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Abstract. This paper describes an innovative intelligent omnivision
video system, that stitches the images of four cameras together, result-
ing in one seamless image. This way the system generates a 360 degree
view of the scene. An additional automatically controlled pan-tilt-zoom-
camera provides a high resolution view of user defined regions of interest
(ROI). In addition to the fusion of multiple camera images, the system
has intelligent features like object detection and region-of-interest detec-
tion. The software architecture features configurable pipelines of image
processing functions. It is easily possible to rearrange the pipeline and
add new functions to the overall system. The pan-tilt-zoom camera is
controlled by an embedded system, that has been developed for this sys-
tem. GPU-accelerated processing of elements allows real-time panorama
stitching. We’re showing the application of our system in the field of
surveillance, but the system can also be used for robots.

1 Introduction

For many applications, a wide view of the scene yields significant advantages.
In the field of surveillance, wide angle and omnidirectional camera systems can
provide all significant information in one video-stream. Having one video stream
is much easier to supervise for the staff than having multiple streams.

The challenge of the research work was to set up a surveillance system for
the use on a ship. The system has to be installed on a pole on board of the ship
and shall provide an omnidirectional view of the scene. The image of a pan-tilt-
zoom-camera shall be overlayed onto the video stream in order to display image
details of a region of interest. In addition to that, intelligent feature detection
algorithms will be implemented into the system.

In our previous research work we have focused on intelligent cameras for robot
systems ([1, 2]) and surveillance ([3]). Due to the underlying architecture that
we developed, it is easy to set up image processing systems and reuse functions
that have already been implemented([4]).

The remainder of this paper is organized as follows: In section 2 we introduce
approaches of related research projects. Section 3 gives an overview about the
developed system, the hardware setup and the software architecture. In section 4



2 Development of an Intelligent Omnivision Surveillance System

we introduce the special features of the system and show experimental results.
A conclusion on the achievements and an outlook to future research is given in
section 5.

2 Related research

There are different approaches of generating wide angle images using digital cam-
eras. One possibility, that is also applied in the system described in this paper,
is to use multiple cameras and to stitch the images together into a panoramic
image. The FlyCam is a ring of five inexpensive colour cameras ([5]). Each of the
images is transformed and the tiles are combined to a panoramic image. At the
borders of the image, a cross fading algorithm is applied. In this research project,
the resolution of the cameras has to be reduced due to the computational load.

Another method of generating panoramic images is the use of hyperboloidal
mirrors ([6]). One camera is placed below the mirror. It is possible to create a
seamless panoramic image by back-transformation, but the resolution is quite
limited.

A surveillance system based on a fish-eye lens is described in [7]. The sys-
tem features DSP-based processing and an advanced background subtraction
algorithm.

Many research projects focus on adding intelligent functions to surveillance
systems. In [8] a surveillance system that features real-time detection and track-
ing of multiple people is introduced. The authors showed their approach of clas-
sifying the activities of the people. Objects that are carried and placed by the
people can also be detected. In the evaluation, the system achieved real-time
performance on a regular PC. People tracking is also a well known topic in the
field of robotics ([9–11]).

There are also research projects on the system architecture of image process-
ing systems. One example - not directly related to surveillance - is shown in [12].
A framework is presented where image processing tasks can be configured in a
graphical editor and can be carried out on distributed systems. During runtime,
the execution time of the steps is monitored, and considered in the distribu-
tion of tasks. As an application, a setup for depth reconstruction using a stereo
camera system is presented.

[13] introduces a system, where multiple image processing tasks are carried
out on the data stream from a camera (face detection, object detection, back-
ground subtraction, compression). Using classical scheduling, not all tasks can
be carried out in time. The authors propose an approach, where the different
tasks are classified according to the maximum acceptable latency. During test
runs, the execution time is measured and the system tries to find a scheduling
strategy that meets the requirement of all tasks.
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Fig. 1. Hardware Setup of the Intelligent Omnivision System. The five cameras, the
embedded system for PTZ control and the control PC are connected to a Power-Over-
Ethernet-Switch. This way only (neglecting power supply) one network cable need to
be installed between the control PC and the rest of the hardware. The link between
the embedded system and the pan-tilt-unit is a serial RS485 connection. The zoom-
lens provides connections to the zoom/focus motors and potentiometers; these are also
connected to the embedded system.

3 System Setup

This chapter describes the system setup in terms of hardware and software setup.

Description of Hardware The setup of the system is shown and explained in
figure 1. The 360 degree image is captured by four IP-cameras (Sanyo HD2100P).
Each of these cameras covers a > 90◦ field of the scene.

