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Abstract—In mobile robot scenarios, it is expected that the robot 

autonomously navigates through home or office environments 

and processes objects/landmarks during navigation. Landmark 

manipulation is identified as one important research area in 

robot navigation systems. We have developed an online robot 

landmark processing system (RLPS) to detect, classify, and 

localize different types of landmarks during robot navigation. 

The RLPS is based on a two-step classification stage which is 

robust and invariant towards scaling and translations. It 

provides a good balance between fast processing time and high 

detection accuracy by combining the strengths of appearance-

based and model-based object classification techniques. The 

experimental results showed that the RLPS is more powerful as it 

recognizes a wide range of landmarks and efficiently handles 

landmarks with occlusions, viewpoint variances, and illumination 

changes. 

Keywords-robot vision; object detection and classification; 

vision-based robot navigation. 

I.  INTRODUCTION 

 Vision is one of the most powerful and popular sensing 
method used for autonomous robot navigation that continues to 
demand a lot of attention from the mobile robot research 
community. When vision sensor compared with other on-board 
sensing techniques, the vision sensor has the ability to provide 
detailed information about the environment which may not be 
available using combinations of other types of sensors. The 
past decade has seen the rapid development of vision based 
sensing for indoor mobile robot navigation tasks. 

 Object manipulation in vision-based robot navigation is 
used to detect and classify landmarks during navigation. It is 
also used to localize the current position of the robot with 
respect to the detected landmarks. This process is called the 
robot's self localization. It is defined as the process of 
estimating the initial position of the robot with respect to a 
global coordinate system or according to recognized landmarks 
[1]. For robot navigation, object recognition has the ability to 
learn and detect hundreds of arbitrary objects in images from 
uncontrolled environments which can be considered as a major 
breakthrough for many intelligent robotics applications. 

 On the other hand, object recognition in real scenes is 
deemed as one of the most challenging problems in computer 
vision. The visual appearance of objects can change 
enormously due to viewpoint variation, occlusions, 

illumination changes, or sensor noise. Furthermore, objects are 
not presented alone to the vision system, but they are immersed 
in an environment with other elements, which clutter the scene 
and make recognition more complicated. In a mobile robotics 
scenario, a new challenge is added to the last list: 
computational complexity [2]. In a dynamic world, information 
about the objects in the scene can become obsolete even before 
it is ready to be used if the recognition algorithm is not fast 
enough to handle the current robot’s view.  

This paper is organized as follows. Section II discusses 
some current related work. In section III, the architecture of our 
robot landmark manipulation system (RLMS), which is used to 
detect, classify, and localize landmarks for the mobile robot, is 
introduced. Section IV discusses the implementation and 
experimental results. Finally, the conclusion is presented in 
section V.  

II. RELATED WORK 

 In some real-time robot applications, vision systems 
employing region segmentation by color to detect objects or 
landmarks during interaction with humans or navigating in a 
dynamic world. For example, Bruce et al. [3] implemented a 
segmentation system capable of tracking several hundred 
regions. It can classify each pixel in a full resolution captured 
color image. Michel et al. [4] build an occupancy grid from the 
synthesized top-down floor view, a step of color segmentation 
is performed in YUV space. They defined segmentation 
thresholds by sampling pixel values offline for obstacles placed 
in a variety of locations on the floor.  

 On the other hand, object recognition algorithms are 
typically designed to classify objects into one of several 
predefined classes assuming that the segmentation of the object 
has already been performed. In general, object detection tasks 
are much more difficult. Their purpose is to search for a 
specific object in an image while not knowing beforehand if 
the object is present in the image or not. Most of the object 
recognition algorithms may be used for object detection by 
scanning the image for the object. Regarding the computational 
complexity, some methods are more suitable for searching than 
others.  

In general, approaches to solving the recognition problem 
can be classified into two categories: appearance-based (or so-
called global) methods, and model-based (or so-called local) 



methods [5]. Appearance-based methods are based on the 
overall visual appearance of the object. They often represent 
the object with a histogram of certain features extracted during 
the training process, such as a color histogram which represents 
the distribution of object colors. Whereas model-based 
methods rely on specific geometric features of the object such 
as small texture patches or particular features. For the robot to 
recognize an object, the object must appear large enough in the 
camera image. If the object is too small, local features cannot 
be extracted from it. Global appearance-based methods also 
fail to recognize the object, since the size of the object is small 
in relation to the background, which commonly results in a 
high number of false positives.  

