs(velocityX) > mFlingFactor *

Math.abs(velocityY))
17 {
18 fling((int) -velocityX, 0);
19 }
20 else if (mFlingFactor > 0 &&
21 Math.abs(velocityY) > mFlingFactor *

Math.abs(velocityX))
22 {
23 fling(0, (int) -velocityY);
24 }
25 else
26 {
27 fling((int) -velocityX, (int) -velocityY);
28 }
29 }
30 }
31
32 return true;
33 }

Listing 3.2: How flinging is handled.

The source code for the fling() method can be found in Listing 3.3. This method takes two
arguments, the horizontal and the vertical fling velocity. This method performs further checks
on how to execute the fling.

The reason for these checks will now be explained. Due to the fact that the actual width for
a canvas needed, to draw all waveform events at a certain zoom level, can be extremely large,
its size cannot always be represented by an integer value. For this reason the horizontal scroll
position represented by a long. This will be explained in more detail in section 3.6.

Another information needed to explain the reason and to understand the source code, is that
mScroller is an OverScroller object. This class is provided by Android and can be used to
calculate individual scroll positions during a fling animation. An OverScroller’s fling() method

29

takes integer values for all arguments. The complete signature can be seen in lines 3-6 of
Listing 3.3.

The reason for these checks is basically that the current horizontal scroll position cannot always
be directly used with the OverScroller object. In order to bypass this problem and still be able to
use the OverScroller, three cases will be distinguished. They are discerned in this method as
opposed to the onFling() method, in order to reduce the amount of conditional statements.

In the first case the user wishes to fling to the left, while he can reach the left edge of the viewport
with a single fling. This is called a careful left fling. In this case we can safely use the current
horizontal scroll position as the argument for startX. The corresponding flag will be set.

In second case the user wishes to fling to the right, while he can reach the right edge of the
viewport with a single fling. This is respectively called a careful right fling. In this case 0 is used
for the horizontal start position and the maximum position is calculated based on the current
width and scroll position. The corresponding flag will be set and the scroll position at the start
of the fling will also be remembered, because of the explained problem.

The last case is if neither a careful left nor a careful right fling needs to be performed. In this
case 0 will be used for the horizontal start position as well. For the horizontal minimum and
maximum scroll positions, the maximum fling amount and its negative value can safely be used.
The scroll position at the start of the fling will be remembered.

The vertical fling does not pose this problem, because an insane amount of waveforms would be
needed. It is just assumed that this will never be the case. The calculation will now be delegated
to the OverScroller object.

1 private void fling (int velocityX, int velocityY)
2 {
3 // mScroller.fling(int startX, int startY,
4 // int velocityX, int velocityY,
5 // int minX, int maxX,
6 // int minY, int maxY,
7 // int overScrollX, int overscrollY)
8
9 //if we have do to a careful left fling
10 if (velocityX < 0 && mScrollX <= mMaxFlingVelocity)
11 {
12 mCarefulLeftFling = true;
13 mScroller.fling((int) mScrollX, mScrollY,
14 velocityX, velocityY,
15 0, mMaxFlingVelocity,
16 0, mSizeY - mContentRect.height(),
17 mContentRect.width() / 2,
18 mContentRect.height() / 2);
19 }
20 //if we have do to a careful right fling
21 else if (velocityX > 0 && (mSizeX - mScrollX) <= mMaxFlingVelocity)
22 {
23 mFlingStartX = mScrollX;
24 mCarefulRightFling = true;
25 mScroller.fling(0, mScrollY,
26 velocityX, velocityY,
27 0, (int) (mSizeX - mScrollX -

mContentRect.width()),

30

28 0, mSizeY - mContentRect.height(),
29 mContentRect.width() / 2,
30 mContentRect.height() / 2);
31 }
32 //all other flings
33 else
34 {
35 mFlingStartX = mScrollX;
36 mScroller.fling(0, mScrollY,
37 velocityX, velocityY,
38 -mMaxFlingVelocity, mMaxFlingVelocity,
39 0, mSizeY - mContentRect.height(),
40 mContentRect.width() / 2,
41 mContentRect.height() / 2);
42 }
43
44 postInvalidateOnAnimation();
45 }

Listing 3.3: Source code for the fling() method.

An OverScroller object will make calls the computeScroll() method of the view it belongs to,
while calculating scroll positions during a fling. By overwriting this method, the actual fling can
be performed. The source code for this method can be found in Listing 8.3.

A the beginning a check is performed, to figure out whether the OverScroller can calculate a new
scroll position. This is necessary because this method can also get invoked in other situations.
One of those cases is when the GestureDetector detected dragging, so it needs to be ensured
that a fling animation is in process.

First the flags for a careful left and careful right fling will be examined. If either one is set, it is
also checked whether the horizontal scroll position is out of the viewport’s bound, meaning if
one of its edges has been overstepped. The scroll position will then be adjusted to the correct
bound, and the user will be notified about this through the use of an edge glow. If the new
position is still inbound, the new scroll position will just be set. Except for the careful left
fling, the correct scroll position will be calculated by using the scroll position we saved at the
beginning of the fling.

The latter steps are then also applied to adjust the vertical scroll position.

3.6 Zooming

If at least one waveform has been selected for display, the maximum possible viewport width
will be determined. This value will depend on the screen resolution and the simulation time.
The maximum width for a viewport with a minimum width of 720 pixels and a simulation time
of 5 seconds will be 720 ·5 ·1015 = 3,6 ·1018 pixels. This obviously exceeds the limits of an
integer by far, but is still in the range of a long. For this reason long values are used to store
information about the current viewport width and horizontal scroll position. In this example
zooming is possible up to the femtosecond scale. The use of long values unfortunately also
means that after a certain point zooming will only be possible unto higher timescales. Only
horizontal zooming is possible as of now.