As all cameras provide compressed video streams, there are no bandwidth
issues, as the Gigabit uplink to the PC can easily handle 5 video streams and
control data.

Due to certain image quality and zoom range requirements, it was necessary
to use a FullHD IP camera and a zoom lens. For this combination there is no
ready-to-use solution for zoom and focus control. An embedded system has been
designed to control the zoom lens as well the movement of the pan-tilt-unit.
There are few zoom lenses for the C-mount standard featuring motorized zoom
and focus control. One of them is the Computar H10Z1218MSP, which features
a focal range of 12 to 120 mm, motor driven zoom and focus, and potentiometers
to measure the current zoom and focus setting. This way it becomes possible to
implement a system that approaches a desired setting automatically.

The embedded system is based on an Arduino Ethernet microcontroller, ex-
tended by custom hardware. The motors are connected using an H-bridge circuit
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Fig. 2. This figure shows the structure of the embedded system for PTZ control. In
the figure the power supply of the different components is omitted for a better clarity.
(ETH=ethernet, DO=digital output, AI=analogue input, Rx= serial receive, Tx=serial
transmit)

Fig. 3. These images show a test setup of the four cameras (left), the housing (mid-
dle, designed by Kunshan Robotechn Intelligent Technology Co.), and the embedded
system for PTZ control (right, circuit developed by Johannes Liebrecht, board layout
by Kunshan Robotechn Intelligent Technology Co.)

and the potentiometers are read out using the analogue input ports of the mi-
crocontroller.

One additional feature of the embedded controller is the possibility to connect
a PTU via a RS485/422 based serial interface. Therefore it is not necessary
to have a direct serial connection between the control PC and the PTU. The
commands can be send via Ethernet, so the cabling effort will be reduced. In
order to support the RS485/422, an additional transceiver chip is integrated in
the embedded system. On the control PC a virtual COM port is created. The
PTU control software can access the PTU just as if it was connected directly to
the PC.

The structure of the embedded system is shown in figure 2. Images of the
cameras, the housing and the developed embedded system are shown in image
3.
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Software Setup For the development of the intelligent omnivision camera sys-
tem we are using a lot of modular processing functions developed for the use in
smart camera systems and service robots ([4]). This is possible, since all soft-
ware components are implemented as modules, that can be re-used in different
context. In the following, we describe the basics of our software system.

Our general idea is to provide module-based image processing functions that
are connected to a pipeline. Those pipelines can also be set up across network
connections.

The software is written for Linux, but could be transferred to other oper-
ating systems, too. Transfer and processing of image data will be done within
the GStreamer [14] framework. This open-source multimedia framework is used
by many multimedia applications under Linux. Many functions needed for this
application are already implemented in GStreamer, like format conversion, im-
age resizing, encoding, decoding, timing issues and network data transmission.
The GStreamer framework is plugin-based, so the functionality can be expanded
by new elements, which can also define their own data types. There is also the
possibility to set up branched pipelines where data of one image is processed by
many elements in parallel.

4 Features of the system

In the following subsections we will introduce the main features of the system
and their implementation.

GPU accelerated stitching of panorama image In this processing step, the
system needs to generate a panorama image from the four raw images acquired
by the cameras. The information about the geometry of the camera setup and
the types of lenses is included in a configuration file generated by the open source
panorama stitching application Hugin1.

The performance of the CPU-based stitching was evaluated using the com-
mand line tool from Hugin with the defined configuration file. In the following
table, the duration of the stitching procedure is shown.

System Execution time
Intel Core i5 750 0.90 sec

Intel Xeon E31245 0.55 sec
Intel Atom N270 11.47 sec

With these tests it can be shown that a real-time capable solution using these
algorithms is not possible. Even with more powerful CPUs it seems impossible to
reach execution times in the magnitude of 0.05 seconds (for 20 fps). Therefore we
had to investigate an alternative solution for real-time panorama stitching. We
implemented a GPU-based stitching algorithm, that generates a lookup-table
(LUT) at startup. The whole procedure works as follows:

1 Hugin - Panorama photo stitcher; hugin.sourceforge.net
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Fig. 4. Simplified pipeline setup of the intelligent surveillance system; the most im-
portant elements are their connections, as shown in this figure. There are many more
elements involved than those shown in this figure. As decoding is done by several ele-
ments, some elements need different colourspace and there are measures to ensure that
the PTZ image is only decoded if it is activated in the GUI. Elements that are used in
this setup:
CAMx: access to the IP cameras
DEC: parsing of RTSP protocol, decoding of h264
SYNC: forward a group of 4 frames, drop otherwise
CPY: duplicate image to be used in multiple downstream elements
PAN: panorama generation, calculate one image from 4 images
TCP: send data via a TCP connection
VIS: overlay PTZ image, mark detected features
GUI: provide control widgets, control recording