Recently significant work has been done in visual object 
classification, but few of them actually scale to the demands 
posed by mobile robot scenarios. In robotic applications, the 
robots should have lightweight, fast, and robust object 
perception methods that allow them to interact with the 
environment in real-time. For example, Lowe [6] proposed an 
object recognition method that uses Scale Invariant Features 
Transform (SIFT). SIFT is an approach for detecting and 
extracting local feature descriptors that are reasonably invariant 
to changes in rotation, scaling, small changes in viewpoint, 
illumination, and image noise. This object recognition 
approach is single-view object detection and recognition 
system with some interesting characteristics for mobile robots, 
most significant of which is the ability to detect and recognize 
several objects at the same time in an un-segmented image.  

Color-based object recognition, where objects of interest 
are colored in a uniquely identifiable and known way, is a 
technique that has found wide use in the robotics community. 
Therefore, there are many researchers who implemented their 
mobile robot vision applications by using color-based object 
recognition methods. For example, the authors in [7] proposed 
a recognition scheme that is based on the color co-occurrence 
histograms (CCHs). It is used in a classical learning framework 
that facilitates a “winner-takes-all” strategy across different 
scales. The detected “windows of attention” are compared with 
training images of the object for which the pose is known. The 
orientation of the object is estimated as the weighted average 
among competitive poses, in which the weight increases 
proportional to the degree of matching between the training 
and the segmented image histograms.  

Fasola and Veloso [8] described an approach that performs 
visual object detection in real-time by combining the strength 
of processing the color segmented image along with that of the 
grayscale image of the same scene. They used color segmented 
images for producing initial hypotheses for the location of 
robots in the image, and grayscale images for final 
classification purposes.  

III. SYSTEM ARCHITECTURE  

We have developed an online robot landmark manipulation 
system (RLMS) running on a mobile robot. RLMS is used to 
detect, classify, and localize different types of landmarks 
during robot navigation. The robot autonomously navigates in 
an indoor environment, moves according to the processed route 
description, and localizes its position in the environment with 

respect to the detected landmarks. The robot recognizes 
predefined landmarks, estimates their position in the 
environment, and integrates the result with the localization 
module to automatically process the landmarks and use them in 
motion planning. Our main goal is to implement a robust, 
accurate, and real-time landmark manipulation system for 
mobile robot navigation which can handle different types of 
landmarks. 

The robot uses the symbolic representation and the 
generated topological map of the route description to decide 
which landmark will be processed during navigation [9]. The 
topological map represents the route description in a graphical 
representation and it also retrieves the relationships between 
the landmarks to handle uncertainties during robot navigation. 
The symbolic representation of the route is grounded to the 
output of RLMS by using perceptual anchoring. The result is 
supplied to the motion planner to generate the shortest feasible 
path for the robot [10].  

 

 

 

 

 

 

 

 

 

Figure 1.  The architecture of the robot landmark manipulation system.  

As shown in Fig. 1, the architecture of RLMS can be 
divided into three basic stages: stereo calibration, stereo vision 
and triangulation, and landmark classification. The stereo 
calibration is used to calculate the internal and external 
parameters of the left and right cameras of the robot. The stereo 
vision stage is responsible for creating disparity and depth 
maps of the captured images. The outputs from the stereo 
vision combined with the external parameters of the stereo 
pairs are used to calculate the 3D position of the retrieved 
landmarks in the real world. Last but not the least, the 
landmark classification stage is responsible for detecting and 
recognizing the landmarks from the captured frames. In the 
following subsections, the main building blocks of RLMS will 
be discussed in detail.    

A. Stereo Vision and Landmark Localization 

We use stereo vision as a reliable and effective way to 
extract range information from the environment. The disparity 
map resulting from the stereo vision process is integrated with 
the landmark classification stage to obtain the position of the 
nearest landmarks to the robot. The stereo vision process is 
divided into four main steps: corresponding calculation, 
rectification, disparity map generation, and triangulation. 

In the corresponding point’s calculation stage, the features 
points in the left image are retrieved and their equivalent 

 



features in the right image are determined. The left image is 
scanned to find corners with big eigenvalues and then the 
features that are too close to stronger features are removed. 
Therefore, we use the Lucas-Kanade optical flow in pyramids 
[11] to calculate the coordinates of the feature points in the left 
captured frame and their corresponding points in the right 
captured frame.   

The rectification stage is used to determine a transformation 
of each image plane so that pairs of conjugate epipolar lines 
become collinear and parallel to one of the image axes. Fig. 2 
shows the resulting rectified image for a stereo. The average 
error of epipolar geometry, which is computed by all good 
matches, is 0.6155 pixel.  Afterwards, the distance between the 
corresponding points in the left and right images in pixels is 
computed. The output of this step is a disparity map, where the 
disparities are the differences in x-coordinates on the image 
planes of the same feature viewed in the left and right cameras. 
We use the feature-based method by Birchfield and Tomasi 
[12] to construct the disparity map. The main advantage of the 
feature-based algorithm is its speed. The process of finding 
features in both images and then calculating the disparity is 
carried out easily in real time. Fig. 3 shows the disparity and 
depth maps of the stereo images illustrated in Fig. 2. 