31

3.6.1 Pinch zoom

Pinch zooming describes the type of zooming, that happens when the user has two pointers on
the touch screen and drags at least one of them. In newer versions this is also the case if the user
drags a finger across the screen right after a double tap. This feature has been disabled, because
double taps will be used to initiate other actions.

When the scale gesture detector detects the beginning of a zoom, the onScaleBegin() method
will be called. The source code can be found in Listing 3.4.

This method will stop the process of selecting an area for the selection zoom feature, if necessary.
It will then save the current distance between the two pointers and the relative horizontal focus
between them, based on the current scroll position and viewport width. From now on the
onScale() method will be called.

1 @Override
2 public boolean onScaleBegin (ScaleGestureDetector detector)
3 {
4 //stop zoom selection
5 if (mSelectingArea)
6 {
7 mSelectingArea = false;
8 }
9
10 //set current span x
11 lastSpanX = detector.getCurrentSpanX();
12
13 //set relative focus x position
14 relativeFocusX = (mScrollX + (double) detector.getFocusX() -

mContentRect.left) / mSizeX;
15
16 return true;
17 }

Listing 3.4: Initiation of a pinch zoom.

Whenever onScale() gets invoked, the new viewport width will be calculated based on the current
and old distance between the two pointers. If the new width is out of bounds, it will be adjusted
accordingly. Afterwards the new timescale, and the interval at which marks in the time bar
should drawn, will also be recalculated. It is then tried to center the visible viewport around
the relative horizontal focus. This enables the user to zoom around a specific time. The last
remembered distance between the two pointers will then be replaced by the current one, for use
in the next call. The corresponding source code can be found in Listing 3.5.

1 @Override
2 public boolean onScale (ScaleGestureDetector detector)
3 {
4 //calculate new x size
5 curSpanX = detector.getCurrentSpanX();
6 mSizeX *= curSpanX / lastSpanX;
7
8 //adjust size, if necessary
9 if (mSizeX > mMaxSizeX)
10 {

32

11 mSizeX = mMaxSizeX;
12 }
13 else if (mSizeX < mContentRect.width())
14 {
15 mSizeX = mContentRect.width();
16 }
17
18 //calculate new time scale
19 mTimeScale = (int) Math.floor(Math.log10(
20 mOverallMaxTime * mContentRect.width() / mSizeX));
21 mTimeMarkInterval = mSizeX / mOverallMaxTime * Math.pow(10,

mTimeScale);
22
23 //adjust scroll to center the relative focus
24 mScrollX = (long) (relativeFocusX * mSizeX) -

(mContentRect.width() / 2);
25
26 if (mScrollX < 0)
27 {
28 mScrollX = 0;
29 }
30 else if (mScrollX > mSizeX - mContentRect.width())
31 {
32 mScrollX = mSizeX - mContentRect.width();
33 }
34
35 //update span x
36 lastSpanX = curSpanX;
37
38 postInvalidateOnAnimation();
39
40 return true;
41 }

Listing 3.5: Source code for the actual pinch zoom.

3.6.2 Selection zoom

Selection zooming describes the type of zooming, that lets the user first select an area which is
then zoomed into. Here it is initiated by a double tap on the area used to draw the waveform
events. The area can then be selected by dragging the pointer. The selected area will be
visualized by a gray overlay, for reference see Figure 3.6. Upon release, the zoom into the
selected area will be performed.

A double tap will invoke onDoubleTap(). The method’s source code is shown in Listing 3.6.
The method checks, whether the double tap occurred in the correct area. If that is the case, the
method sets the two horizontal position values, as well as the flag that is used to indicate whether
a selection zoom is in process. The method will furthermore disable the ability of a long press.
This is done because even if the user drags the pointer across the screen after a double tap, a
long press will be triggered when its time threshold has been exceeded. Whether this behavior is
intended or a bug is unknown. Events after a double tap will trigger the onDoubleTapEvent()
method. From here on out the selection zoom process will be handled by that method.

33

1 @Override
2 public boolean onDoubleTap (MotionEvent e)
3 {
4 //disable long press
5 mGestureDetector.setIsLongpressEnabled(false);
6
7 if (e.getX() > mContentRect.left)
8 {
9 //set x coordinates
10 mSelectZoomX1 = e.getX();
11 mSelectZoomX2 = mSelectZoomX1;
12
13 //set flag for drawing
14 mSelectingArea = true;
15 }
16
17 return true;
18 }

Listing 3.6: Source code for the initiation of a selection zoom.

The code in onDoubleTapEvent() will only be executed if a selection zoom has been initiated
beforehand. The action of the received event is then determined and used to select what
action to perform. If the user dragged the pointer the selected area will be adjusted. It is
ensured that this value stays within its given bounds. In case the user lifts the pointer or a
MotionEvent.ACTION_CANCEL is received the zoom into the selected area will be performed.
This does not include the cases where the selection zoom is ended in the onScroll() and onFling()
methods. The actual zooming is delegated to the zoomSelectedArea() method and its invocation
depends on the two position values. The long press will be re-enabled and the flag indicating an
active selection zoom will be reset. Listing 3.7 shows the corresponding source code.

Figure 3.6: Image showing a currently selected area for use during the selection zoom.