– Offline Calibration (once)

• Take 4 Snapshots
• manually/semi-automatically configure panorama stitching in Hugin, save

configuration file
• generate LUT with sub-pixel accuracy from configuration file using a

script

– Online Initialization (once at startup)

• allocate GPU memory (4+1 image buffers)
• upload LUT

– Online Processing (each frame)

• 4x upload YUV buffers
• 4x colourspace conversion to RGB
• panorama stitching, subpixel accuracy
• download panorama

Executing all processing steps for each frame takes 7 ms on an NVidia
GTX580 (11 ms on an NVidia GTS450) including upload and download. The
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Fig. 5. This image shows the result of panorama stitching and has a resolution of 2556
x 470 pixel. The camera system is mounted on the pole of a ship. The image also shows
a colour correction algorithm that has not been implemented in the GPU-accelerated
code yet. In some areas, the blending is not perfect. This could be improved by a better
calibration of the lens distortion.

algorithm is parallelized very efficiently, one output pixel can be computed by
one of the shaders of the GPU (NVidia GTX580 has 512 shaders clocked at
about 1.5 GHz). Theoretically, this GPU is capable of stitching together > 100
panoramas per second. Due to an OpenCL based implementation, the code could
also be used for devices of other vendors. A generated PTZ image is shown in 5

Object Detection In order to detect known objects in the image, we imple-
mented an advanced algorithm for object detection. This can either be used to
generate user notifications if a known object is detected, or to supervise whether
one object of the scene has been moved. In several research projects, Scale In-
variant Feature Transform (SIFT) has proven to be a powerful, but also compu-
tationally intensive algorithm [15–17]. The general idea of the SIFT algorithm
is to find significant points in an image and describe them in a way so that the
description is invariant to rotation, translation and scaling. Extracted features
of images can be compared to features from a sample image in order find corre-
sponding points. If multiple corresponding points can be found, a transformation
matrix can be calculated. We implemented a processing element, that compares
the detected features of the current image to the features of all image files in a
folder. Detected objects can be displayed in the GUI.

Person Detection Detecting persons is another important feature of an intel-
ligent surveillance system. Unlike in the task of object detection, the targets are
not known exactly, as the persons may be unknown. Therefore a person detec-
tion element has been set up using Haar classifiers [18] that are implemented in
the OpenCV framework [19]. Prior tests have shown that running the face de-
tection algorithms with a reduced resolution is sufficient for a robust detection.
This way we can save processing time and thus computing capacity for real-time
critical tasks. Within this element we can load different training data sets, e.g.
for faces, faces in profile view or upper bodies.

Scheduling In order to achieve real-time stitching and display of the panoramic
video, we need to take some measures in our image processing pipeline. Some



8 Development of an Intelligent Omnivision Surveillance System

algorithms like object- and face detection may not run in real-time. Thus, we
have to drop frames, if processing of a previous frame is still in progress. After
the processing has finished, the newest available frame will be processed. This
way, it is ensured, that the frame processing queue does not grow. The recording
function is scheduled to allow frames queueing up to a certain point, in order to
compensate for load variation of the system and to avoid frame drops.

Recording As we are using the GStreamer-framework, it is easy to implement
recording functions. Recording is implemented as a separate pipeline, that runs
detached from the main pipeline. This way, recording can be started and stopped
independently. Several tests have been performed in order to find a good compro-
mise between data rate and CPU load. It is possible to choose different codecs
(e.g. h264, MJPEG, MPEG2, Theora, h263) and there is also the possibility
to reduce resolution and framerate. Trials showed that h264 yielded acceptable
results with the following settings:

– recording resolution 1880 x 384
– 10 frames per second
– tuned to be less CPU-intensive
– bitrate 3000 kBit per second

Using these settings, it is possible to save one hour of video in 1.35 GByte.
Considering the size of modern HDDs, this is quite moderate.

Autofocus There are several options to control the functions of the PTZ cam-
era. Beside the possibilities of controlling the focus with a slider in the GUI or
choosing predefined values from a lookup table, an autofocus algorithm is im-
plemented. Within this mode, the sharpness of the image is analysed while the
focus setting is changed. We take the difference between two neighbouring pixels
as a measurement for image sharpness. As a first step, the image is filtered with
a Sobel operator and the absolute of the value will be determined. This way,
points with high contrast will be detected in the image. In the next step we sum
up all the pixel values of the filtered image and take the resulting integer as a
measure. The higher this value, the sharper the image. During the procedure,
the focus will move from the lowest setting to the highest setting. The received
values are assigned to the focus settings. In the last step, the focus setting with
the maximum value is chosen.