 

 

 

 

 

 

 

Figure 2.  The resulting rectified image of the stereo pair. 

 

 

 

 

 

 

Figure 3.  The disparity and depth maps of the stereo images. 

Finally, to calculate the object’s position in the 3D 
environment, the disparity map should be turned into distances 
by triangulation. This step is called reprojection, and the output 
is a depth map. 

B. Landmark Detection and Segmentation 

In robotic scenarios, the landmark detection stage should be 
capable of processing images extremely rapidly and of 
achieving high detection rates. The landmark detection stage is 
responsible for detecting and segmenting different types of 
landmarks from the captured image during robot navigation. Its 
main goal is to retrieve the landmarks from the captured image 

based on their shape and rejects false positives. It then 
segments the detected landmarks from the image background 
and stores them into individual images. These images will be 
fed to the recognition stage to classify the landmarks 
depending on both their features and the processed route. We 
used 9 different landmarks to examine our system as shown in 
Fig. 4. All data of these landmarks are stored in the knowledge 
base. These landmarks have logos of supermarkets, department 
stores, and restaurants; such as Lidl, C&A, and Burger King, 
respectively. 

 

 

 

 

 

 

Figure 4.  A set of landmarks used in our system.  

The landmark detection stage is processed in four basic 
steps as shown in Fig. 5. The first step is the down- and up-
scaling process which is used to filter out the noise. It applies 
down and up sampling to the captured image by using 
Gaussian pyramid decomposition. In the second step, the canny 
filter is applied to find the edges in the input image. The canny 
edge detector gives a good approximation of the optimal 
operator. It maximizes the product of signal-to-noise ratio and 
localization [11]. The third step is to dilate the canny filter 
output to remove potential holes between edge segments. 
Therefore, the image is then dilated to connect any small areas 
that may be disconnected despite the large hysteresis in the 
Canny filter [11]. The last step is to find and approximate the 
contours. We find all contours in the image and restrict it to the 
extreme outer contours, then approximate the contours by 
using the Douglas Peucker algorithm [13].  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.  The flow diagram of the landmark detection stage.  

 

 
 

 

 



As an alternative to the computationally expensive 
windowing strategies, an image segmentation strategy is 
proposed. This method could improve results by reducing 
background clutter. We crop the detected landmarks from the 
image background to reduce the processing time during the 
recognition stage. This allows background regions of the image 
to be quickly discarded while spending more computation on 
promising object-like regions. The segmentation technique is 
based on the outputs of the detection clutter. The detection 
stage provides it with the proposed landmark regions, whereas 
disparity provides it with the position of the landmarks with 
respect to the robot's position. Once the object is segmented 
from the background, it has to be represented in a compact way 
for future indexing. 

 

 

 

 

 

 

 

 

Figure 6.  The output of the detection stage. 

C. Vision Planner 

The vision planner decides which algorithm should be used 
to recognize landmarks seen by the robot during navigation. 
This learning is based on both simple attributes extracted on-
line from the images and data retrieved from the symbolic and 
graphical representations of the processed route. For the 
appearance-based approaches, the vision planner can choose 
between Hough transform to detect street boundaries and 
crossroads, color histogram to detect landmarks with logo (see 
Fig. 4), or color detection to detect other buildings in our 
miniature city. For the model-based approaches, it can choose 
whether or not to use the SIFT approach. In this paper, we 
focus only the logo landmarks. 

Finally, the vision planner stores the recognized landmarks 
and their positions. It can use this information to get an idea of 
where the position of the new landmarks is with respect to the 
detected landmarks. The vision planner provides the vision 
output to the symbol grounding stage in the motion planner to 
connect the symbolic representation of the landmarks with their 
equivalent physical data. 

D. Landmark Classification 

Landmark classification is the core stage of RLMS. It is 
implemented by using a two-step classification. The major 
advantages of the proposed two-step classification based 
method are its robustness and invariance towards scaling and 
translations. Also, it provides a good balance between fast 
processing time and high detection accuracy. First, an 
appearance-based method is used to classify the landmarks to 
get an initial estimation of the processed landmark. Then, a 

model-based classification is used to refine the recognition 
stage and obtain an accurate estimation of the landmark. This 
combination of appearance-based and model-based methods 
leads to a robust classification of the landmark and also speeds 
up the recognition process. 