34

1 @Override
2 public boolean onDoubleTapEvent (MotionEvent e)
3 {
4 //only execute if the double tap was on the time bar
5 //or the wave canvas
6 if (mSelectingArea)
7 {
8 switch (e.getActionMasked())
9 {
10 case MotionEvent.ACTION_MOVE:
11 //set second x coordinate
12 mSelectZoomX2 = e.getX();
13 if (mSelectZoomX2 < mContentRect.left)
14 {
15 mSelectZoomX2 = mContentRect.left;
16 }
17 else if (mSelectZoomX2 > mContentRect.right)
18 {
19 mSelectZoomX2 = mContentRect.right;
20 }
21 break;
22 case MotionEvent.ACTION_UP:
23 case MotionEvent.ACTION_CANCEL:
24 //perform the zoom
25 if (mSelectZoomX1 < mSelectZoomX2)
26 {
27 zoomSelectedArea(mScrollX + (long) (mSelectZoomX1

- mContentRect.left));
28 }
29 else
30 {
31 zoomSelectedArea(mScrollX + (long) (mSelectZoomX2

- mContentRect.left));
32 }
33 //re-enable long press
34 mGestureDetector.setIsLongpressEnabled(true);
35 //reset flag
36 mSelectingArea = false;
37 break;
38 }
39
40 postInvalidateOnAnimation();
41
42 return true;
43 }
44
45 return false;
46 }

Listing 3.7: Source code for the area selection of a selection zoom.

The zoomSelectedArea() method takes one argument. This should be the absolute left position
of the selected area to zoom into and is needed to set the correct scroll position after the zoom.
It is ensured that an actual area has been selected in order to avoid divisions by 0. The zoom
factor will be calculated based on the width of the selected area. This zoom factor is then used

35

to determine the new width of the viewport. The timescale and interval at which to draw marks
in the time bar will have to be adjusted as well.

1 private void zoomSelectedArea (long absoluteX1)
2 {
3 if (Math.abs(mSelectZoomX2 - mSelectZoomX1) > 0)
4 {
5 float zoomFactor = mContentRect.width() /

(Math.abs(mSelectZoomX2 - mSelectZoomX1));
6 double relativeLeft = absoluteX1 / (double) mSizeX;
7
8 // calculate new x size
9 mSizeX *= zoomFactor;
10
11 // adjust size, if necessary
12 if (mSizeX > mMaxSizeX)
13 {
14 mSizeX = mMaxSizeX;
15 }
16
17 // calculate new time scale
18 mTimeScale = (int) Math.floor(Math.log10(
19 mOverallMaxTime * mContentRect.width() / mSizeX));
20 mTimeMarkInterval = mSizeX / mOverallMaxTime * Math.pow(10,

mTimeScale);
21
22 // adjust scroll to the left time of the selected area
23 mScrollX = (long) (relativeLeft * mSizeX);
24 }
25 }

Listing 3.8: Source code used to perform the actual zoom into a selected area.

3.6.3 Zoom fit

The zoom fit feature is only available from the menu in the action bar. It will zoom out so all
events will fit on the screen. The use of this feature is not advised, because even a reasonably
small amount of events can already be cause for long drawing times, which can freeze up the
GUI. The use of the smart zoom fit feature is recommended instead.

3.6.4 Smart zoom fit

The smart zoom fit feature is accessed via the menu in the action bar. By default it is also used to
select a feasible timescale after selecting waveforms to display, but this behavior can be disabled
in the settings. The main purpose is to find a timescale on which only a reasonable amount of
events need to be drawn. The algorithm is by no means perfect. It will happen more often than
not that the zoom will be onto a deeper timescale than needed. The use of this feature is advised
nonetheless. The source code for the algorithm is given in Listing 8.4.

First the current relative left position of the viewport will be calculated, so the scroll position
can be restored after the zoom. If the smart zoom factor has not yet been calculated, it will be

36

done now. This is done by calculating all intervals between events. The mean interval time will
then be determined and used to identify whether zooming onto a lower timescale is needed and
will cause the zoom factor to be calculated. This zoom factor will then be used to adjust the
viewport width. Afterwards the timescale and time mark interval will need to be updated as well
and at the end the scroll position will be restored.

3.7 Drag and drop

Waveforms can be rearranged using the drag and drop feature. For this to work at least one
waveform needs to be selected, then performing a long press on the name canvas will initiate the
drag and drop of the selected waveforms. A waveform can be selected by performing a single
tap on its name. The current insert position is visualized by a gray shadow in the name canvas.
The code used to initiate the drag can be seen in Listing 8.5, the code for moving the drag and
drop items on the screen has already been seen in Listing 8.2. What a drag and drop in action
looks like, is illustrated in Figure 3.7

During the initiation the ability for a long press will be disabled because the motion event will
have to be resend to enable dragging the items across the screen. The drag and drop will only be
initiated when the long press occurred on the name canvas. All the selected waveforms will be
moved to an array, that only exists for this purpose. All the unselected waveforms will thereafter
be moved up in the original array. The height of the viewport will then be adjusted.

The end of the drag and drop operation is performed when the user lifts the pointer and will
need to be performed in the onTouchEvent() method, because the gesture detector does not offer
support for this. The source code can be found in Listing 3.9.

When ending a drag and drop, long presses will be re-enabled. The insert position will be
calculated and all waveforms after this position will be moved down. Then the waveforms will
be dropped, the height of the viewport adjusted and the flag that indicates an active drag and
drop will be reset.