PTZ image One of the main features of the system is to provide close-up
views of user defined regions-of-interest (ROI). These can be selected in the
main software by dragging a rectangle in the main image or by double-clicking
on a detected image feature. This way, the system will automatically try to
calculate the setting for the PTU-unit and the zoom lens.

pan = (
xr + xl

2
− width

2
) ∗ hfov

width
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Fig. 6. In this image the PTZ-overlay function is shown. The ROI is choosen by the
user. After the PTU, zoom and focus have been adjusted, the image is overlayed.

In this equation width is the width of the panorama image, hfov is the hori-
zontal field of view, in our case 360◦, xr and xl are the right and left border of
the ROI.

Analogue to this we can define

tilt = (
yd + yu

2
− height

2
) ∗ hfov

width

given that the aspect ratio of one pixel is 1 : 1, height is the height of the
panorama image, xu and yd are the upper and lower border of the ROI.

The desired horizontal field of view of the PTZ-camera is calculated the
following way:

PTZfov =

{
xr−xl

width ∗ hfov if xr−xl

yd−yu ≥ PTZwidth
PTZheight

yd−yu
height ∗ hfov else

where PTZwidth and PTZheight are width and height of the pan-tilt-zoom
camera, the other variables are defined like in the prior equations. As the aspect
ratio of the user-drawn rectangle will probably differ from the aspect ratio of the
PTZ-camera, we need to distinguish between two cases. This way the desired
horizontal field of view is calculated in a way that it always covers the full user-
drawn rectangle.

Having the desired horizontal field of view, it is possible to calculate the
corresponding focal length in the following way:

f =
d

2.0 ∗ tan(π∗fov360.0 )

where d is the horizontal width of the image sensor, and fov is the desired
horizontal field of view. This value will be provided to the PTZ control routine.
An image where the PTZ-camera automatically adjusted to a user-defined region
is shown in 6.
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5 Conclusion

In this paper we showed our research on an intelligent omnivision camera system.
We showed how this system can be used in a surveillance scenario. One of the
most important findings was, that there are a lot of parallels between surveillance
and robotics and many implemented functions can be reused. Due to the fact
that we are using the modular framework GStreamer, it was easy to access the
IP cameras and it was also possible to add state of the art features like h264
recording. Using an OpenCL accelerated panorama stitching algorithm and our
scheduling functions, it became possible to get a real-time view of the scene,
while all other detection algorithms run as fast as possible.

There are several options to enhance the system. Due to the modular pipeline
setup, it is also possible to add dedicated PCs that are only used for detection of
image features. This way, computationally intensive image processing functions
can be executed without the risk of disturbing real-time critical tasks.

The system can also be used for different types of camera systems. They
could be equipped with wide-angle lenses or spherical mirrors. In the software
setup, only the elements for generating the image need to be exchanged, the rest
of the software as well as the GUI can be reused.

One possibility to have a next-generation surveillance systems would be to
access even more cameras and to fuse the image of the different cameras with
awareness of the three-dimensional structures in the scene.
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ulation and scheduling of real-time computer vision algorithms. Computer Vision
Systems, pages 98–114, 1999.

13. R. Xu and J. Jin. Scheduling latency insensitive computer vision tasks. Parallel
and Distributed Processing and Applications, pages 1089–1100, 2005.

14. W. Taymans, S. Baker, A. Wingo, R. Bultje, and S. Kost. Gstreamer application
development manual (0.10.21.3), October 2008.

15. D.G. Lowe. Object recognition from local scale-invariant features. International
Conference on Computer Vision, 2:1150–1157, 1999.

16. D. Schleicher, L.M. Bergasa, R. Barea, E. Lopez, M. Ocaña, and J. Nuevo. Real-
Time wide-angle stereo visual SLAM on large environments using SIFT features
correction. In Proceedings of the IEEE/RSJ International Conference on Interna-
tional Robots and System, Oct, pages 3878–3883, 2007.

17. J. Kuehnle, A. Verl, Zhixing Xue, S. Ruehl, J.M. Zoellner, R. Dillmann, T. Grund-
mann, R. Eidenberger, and R.D. Zoellner. 6d object localization and obstacle
detection for collision-free manipulation with a mobile service robot. pages 1 –6,
June 2009.

18. P. Viola and M. Jones. Rapid Object Detection Using a Boosted Cascade of Sim-
ple Features. IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER
VISION AND PATTERN RECOGNITION, 1, 2001.

19. G. Bradski. The openCV library. DOCTOR DOBBS JOURNAL, 25(11):120–126,
2000.