We use the color histogram as appearance-based method to 
get a fast rough classification of the landmarks. Selecting 
which algorithm should be used by a mobile robot computer 
vision system is a decision that is usually made a priori to the 
processing stage of the captured image. A color histogram is 
calculated first to produce initial hypotheses before supplying 
the processed landmark to the model-based stage to get an 
accurate estimation of this landmark. As the RGB color space 
is not very stable with regard to alterations in the illumination, 
the representation of a color with the RGB color space contains 
no separation between the illumination and the color parts. 
Therefore, we used the HSV color space, which is robust 
against alterations in illumination, because the color parts and 
the illumination are represented separately. The color 
histogram returns the hue distribution of the detected 
landmarks and does not preserve the geometric structures of 
these landmarks. The hue color component is determined by 
the dominant wavelength in the spectral distribution of light 
wavelengths. This component is ideally independent of the 
lighting conditions and the distance between object and 
observer. Therefore, they are reliable parameters for object 
recognition.  

On the other hand, color histograms of training images, 
which are stored in the database, are computed offline to 
reduce the consumed time. Only the histogram of the tested 
landmark needs to be calculated. Comparison of these two 
distributions (detected and stored landmarks) which are 
represented in the form of histograms is made on the basis of 
the correlation coefficient for these distributions. If the two 
histograms are identical, the correlation coefficient is equal to 
unity. The stronger the correlation coefficient differs from 
unity, the stronger is the diversity between the considered 
distributions. Thus the correlation method of comparison of 
histograms is the simplest and strongest method for the 
analysis of observed data for a certain meteorological 
phenomenon. The resulting correlation coefficients of the color 
histograms with the information retrieved from the topological 
map and the route symbolic representation are used as an initial 
estimation of the processed landmark. Fig. 7 shows the hue 
color histograms of the tested landmarks. 

 

 

 

 

 

 

 

 

Figure 7.  The color histograms of the tested landmarks. 

 

 



Afterwards, the SIFT technique is used to classify the 
landmarks according to their geometrical properties. After 
applying the appearance-based technique and having some 
hypotheses, we used the model-based stage to refine the 
recognition stage and obtain an accurate estimation of the 
landmark. Initially, SIFT descriptors of the detected features in 
the processed landmark are determined. Then the resulting 
descriptors are matched to the ones with the highest hypotheses 
which are stored in the landmark knowledge base by using the 
Euclidean distance. False matches are rejected if the distance of 
the first nearest neighbor is not distinctive enough when 
compared with that of the second. 

Once a set of matches is found, the Hough Transform is 
used to cluster each match of every knowledge base image 
depending on its particular transformation. Although imprecise, 
this step generates a number of initial coherent object 
hypotheses and removes a notable portion of the outliers that 
could potentially confuse more precise but also more sensitive 
methods. All clusters with at least three matches for a particular 
training object are accepted, and fed to the next stage: the Least 
Squares method, used to improve the estimation of the affine 
transformation between the model and the test images. The 
matching process between the examined images and the stored 
landmarks is shown in Fig. 8. 

 

 

 

 

 

 

 

 

Figure 8.  The matching between the calculated SIFT descriptors of the 

processed images and those of the stored landmarks in the knowledge base.  

Finally, the landmark with the highest matching points is 
chosen as the recognized landmark (i.e. the more SIFT-matches 
found in an image, the more likely it is that that image contains 
the object). If the number of matches exceeds an object-
dependent threshold, the object is considered recognized. Some 
objects have more features than others and are thus easier to 
recognize. To minimize the number of false positives, the 
threshold depends on the number of features found during 
training.  

After recognizing the landmarks, the topological map is 
used to specify which landmarks will be processed by the 
robot. The robot focuses only on the landmarks which are 
already mentioned in the route description and presented in the 
topological map. This leads to decreasing the processing time 
be ignoring unwanted landmarks. The nearest landmark in the 
route description to the robot is chosen by using the disparity 
map, and then triangulation is used to calculate the 
approximate world position of this landmark. After recognizing 
landmarks and calculating their locations in the real world, the 

robot navigates to the landmark by using the information 
supplied by the topological map. 

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

In this section, we demonstrate that RLMS is more 
powerful as it learned to recognize a wide range of landmarks 
and find them in the environment even when there are 
landmarks of similar colors in the field of view. It also handles 
landmarks with viewpoint variances, occlusions, and 
illumination changes. The main purpose of this experiment is 
to evaluate our proposed technique to be used in an indoor 
mobile robot. We implemented our system by using two 0.25'' 
CMOS unsynchronized cameras. The two cameras are linked 
via USB connections to an Intel 1.73GHZ Duo laptop with 
3GB RAM. The operating system is a standard Linux 
distribution and kernel with Video for Linux drivers for video 
capture. In its current form the system can process 320x240 
images at 25fps. 