1 @Override
2 public boolean onTouchEvent (MotionEvent event)
3 {
4 if (mWaveforms != null)
5 {
6 // ...
7
8 //handle when the uses lifts the finger
9 int actionMasked = event.getActionMasked();
10 if (actionMasked == MotionEvent.ACTION_UP || actionMasked ==

MotionEvent.ACTION_CANCEL)
11 {
12 //enable long presses
13 mGestureDetector.setIsLongpressEnabled(true);
14
15 //stop drag and drop if necessary
16 if (mDragAndDropActive)
17 {
18 //current insert position
19 int insertPosition = (int) Math.min(

37

20 (mScrollY + mDragPosY - mContentRect.top) /
mWaveformHeight,

21 mWaveforms.length - mSelectedWaveformsCount);
22
23 //move waveforms after insert position down
24 for (int i = mWaveforms.length - 1;
25 i > (insertPosition + mSelectedWaveformsCount -

1);
26 i--)
27 {
28 mWaveformsOrder[i] = mWaveformsOrder[i -

mSelectedWaveformsCount];
29 mSelectedWaveforms[i] = false;
30 }
31
32 //drop waveforms at position
33 for (int i = 0; i < mSelectedWaveformsCount; i++)
34 {
35 mWaveformsOrder[i + insertPosition] =

mDraggedWaveforms[i];
36 mSelectedWaveforms[i + insertPosition] = true;
37 }
38
39 //adjust mSizeY
40 mSizeY = Math.max(mContentRect.height(),

mWaveforms.length * mWaveformHeight);
41
42 //reset drag and drop flag
43 mDragAndDropActive = false;
44
45 postInvalidateOnAnimation();
46 }
47 }
48 }
49
50 return handled;
51 }

Listing 3.9: Source code for dropping waveforms after a drag and drop.

3.8 Searching

The Search feature is accessed via the magnifier symbol in the action bar. While the search
is active, an overlay exists, that is used to determine the direction to search in. Searches will
only be performed on selected waveforms. During the search no distinction between numbers
and strings will be made. For example, if a search for “15” is performed, std_logic_vector
and integer values as well as double and String values starting with “15” will be searched for.
To search for any event, the wildcard “*” should be used. What an active search looks like is
depicted in Figure 3.8. If a search yields a match, a cursor will be drawn at the found position
and it will be tried to center that position in the viewport. When searching for a std_logic_1164
value, no distinction between lowercase letters and uppercase letters will be made. If a cursor is
set, the search will be performed beginning from its position.

38

Figure 3.7: Illustration of a drag and drop operation.

Figure 3.8: Illustration of an active search.

39

Figure 3.9: Illustration of the dialog, used to change the number format.

3.9 Number format

As previously mentioned, the user can change the number format that is used for integer and
std_logic_1164 values. This can be achieved via the item Number format in the action bar menu.
The user can choose between hexadecimal, decimal and binary. The decimal format will be
used by default. Changes will persist, as long as the application is running. On the next start it is
reset to the default decimal format. What the dialog to pick a format looks like can be seen in
Figure 3.9.

3.10 Cursor

The user can manually set a cursor that can be used to jump to, by doing a single tap anywhere
on the wave canvas. Keep in mind that this cursor and the cursor used during a search are shared.
Jumping to the cursor is performed, when the user executes a long press anywhere on the wave
canvas. What the cursor looks like, can be seen in Figure 3.8 as a vertical red line.

3.11 Settings

The user has the ability to make some adjustments, more appropriate for their taste. These
adjustments can be done in the settings window, reached via the Settings item in the action bar
menu. The user is able to change colors used for std_logic_1164 values, the threshold used to
initiate scrolling on a second axis, the threshold used to initiate flinging on a seconds axis and
whether or not to use the smart zoom fit feature. The last point only applies to the automatic use

40

Figure 3.10: Illustration of the dialog, used to change a std_logic_1164 color.

of the smart zoom fit feature, directly after the selection of which waveforms to display. The use
via the Smart zoom fit item from the action bar menu is unaffected.

The currently used colors for std_logic_1164 are displayed in the settings window. Tapping on
one of these opens a dialog that allows the user to choose a new color. What this dialog looks
like can be seen in Figure 3.10. At the top, two boxes indicate the currently used color and the
new color to use henceforth. The left box indicates the current color and the right box the new
color. To change a color, 3 sliders are provided to set the red, green and blue amount to use.
Below the sliders is a text field showing the current hexadecimal value of the chosen color. This
field can be used to set a color directly, in case its hexadecimal value is known. The “DEFAULT”
button will reset the color to its default value. The “CANCEL” button will close the dialog. A
new color will only be applied, if the “OK” button is clicked. Unlike the number format, all
settings done in the settings window will persist, even through application restarts.

41

42

4 Usability

The waveform viewer is generally usable and small simulations pose no problems. At the
University of Hamburg, Hades is used in practical courses of some fields of study at the
department of informatics, in order to teach the students about the computer architecture.
Simulations that need to be developed within the scope of this course should be a good example
for a practical use. A student could review and analyze the data or just quickly freshen up the
memory while being on the to university.

The application can even be used with bigger waveform data, once the data has been read and
the smart zoom fit feature is used. This does not mean that reviewing and analyzing the data will
be pleasant. The performance of mobile devices is still worse than even the performance of a
low-end desktop computer. As such, bigger simulations with more waveform data can cause
problems. Either by means of memory requirements or by means of overview. This means that
in those cases the user cannot zoom out to get an overview of the complete data and thereon
decide which part of the data is of interest, since the GUI would most likely freeze up. If the
GUI is unresponsive for too long, Android will report this to the user who might be surprised by
this, not knowing what went wrong.

