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Abstract—In this paper we present an overview of a multi-
sensor setup designed to record and analyse human in-hand
manipulation — tasks consisting of several phases of finger
motions following the initial grasp. During the experiments all
of the hand, finger, and object positions are recorded, as are
the contact forces applied to the manipulated objects. The use
of instrumented sensing objects complements the data.

The goal is to understand and extract a basic set of finger
and hand movement patterns, which can then be combined
to perform a complete manipulation task, and which can
be transferred to control robotic hands. The segmentation of
whole manipulation traces into several phases corresponding to
individual basic patterns is the first step towards this goal. Initial
analysis and segmentation of two typical manipulation tasks are
presented, showing the advantages of the multi-modal analysis.

Index Terms—grasping, in-hand manipulation, tactile sensing

I. INTRODUCTION AND RELATED WORK

The capacity of the human hand to grasp and manipulate

objects, known or unknown and of widely different sizes,

shapes and materials is unmatched. Despite recent progress

in the design and control of multi-finger robot hands, their

use in service-robotics is still limited by the complexity of

finding and applying grasp movements for any given task.

Fig. 1. The 24-DOF Shadow hand

The study of manipulation tasks can be categorised into two

main groups. In analytical approaches, a grasp is formally

defined as a set of contact points on the surface of the

target object together with friction cone conditions [1]. The

traditional solution to this problem is divided into two stages:

first, suitable grasping points on the object are determined,

and in the second step a robot hand posture is computed via

inverse kinematics to reach those points with the fingertips.

See [2] and [3] for extensive reviews.

To realise a better flexibility and robustness, the second

approach is motivated by the way humans grasp and rely on

empirical studies and classification of human manipulation

tasks [4]. Typically, the manipulation task is divided into

different phases, e.g. pre-shape, grasp, and stabilization of

an object [5]. Analyzed strategies can then be mapped to a

robot hand, and complex behaviour is created by sequencing

and combining basic motion primitives [6].

Vision systems and data-gloves are the most common

sensors used to track the human hand and fingers in the ex-

periments, and there is some overlap with research motivated

by virtual reality and gesture recognition.

In vision based systems, both marker-based and markerless

tracking of hand motions has been tried, and multi-camera

setups are often required to reduce the inherent problem of

occlusion and self-occlusion. Markerless approaches typically

include a segmentation step based on skin color and shape-

based tools like active contours. Different machine-learning

techniques are then used to train the classifiers [7] [8].

However, humans can grasp and manipulate objects mostly

without looking, guided only by haptics. Grasp recognition

from hand postures recorded with a data-glove has been

demonstrated in [9]. Unfortunately, so far there is no technical

equivalent to human skin, and the recording of tactile data

with high spatial resolution and high dynamic force range

is a topic of active research; see [10] for a recent exhaus-

tive review. Only a few of the different technologies are

already available commercially [11]. For our experiments, the

Tekscan grip system [29] was chosen. An analysis of human

manipulation tasks based on force measurements similar to

our approach was reported recently [12].

The most advanced robot hands available today approach

the mechanical structure and size of the human hand. For

example, the Shadow robot hand [13] is designed to closely

match the human hand, with 24-DOF overall and human-like

thumb movements. Successful grasping of a set of everyday

objects with the Shadow hand has been demonstrated [14],

but in-hand re-grasping and dexterous manipulation or the use

of tools is still beyond the state of the art.
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Fig. 4. Example histograms of Tekscan force-sensor activations for the finger sensors. The five columns show the data for (from left to right) the thumb,
and then index, middle, ring, and little finger. The upper, middle, and bottom group of histograms corresponds to the distal, medial, and proximal sensors.
For each sensor cell, the color-encoded histogram visualizes the occupation numbers of the force values encountered during an experiment (log-scale, from
left to right). The palm-sensors are not shown. (a) in-hand manipulation of the Rubik cube with a precision grasp. Only the proximal phalanges of the thumb
and index finger are active, with some additional stabilization from the ring-finger. (b) using the ball-pen for writing. All fingers and most sensors except the
proximal sensors on the thumb are activated during the experiment.