TABLE I.  THE RESULTING INTERNAL AND EXTERNAL CALIBRATION 

PARAMETERS OF THE ROBOT’S CAMERAS. 

Parameters Values 

Left intrinsic matrix 

457.5843    000.0000   153.1480 
000.0000    457.5843   135.7438 

000.0000    000.0000    001.0000 

Left distortion matrix 0.4296  3.2729  0.0000  0.0000   -35.5685 

Right intrinsic matrix 

457.5843   000.0000   172.7118 

000.0000   457.5843   148.4658 
000.0000   000.0000   001.0000 

Right distortion matrix 0.4763  1.2530  0.0000  0.0000   -21.4564 

Stereo rotation matrix 

0.9998    -0.0068    -0.0191 

0.0060     0.9992    -0.0398 

0.0194     0.0397     0.9990 

Stereo translation matrix -2.5325   -0.0634   0.0187 

 

To evaluate the performance of our robot landmark 
manipulation system, the following procedure was carried out: 
first, we approximately captured 900 different images for the 
tested landmarks with different viewing angles, distances from 
the robot, occlusions, and illumination changes. Each tested 
image contains one or more instances of the landmarks, some 
of them with illumination changes, partial occlusions, or 
viewpoint variances. In addition to our proposed method, we 
selected three state-of-the-art object recognition methods, 
which are suitable to be adapted to the mobile robot's 
applications, to compare them with the performance of our 
proposed technique. We used the original SIFT, color 
histogram, and Speeded Up Robust Features (SURF) [14] 
techniques to compare them with the detection rate of the 
proposed system. Evaluation is done by comparing the number 
of detected objects, false negatives, and false positives 
resulting by applying these approaches to the processed dataset. 

The ratio of the correct classifications for each tested 
landmark in the dataset is illustrated in Fig. 9. It can be 
observed that the correct recognition rate of our proposed 
technique is over that 85% for the most of the tested 
landmarks. It also can be noticed that the detection rate of the 
color histogram is the lowest rate among the other tested 

 



techniques. For SIFT and SURF methods, the landmark 
classification is based on the more matches found in the image, 
the more likely it contains the landmark. Table II illustrates the 
detection rate for each technique. As seen in the table, our 
proposed system was able to achieve 91% classification 
accuracy on the test set. On the other hand, it can be noticed 
that our system handles the cropped landmarks efficiently 
except in a few cases which result from false positives in the 
first recognition stage.  

 

 

 

 

 

 

 

 

 

 

Figure 9.  The ratio of the correct classifications with the whole dataset of the 

processed images.  

TABLE II.  DETECTION RATE OF THE TESTED TECHNIQUES.  

Correct 

classification of 

Color 

Histogram  
SIFT SURF 

Our 

Approach 

All tested images  42.22% 80.74% 84.06% 90.74% 

Cropped images  12.70%  96.83%  97.09%  94.44%  

Different viewing 

angle images  
58.33% 72.69% 74.42% 88.19% 

 

For each tested classification methods, we measured the 
average time for detection, average classification time, and 
average total manipulation time. Table III lists the time 
consumed in each stage. 

TABLE III.  LANDMARK MANIPULATION TIME 

Time (msec) Color 

Histogram  
SIFT SURF 

Our 

Approach 

Detection  104.5 ----- ----- 104.5 

Appearance-based 
Classification 

3.4 ----- ----- 3.4 

Feature Extraction ----- 549.3 186.9 549.3 

Finiding 

Correspondings 
----- 320.2 170.6 320.2 

Total Average 

Manipulation Time 
107.9 3431.4 2470.0 1137.6 

V. CONCLUSION 

In this paper, we have presented our current effort toward 
building a robust and fast robot landmark manipulation system. 
We used a more natural approach in terms of computational 
efficiency to recognize the landmark online during robot 
navigation. The appearance-based techniques of the detected 
landmarks are used to provide the rough initial estimate of the 
landmark. Then we processed the resulting hypotheses with a 

model-based approach to calculate an accurate estimation of 
the landmark.  

Stereo vision is used to calculate the 3D position of the 
landmarks in the real world. We used stereo vision as a reliable 
and effective way to extract range information from the 
environment. The disparity map resulting from the stereo 
vision process is integrated with the landmark classification 
stage to obtain the position of the landmarks nearest to the 
robot.  
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