The ring-oscillator example given in section 2.2 can already be counted as one of those cases.
The time it took to read the whole waveform data on the tested devices was around 40 to 60
seconds. This excludes the drawing time, which in comparison, is relatively low with only
around 5 seconds. This is definitely not a fault of the new file format, and rather due to the
mobile device and the hardware used. On the desktop computer, the time needed to read the
same file was only around 1 to 2 seconds.

Another similar problem arises, because the user is able to change orientations. When the
orientation is changed, the current activity gets destroyed and needs to be recreated. Since
waveform data can be in the megabytes they are not directly used for recreation, instead a
reference to the waveform file is remembered. This means that every time the orientation is
changed, the waveform data needs to be read anew. Support for the ability to change orientations
is not explicitly disabled, because it is a nice feature to have, when used with smaller data and
its drawbacks are easily avoided. For example, the user can lock the orientation explicitly via
Android’s settings.

It is ultimately advised to think about whether it makes sense to try and use this waveform
viewer, with the supplied data.

The application has been tested on Android versions ranging from API level 16 to the currently
latest API level 23. All versions worked as intended. Lower versions should be supported as
well.

Lastly, it is worth mentioning that parts of the software are definitely qualified to be used
as replacements in the Java version of Styx, to improve its functionality and/or performance.
Examples for this are the memory improvements and the ability of reading and displaying only
a subset of all waveforms.

43

44

5 Outlook

A port of the Hades simulator already exists for Android. As of now, Hades and Styx are
two separate applications on Android and cannot be used together. Styx can only work as a
standalone program to display waveform data. It is very likely that they will be combined in the
future.

Support for the ability to inspect a std_logic_vector was planned but not implemented. The
same goes for the support of reading other file formats, mainly the Value Change Dump (vcd)
file format. The possibility of vertical zooms were also taken into consideration. These features
might still get implemented by the author of this paper, even beyond the scope of this bachelor
thesis.

At the end of the deadline for this thesis, the author of this paper became aware of the SurfaceView
class. This class might be able to solve some of the problems regarding the drawing time and
the GUI freezes in general. The main reason being, that drawing is performed in a different
thread, as opposed to drawing on the GUI thread. Tests have not been made as of yet, so this is
just speculation, after reading some information about this class. If the use of this class truly
increases performance, it would definitely benefit the usability.

Ultimately time will also benefit the application. The hardware used is constantly improved,
providing better and better performances on mobile devices. This will reduce problems like the
reading and drawing time, as explained in chapter 4.

45

46

Appendix A

Gesture detection

1 public class MyView extends View
2 {
3 private ScaleGestureDetector mScaleGestureDetector;
4 private GestureDetector mGestureDetector;
5
6 // ...
7
8 public MyView (Context context)
9 {
10 super(context);
11
12 // create the detectors
13 mScaleGestureDetector = new ScaleGestureDetector(context, new

MyScaleGestureListener());
14 mGestureDetector = new GestureDetector(context, new

MyGestureListener());
15 }
16
17 @Override
18 public boolean onTouchEvent (MotionEvent event)
19 {
20 boolean handled = false;
21
22 // let the detectors handle the event
23 handled = mScaleGestureDetector.onTouchEvent(event);
24 handled = mGestureDetector.onTouchEvent(event) || handled;
25
26 return handled;
27 }
28
29 private class MyScaleGestureListener extends

ScaleGestureDetector.OnScaleGestureListener
30 {
31 @Override
32 public boolean onScale (ScaleGestureDetector detector)
33 {
34 return false;
35 }
36
37 @Override
38 public boolean onScaleBegin (ScaleGestureDetector detector)
39 {
40 return false;
41 }
42
43 @Override

47

44 public void onScaleEnd (ScaleGestureDetector detector)
45 {
46 }
47 }
48
49 private class MyGestureDetector extends

GestureDetector.OnGestureListener
50 {
51
52 @Override
53 public boolean onDown (MotionEvent e)
54 {
55 return false;
56 }
57
58 @Override
59 public void onShowPress (MotionEvent e)
60 {
61 }
62
63 @Override
64 public boolean onSingleTapUp (MotionEvent e)
65 {
66 return false;
67 }
68
69 @Override
70 public boolean onScroll (MotionEvent e1, MotionEvent e2, float

distanceX, float distanceY)
71 {
72 return false;
73 }
74
75 @Override
76 public void onLongPress (MotionEvent e)
77 {
78 }
79
80 @Override
81 public boolean onFling (MotionEvent e1, MotionEvent e2, float

velocityX, float velocityY)
82 {
83 return false;
84 }
85 }
86 }

Listing 8.1: Usage of gesture detection classes, that are provided by Android.

48

Dragging

1 @Override
2 public boolean onScroll (MotionEvent e1, MotionEvent e2, float

distanceX, float distanceY)
3 {
4 // stop zoom selection
5 if (mSelectingArea)
6 {
7 mSelectingArea = false;
8 }
9
10 // variables storing information about the
11 // distance traveled on each axis
12 mMovedHorizontally += distanceX;
13 mMovedVertically += distanceY;
14
15 // whether we scrolled
16 boolean scrolled = false;
17
18 // in case the pointer responsible for scrolling
19 // went down in the area for signal names
20 if (hitTestNames(e1.getX(), e1.getY()))
21 {
22 if (mDragAndDropActive)
23 {
24 // perform drag for drag and drop
25 mDragPosX -= distanceX;
26 mDragPosY -= distanceY;
27
28 // update screen
29 postInvalidateOnAnimation();
30
31 // prematurely return (disables scrolling while performing
32 // a drag and drop operation)
33 return true;
34 }
35 else
36 {
37 // set mMoveHorizontally to 0, to only allow scrolling
38 // vertically
39 mMovedHorizontally = 0;
40 }
41 }
42 else if (e1.getX() > mContentRect.width())
43 {
44 // first test for scrolling
45 // if we are not yet scrolling
46 if (!mIsBeingDraggedHorizontally && !mIsBeingDraggedVertically)
47 {
48 // test on which axis to start scrolling
49 if (Math.abs(mMovedHorizontally) >