A. Tactile sensing

To record the contact forces applied during the experiments,

a Tekscan grip system [29] has been stitched onto a standard

Cyberglove [28]. A photo is shown in figure 2 together with

the 2D visualization provided by Tekscan and re-implemented

in our own software. The Tekscan grip system consists of a

set of matrix sensor elements using force-sensitive resistive

material and connected by a flexible circuit board. The layout

of the sensors is shaped to match the human hand, with three

groups of sensors (distal, medial, proximal) on each finger,

two groups on the thumb, and three groups on the palm of the

hand. Despite the extra weight and some restrictions on finger

positions caused by the stiffness of the glove and sensors,

many manipulation tasks can be performed well.

B. Instrumented objects

The use of special instrumented sensing objects is a third

keystone of our experiment setup. The sensors in the object

measure orientation, accelerations, and grasp forces to com-

plement the data gathered from the glove and hand itself.

The first instrumented sensing object is a custom-built cube

equipped with tactile sensors [30], see figure 3 for a photo of

the prototype next to an original Rubik cube. Every face of

the cube consists of a small circuit board carrying an array of

3x3 resistive force sensors and one 3-axis accelerometer. Six

boards are interconnected, with a single CAN-bus interface

to the host computer. For convenience, the faces are colored

identically to the original cube, and the resulting numbering

of the sensor cells is shown in figure 3b.

C. Software environment

While real-time analysis and direct teleoperation of robots

is planned for a later stage, the grasping and manipulation

experiments reported here are just recorded for later off-

line analysis. Sacrificing file size for portability, all recorded

sensor data is timestamped and encoded as XML, with a

common basic structure including calibration information

followed by the raw sensor samples. Video data from the

cameras is stored as individual image files, which are in turn

referenced from the XML. A single additional ’root.xml’ file

describes the overall experiment setup, the sensors employed,

and also includes comments and annotations [32]. Both a

Matlab toolbox and several Java tools are available for parsing

and visualization of experiment traces.

D. Multi-sensor calibration

Given the variety and complexity of the sensors employed,

the calibration of the multi-sensor setup is quite challenging,

and so far only the stereo-camera calibration is performed

automatically. The Polhemus tracker uses its own absolute

coordinate system, which can be mapped into the coordinate

system of the cameras.

The initial calibration of the Tekscan sensor cells has

been performed with objects of known weight, but this is

very time-consuming and suffers from problems with the

Tekscan system mounted onto the data-glove. As a result, the

experimental data presented below just uses the uncalibrated

raw sensor data.

A similar approach with objects of known weights is

used to calibrate all 6x3x3 force sensors of the instrumented

Rubik cube. The accelerometers are factory-calibrated, but

additional calibration in the range of ±1 g is easily performed

by putting the cube on all of its six faces in turn, and then on

a simple rig with 30 and 45 degrees of tilt, providing a set of

seven known levels and accurate offset for each accelerometer.
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Fig. 5. Picking up the instrumented Rubik cube. The photos in the upper row show the left-image of the recorded stereo-image pairs during the experiment,
with the corresponding force-signatures from the Tekscan glove in the middle and the forces from the Rubik cube in the bottom row: (a) approach (b) first
contact (intentionally off-center of the object) (c) lift-off, precision grasp with thumb and index finger only (d) lowering the finger forces to let the cube slide
down (e) finger forces remain low, because the cube is now stabilized by gravity, (f) setting the cube on the table. Compare figure 9 for a plot of the recorded
finger forces vs. time.

III. EXPERIMENTS

We are currently recording a number of typical tasks

involving everyday objects and tools, in order to compile

a database of human manipulation strategies. While existing

taxonomies and databases mostly concentrate on the finger

positions for static grasps, our database includes the measured

finger forces and the context information during the complete

manipulation task, consisting of a sequence of several typical

phases (e.g. reach, hand preshape, grasp, lift-off, stabilize, in-

hand rotate, controlled lowering, release). The segmentation

of the recorded data enables us to mark those phases and is

therefore the first step towards data analysis and understand-

ing.

In this section, we present initial experimental results.

Two simple experiments are picked to showcase two typical

tasks and the resulting sensor data. The first task involves a

precision grasp with the thumb and index finger, while the

second task illustrates a complex manipulation task with in-

hand re-grasping.

A. Force histograms

As shown in figure 4, even a first cursory glance at the

data recorded with the Tekscan grip system provides a useful

classification of the grasping. In the diagram, the forces

recorded during an experiment are visualized using color-

encoded histograms. The five columns correspond to the

thumb, and the index, middle, ring and little fingers (from left

to right). Inside a column, each row plots the force histogram

recorded at a single sensor element, with the distal sensors as

the upper group, followed by the sensors on the medial and

proximal finger phalanges. For every sensor, the histogram

shows the occupation number of the corresponding bin, with

low forces on the left and the highest forces on the right.

For the experiment shown in figure 4a, only the leftmost bin

(zero force) of most histograms is populated, indicating that

the corresponding sensor cells were never activated during the

whole experiment. It is immediately evident that a precision

grasp involving only the proximal phalanges of the thumb and

index finger was performed, with some additional stabilization

by some cells on the ring finger.

On the other hand, the data shown in figure 4b indicates

that all sensors on the fingers were activated during the ex-

periment, with the single exception of the proximal sensors on

the thumb. The data correspond to the complex manipulation

reported in more detail in section III-C, grasping a ball-point

pen to pick it up, in-hand re-grasp to reach the button, clicking

the pen, re-grasping again to the writing position, and writing

a few characters.
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Fig. 6. Pickung u a ball-point pen for writing. The photos in the upper row show the left-image of the recorded stereo-image pairs during the experiment,
with the corresponding force-signatures in the lower row: (a) initial position, (b) approach and hand-preshape, (c) first contact (d) grasping for pickup with
thumb and index finger (precision grasp) (e) lift-off, (f) starting the in-hand re-grasping into a power-grasp configuration

(g) (h) (i) (j) (k) (l)

Fig. 7. In-hand manipulation to reach the ”‘click”’ button of the ball-point pen. Starting from the initial position (g), the pen is put between the proximal
phalanges (h) and then moved laterally until the thumb can reach the button of the pen (i-j-k). It can be seen clearly how the peak of the forces travels with
the object. The last image (l) shows the forces while writing. Note that the palm sensors are activated by the little finger.

B. Grasping the Rubik-Cube

While in-hand manipulation tasks typically start and end

with controlled stable grasps, the intermediate phases during

re-grasping often involve short periods of time where finger

forces are reduced until the resulting grasp is statically

unstable.

The simple experiment shown in figure 5 was designed to

track the finger forces in such situations. The first phase of the

experiment consists of grasping and lifting the Rubik cube,

but intentionally off-center.

Figure 8 shows the accumulated forces of the distal pha-

langes of the thumb and index finger as recorded with the

Tekscan glove. The data is shown as uncalibrated raw sensor

readings, and due to some sensor non-linearity the forces on

the index finger are larger than the forces on the thumb.

The traces show that the thumb is first to make contact

with the object, closely followed by the index finger at t =5.0

seconds. The forces increase rapidly and force closure makes

it possible to lift the cube. Once in mid-air, the forces are

slightly reduced and remain roughly constant. At t = 8.6

seconds, the test subject releases the grip force for a moment,

and the cube rotates under the influence of gravity. At t =

11 seconds, the cube is put on the table again.

For comparison, the corresponding traces recorded by the

force sensors on the instrumented cube are shown in figure 9.

Initially, the cube rests on the green face, resulting in sensor

response on that face. Then, the cube is grasped with the

index finger at cell W1 and the thumb on cell Y1. Again, the

reduced forces that initiate the sliding near t = 8.6 seconds

are clearly recorded. Finally, the cube is set down on the

orange face. Unfortunately, the mechanical design results in

some crosstalk between neighboring faces. For example, note

the erroneous activation of sensor cell R4 in figure 5 due to

the strong force applied at cell W1.
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Fig. 8. Grasping the Rubik cube off-center, and letting it slip so that it swings
downwards. The plot shows the accumulated forces on the tips of the thumb
and index finger vs. time (in seconds) during the experiment shown in figure 5
as recorded by the Tekscan sensor. The different phases of the manipulation
task are clearly visible: initial approach, lift-off at 5 sec, stabilization, swing at
8.6 sec, stabilization, drop-off at 11 sec. Forces are not scaled and correspond
to the raw data values. Note that the experimenter intuitively keeps the thumb
forces low once the Rubik cube is pointed downwards and kept stable by
gravity.
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Fig. 9. Accumulated forces for the green, yellow, and orange faces as
recorded by the instrumented object for the same experiment traced in
figure 8. Initially, the cube rests on the green face, and is picked up by
a strong grasp at cells W1 and Y1. After the slipping phase, the orange face
is at the bottom. Note the short peak as the cube is set on the table.