Math.abs(mMovedVertically))
50 {
51 mIsBeingDraggedHorizontally = true;
52
53 // reset mMovedHorizontally, or else we will have a

49

54 // jump at the beginning
55 mMovedHorizontally = 0;
56 }
57 else
58 {
59 mIsBeingDraggedVertically = true;
60 mMovedVertically = 0;
61 }
62 }
63 // if we are already scrolling vertically check for horizontal
64 // scrolling with an increased threshold
65 else if (!mIsBeingDraggedHorizontally &&
66 Math.abs(mMovedHorizontally) > mScrollFactor *

mTouchSlop)
67 {
68 mIsBeingDraggedHorizontally = true;
69 mMovedHorizontally = 0;
70 }
71 else if (!mIsBeingDraggedVertically &&
72 Math.abs(mMovedVertically) > mScrollFactor *

mTouchSlop)
73 {
74 mIsBeingDraggedVertically = true;
75 mMovedVertically = 0;
76 }
77
78 // now do the actual scrolling
79 if (mIsBeingDraggedHorizontally &&
80 Math.abs(mMovedHorizontally) >= 1)
81 {
82 // adjust the scroll position
83 mScrollX += (int) mMovedHorizontally;
84
85 // adjust the counter
86 mMovedHorizontally -= (int) mMovedHorizontally;
87
88 // set the flag
89 scrolled = true;
90 }
91 if (mIsBeingDraggedVertically && Math.abs(mMovedVertically) >=

1)
92 {
93 mScrollY += (int) mMovedVertically;
94 mMovedVertically -= (int) mMovedVertically;
95 scrolled = true;
96 }
97
98 //in case we scrolled, update screen
99 if (scrolled)

100 {
101 //check for horizontal edge glow, add to pull if necessary
102 if (mScrollX < 0)
103 {
104 mEdgeGlowLeft.onPull((float) mScrollX /

mContentRect.width());
105 mEdgeGlowLeftActive = true;
106 mScrollX = 0;
107 }

50

108 else if (mScrollX > mSizeX - mContentRect.width())
109 {
110 mEdgeGlowRight.onPull((float) (mScrollX - mSizeX +

mContentRect.width()) /
111 mContentRect.width());
112 mEdgeGlowRightActive = true;
113 mScrollX = mSizeX - mContentRect.width();
114 }
115
116 //check for vertical edge glow, add to pull if necessary
117 if (mScrollY < 0)
118 {
119 mEdgeGlowTop.onPull((float) mScrollY /

mContentRect.height());
120 mEdgeGlowTopActive = true;
121 mScrollY = 0;
122 }
123 else if (mScrollY > mSizeY - mContentRect.height())
124 {
125 mEdgeGlowBottom.onPull((float) (mScrollY - mSizeY +

mContentRect.height()) /
126 mContentRect.height());
127 mEdgeGlowBottomActive = true;
128 mScrollY = mSizeY - mContentRect.height();
129 }
130
131 postInvalidateOnAnimation();
132 }
133 }
134
135 return true;
136 }

Listing 8.2: How dragging is handled.

51

Flinging

1 @Override
2 public void computeScroll ()
3 {
4 super.computeScroll();
5
6 // do the flinging
7 if (mScroller.computeScrollOffset())
8 {
9 //horizontal fling
10 if (mCarefulLeftFling)
11 {
12 if (mScroller.getCurrX() < 0)
13 {
14 mScrollX = 0;
15
16 //absorb velocity for edge glow if necessary
17 if (!mEdgeGlowLeftActive)
18 {
19 mEdgeGlowLeft.onAbsorb((int)

mScroller.getCurrVelocity());
20 mEdgeGlowLeftActive = true;
21 }
22 }
23 else
24 {
25 mScrollX = mScroller.getCurrX();
26 }
27 }
28 else if (mCarefulRightFling)
29 {
30 if (mFlingStartX + mScroller.getCurrX() > mSizeX -

mContentRect.width())
31 {
32 mScrollX = mSizeX - mContentRect.width();
33
34 //absorb velocity for edge glow if necessary
35 if (!mEdgeGlowRightActive)
36 {
37 mEdgeGlowRight.onAbsorb((int)

mScroller.getCurrVelocity());
38 mEdgeGlowRightActive = true;
39 }
40 }
41 else
42 {
43 mScrollX = mFlingStartX + mScroller.getCurrX();
44 }
45 }
46 else
47 {
48 mScrollX = mFlingStartX + mScroller.getCurrX();
49 }
50
51 //vertical fling
52 mScrollY = mScroller.getCurrY();

52

53
54 if (mScrollY < 0)
55 {
56 mScrollY = 0;
57
58 //absorb velocity for edge glow if necessary
59 if (!mEdgeGlowTopActive)
60 {
61 mEdgeGlowTop.onAbsorb((int)

mScroller.getCurrVelocity());
62 mEdgeGlowTopActive = true;
63 }
64 }
65
66 if (mScrollY > mSizeY - mContentRect.height())
67 {
68 mScrollY = mSizeY - mContentRect.height();
69
70 //absorb velocity for edge glow if necessary
71 if (!mEdgeGlowBottomActive)
72 {
73 mEdgeGlowBottom.onAbsorb((int)

mScroller.getCurrVelocity());
74 mEdgeGlowBottomActive = true;
75 }
76 }
77
78 postInvalidateOnAnimation();
79 }
80 }

Listing 8.3: Source code for the computeScroll() method.

53

Smart zoom fit

1 public void smartZoomFit ()
2 {
3 if (mWaveforms != null)
4 {
5 double relativeLeft = mScrollX / (double) mSizeX;
6
7 if (mSmartZoomFitFactor == -1)
8 {
9 //stores the interval times between events
10 Map<Double, Integer> eventTimeIntervals = new TreeMap<>();
11
12 double[] times;
13
14 //for each waveform add all event intervals to our map
15 for (Waveform wf : mWaveforms)
16 {
17 times = wf.getTimes();
18
19 for (int i = 0; i < times.length - 1; i++)
20 {
21 double key = times[i + 1] - times[i];
22
23 //if our interval time already exists increase its

count
24 if (eventTimeIntervals.containsKey(key))
25 {
26 eventTimeIntervals.put(key,

eventTimeIntervals.get(key) + 1);
27 }
28 //otherwise make a new entry
29 else
30 {
31 eventTimeIntervals.put(key, 1);
32 }
33 }
34 }
35
36 //calculate the average interval time
37 double mean = 0;
38 int amount = 0;
39
40 for (Double key : eventTimeIntervals.keySet())
41 {
42 mean += key * eventTimeIntervals.get(key);
43 amount += eventTimeIntervals.get(key);
44 }
45
46 mean = mean / amount;
47
48 //if a certain threshold of approximated events to be

drawn is exceeded
49 if (mean > 0 && mOverallMaxTime / mean > 100)
50 {
51 //calculate a feasible zoom factor
52 mSmartZoomFitFactor = mContentRect.width() /

54

53 (mContentRect.width() /
(mOverallMaxTime / mean *
100));

54 }
55 }
56
57 //zoom onto the new time scale so fewer events need to be drawn
58 if (mSmartZoomFitFactor > -1)
59 {
60 // calculate new x size
61 mSizeX = (long) (mContentRect.width() *

mSmartZoomFitFactor);
62
63 // adjust size, if necessary
64 if (mSizeX > mMaxSizeX)
65 {
66 mSizeX = mMaxSizeX;
67 }
68 else if (mSizeX < mContentRect.width())
69 {
70 mSizeX = mContentRect.width();
71 }
72 }
73
74 // calculate new time scale
75 mTimeScale = (int) Math.floor(Math.log10(
76 mOverallMaxTime * mContentRect.width() / mSizeX));
77 mTimeMarkInterval = mSizeX / mOverallMaxTime * Math.pow(10,

mTimeScale);
78
79 // adjust scroll to the left time of the selected area
80 mScrollX = (long) (relativeLeft * mSizeX);
81
82 if (mScrollX < 0)
83 {
84 mScrollX = 0;
85 }
86 else if (mScrollX > mSizeX - mContentRect.width())
87 {
88 mScrollX = mSizeX - mContentRect.width();
89 }
90
91 postInvalidateOnAnimation();
92 }
93 }

Listing 8.4: Source code for the smart zoom fit algorithm.

55

Drag and Drop

1 @Override
2 public void onLongPress (MotionEvent e)
3 {
4 //disable further long presses so we don’t trigger it again after
5 //resending the down event and end up in a loop
6 mGestureDetector.setIsLongpressEnabled(false);
7
8 if (hitTestNames(e.getX(), e.getY()) &&
9 mSelectedWaveformsCount > 0)
10 {
11 //initiate drag and drop
12 mDragAndDropActive = true;
13
14 //move selected waveforms to new array
15 int index = 0;
16 for (int i = 0;
17 i < mSelectedWaveforms.length && index <

mSelectedWaveformsCount;
18 i++)
19 {
20 if (mSelectedWaveforms[i])
21 {
22 mDraggedWaveforms[index] = mWaveformsOrder[i];
23 index++;
24 }
25 }
26
27 //move unselected waveforms up in the original array
28 index = 0;
29 for (int i = 0;
30 i < mWaveforms.length && index < mWaveforms.length -

mSelectedWaveformsCount;
31 i++)
32 {
33 //if the current waveform is not selected move it to
34 //current index position
35 if (!mSelectedWaveforms[i])
36 {
37 int tmpIndex = mWaveformsOrder[index];
38 mWaveformsOrder[index] = mWaveformsOrder[i];
39 mWaveformsOrder[i] = tmpIndex;
40 mSelectedWaveforms[index] = false;
41 index++;
42 }
43 }
44
45 //adjust mSizeY
46 mSizeY = Math.max(mContentRect.height(),
47 (mWaveforms.length -

mSelectedWaveformsCount) *
mWaveformHeight);

48
49 //adjust scroll position if necessary
50 if (mScrollY > mSizeY - mContentRect.height())
51 {

56

52 mScrollY = mSizeY - mContentRect.height();
53 }
54
55 //resend down event, so we can continue dragging/ordering

signals
56 onTouchEvent(e);
57 }
58 else if (e.getX() > mContentRect.left)
59 {
60 jumpToCursorPosition();
61 }
62
63 postInvalidateOnAnimation();
64 }

Listing 8.5: Source code showing how the drag and drop is initiated.

57

58

Bibliography

[1164] IEEE. Stdlogic1164. URL: https://standards.ieee.org/downloads/1076/1076.2-
1996/std_logic_1164-body.vhdl (visited on 10/28/2015).