C. Using a ball-point pen

Our second experiment consists of a typical everyday task:

picking up a ball-point pen for writing. Camera images

corresponding to a few key moments are shown in figures 6

and 7 together with the recorded force signatures. Starting

from the resting position (6a), the human first pre-shapes the

fingers (b) and reaches for the pen (c). The thumb and index

fingers are closed into a pinch-grasp (d), and finger forces are

increased for lift-off (e). Not shown here are the interesting

different hand postures and finger pre-shapes for different

initial positions of the pen on the table.

Immediately after lift-off, the experimenter starts the in-

hand re-grasp required to reach the button on the back end of

the pen in order to activate it by clicking the button. The first

stage of this is shown in figure (6e) and (f), where the load

shifts from the index finger to the middle and ring fingers.

With the fingers closed around the pen, the pen is then moved

inside the hand until the thumb can reach and click the button

of the pen, see figure 7 (g) to (k). A second stage of re-

grasping follows to shift the pen until thumb and index finger

have reached the position for writing (l).

An example of human grasp force control is presented in

figure 11 which shows six phases of clicking the ball-point

pen on and off. The pen is held lightly in a power-grasp

finger configuration (11a) so that all finger sensors and the
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Fig. 10. Grasping a pen and writing. Trajectories of the fingertips during
the first part of the experiment as recorded by the Polhemus sensors (purple:
thumb, blue/green/red/cyan: index/middle/ring/little finger). The trajectory of
the ball-point pen is tracked by a sixth Polhemus sensor (yellow). Note
that the trajectories are very clean during the approach phase, but individual
phases of the manipulation task cannot be recognized from the trajectories
alone.

palm sensors are activated. Note that the finger forces increase

significantly during the clicking (b-c-d) to compensate the

force applied by the thumb. After the clicking (e-f), the finger

forces are reduced again.

Compare figure 10 for the finger trajectories recorded by

the Polhemus magnetic tracker during the first phase of the

experiment. While the data itself is pretty clean, the trajecto-

ries are continuous and smooth, and the different phases of

the overall manipulation task cannot be distinguished from

the data.

(a) (b) (c)

(d) (e) (f)

Fig. 11. Clicking a ball-point pen on and off. The pen is held in a power
grasp with the thumb operating the button. In the initial phase (a-b), the
grasp forces are quite low and distributed evenly across all fingers and the
palm. The forces increase significantly while clicking the button (c-d) in
order to stabilize the pen, but are reduced again afterwards (e-f). The outer
palm sensors and the proximal part of the thumb do not touch the pen and
are not activated.
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IV. FUTURE WORK

While the experimental setup allows us to collect absolute

position data for the fingers and objects during the manipu-

lation tasks, this has not yet been exploited in our analysis.

Therefore, we are now working on a integrated 3D physics

simulation and visualization, which enables us to track and

reconstruct the hand and finger movements during the grasp

and manipulation experiments.

In the tool, the user can play back the recorded experiments,

showing either or all of the reconstructed 3D positions of the

fingertips and objects from the Polhemus sensors and stereo

images, the reconstructed human hand model, and the force-

values recorded from the Tekscan and instrumented objects

mapped onto the hand. Contact points between fingers and

objects will be visualized similar to GraspIt! and our in-house

simulator zgrasp [24].

The next major step will be to model object affordances

and to evaluate machine-learning approaches to automatically

detect, segment, and analyse the several phases of human

object manipulation. We are working on a mapping, allowing

to transfer the reconstructed finger movements to a physical

simulation of the Shadow hand, and then to validate the results

with the real Shadow hand.

V. CONCLUSION AND DISCUSSION

The initial results of our multi-modal analysis of human

manipulation tasks look promising. The different sensors

complement each other nicely for our goal of segmentation

of multi-stage operations into their different phases. For

example, initial hand positions and finger pre-shapes are

available from the camera images and Polhemus traces, while

the force sensors give accurate information about the time

of initial contact which would be hard to extract from the

camera images. The spatial resolution of the force sensors in

the Tekscan glove is enough to provide detailed information

about in-hand manipulation tasks.
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