[93] IEEE Standard Multivalue Logic System for VHDL Model Interoperability
(Stdlogic1164). 1993. DOI: 10.1109/IEEESTD.1993.115571.

[BW] Tony Bybell and Joel Wheeler. GTKWave. URL: http://gtkwave.sourceforge.net/
(visited on 10/28/2015).

[DevBSO] Android Developers. Build System Overview. URL:
http://developer.android.com/sdk/installing/studio-build.html (visited on
10/28/2015).

[DevMem] Android Developers. Managing Your App’s Memory. URL:
https://developer.android.com/training/articles/memory.html (visited on
10/28/2015).

[DevNDK] Android Developers. Android NDK. URL:
https://developer.android.com/ndk/index.html (visited on 10/28/2015).

[DevRun] Android. ART and Dalvik. URL: https://source.android.com/devices/tech/dalvik/
(visited on 10/28/2015).

[DevSAF] Android Developers. Storage Access Framework. URL:
http://developer.android.com/guide/topics/providers/document-provider.html
(visited on 10/28/2015).

[DroidAPI] Android Developers. Package Index. URL:
http://developer.android.com/reference/packages.html (visited on 10/28/2015).

[GooOMP] Google et al. Our Mobile Planet. URL:
https://think.withgoogle.com/mobileplanet/en/ (visited on 10/28/2015).

[GooTWG] Google. Think With Google. URL: https://www.thinkwithgoogle.com/ (visited on
10/28/2015).

[HaAPI] TAMS. Hades API. URL:
https://tams.informatik.uni-hamburg.de/applets/hades/classdoc/index.html
(visited on 10/28/2015).

[HaHo] TAMS. Hades Simulation Framework. URL:
https://tams.informatik.uni-hamburg.de/applets/hades/webdemos/index.html
(visited on 10/28/2015).

[JavaAPI] Oracle. Java
TM

Platform, Standard Edition 7 API Specification. URL:
http://docs.oracle.com/javase/7/docs/api/ (visited on 10/28/2015).

[JavaOSS] Oracle. Java Object Serialization Specification. URL: https:
//docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
(visited on 10/28/2015).

59

https://standards.ieee.org/downloads/1076/1076.2-1996/std_logic_1164-body.vhdl
https://standards.ieee.org/downloads/1076/1076.2-1996/std_logic_1164-body.vhdl
http://dx.doi.org/10.1109/IEEESTD.1993.115571
http://gtkwave.sourceforge.net/
http://developer.android.com/sdk/installing/studio-build.html
https://developer.android.com/training/articles/memory.html
https://developer.android.com/ndk/index.html
https://source.android.com/devices/tech/dalvik/
http://developer.android.com/guide/topics/providers/document-provider.html
http://developer.android.com/reference/packages.html
https://think.withgoogle.com/mobileplanet/en/
https://www.thinkwithgoogle.com/
https://tams.informatik.uni-hamburg.de/applets/hades/classdoc/index.html
https://tams.informatik.uni-hamburg.de/applets/hades/webdemos/index.html
http://docs.oracle.com/javase/7/docs/api/
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html
https://docs.oracle.com/javase/7/docs/platform/serialization/spec/serialTOC.html

[JavaVM] Oracle. Java HotSpot
TM

Virtual Machine Performance Enhancements. URL:
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-
enhancements-7.html (visited on 10/28/2015).

[Nor06] Hendrich Norman. HADES Tutorial. Dec. 2006. URL:
https://tams.informatik.uni-hamburg.de/applets/hades/archive/tutorial.pdf
(visited on 10/28/2015).

[StyHo] TAMS. Hades waveform-viewer. URL:
https://tams.informatik.uni-hamburg.de/applets/hades/webdemos/styx.html
(visited on 10/28/2015).

60

https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
https://docs.oracle.com/javase/7/docs/technotes/guides/vm/performance-enhancements-7.html
https://tams.informatik.uni-hamburg.de/applets/hades/archive/tutorial.pdf
https://tams.informatik.uni-hamburg.de/applets/hades/webdemos/styx.html

Selbständigkeitserklärung

Hiermit versichere ich an Eides statt, dass ich die vorliegende Arbeit im Studiengang Informatik
selbstständig verfasst und keine anderen als die angegebenen Hilfsmittel – insbesondere keine
im Quellenverzeichnis nicht benannten Internetquellen – benutzt habe. Alle Stellen, die wörtlich
oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als solche kenntlich gemacht.
Ich versichere weiterhin, dass ich die Arbeit vorher nicht in einem anderen Prüfungsverfahren
eingereicht habe und die eingereichte schriftliche Fassung der auf dem elektronischen Speicher-
medium entspricht.

Ich bin mit der Einstellung der Arbeit in den Bestand der Bibliothek des Fachbereichs Informatik
einverstanden.

Hamburg, den 28.10.2015

Lars Lütcke

61

	List of Figures
	Listings
	Introduction
	Motivation
	State of the art
	Hades and Styx
	The Android platform
	What needs to be considered

	The Hades Waveform Viewer file format
	Compatibility
	Memory usage
	Surrogate format

	User manual
	Gesture detection
	Starting the application
	File picking
	Waveform display selection
	Scrolling
	Dragging
	Flinging

	Zooming
	Pinch zoom
	Selection zoom
	Zoom fit
	Smart zoom fit

	Drag and drop
	Searching
	Number format
	Cursor
	Settings

	Usability
	Outlook
	Appendix A
	Bibliography

