
Humanoid Robot Navigation

Based on

A Multimodal Cognitive Interface

Dissertation

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

an der Fakultät für Mathematik, Informatik und Naturwissenschaften
der Universität Hamburg

eingereicht beim Department Informatik von

Mohammed Elmogy

aus Dakahlia, Ägypten

August 2010

ii

iii

Genehmigt von der
Fakultät für Mathematik, Informatik und Naturwissenschaften
Department Informatik der Universität Hamburg

auf Antrag von
Prof. Dr. Wolfgang Menzel (Vorsitzender)
Prof. Dr. Jianwei Zhang (Erstgutachter/Doktorvater)
Prof. Dr. Christopher Habel (Zweitgutachter/Doktorvater)

Hamburg, den 16.09.2010 (Tag der Disputation)

iv

Abstract

As the capabilities of the mobile robots as well as their abilities to perform
more tasks in an autonomous manner are increased, we need to think about
the interactions that humans will have with these robots. Human-robot in-
teraction (HRI) has recently received considerable attention in the academic
community, government labs, technology companies, and through the me-
dia. The interdisciplinary nature of HRI requires researchers in the field to
understand their research within a broader context. Since natural language
is the easiest and most natural mode of communication for humans, it is
desirable to use it to instruct the robot and to generate easy-to-understand
messages for the user. Using natural language to teach a navigation task
to a robot is an application of a more general instruction-based learning
methodology. It can be used to instruct the robot with higher-level goals or
to handle certain behaviors and modify their execution. One effective way
is to describe the route to the robot in a multimodal way.

On the other hand, significant progress has been made towards stable
robotic bipedal walking in the last few years. This is creating an increased
research interest in developing autonomous navigation strategies which are
tailored specifically to humanoid robots. Efficient approaches to percep-
tion and motion planning, which are suited to the unique characteristics of
bipedal humanoid robots and their typical operating environments, are re-
ceiving special interest. One important area of research involves the design
of algorithms to compute robust navigation strategies for humanoid robots
in human environments. Therefore, autonomous robot navigation based on
route instruction is becoming an increasingly important research topic with
regard to both humanoid and other mobile robots.

In this dissertation, the problem of humanoid robot navigation in indoor
environments is addressed. A complete framework is presented for humanoid
robot navigation based on a multimodal cognitive interface. First, a spatial
language to describe route-based navigation tasks for a mobile robot is pro-
posed. This language is implemented to present an intuitive interface that
enables novice users to easily and naturally describe a route to a mobile

vi Abstract

robot in indoor environments. An instruction interpreter is implemented to
analyze the user’s route to generate its equivalent symbolic and topological
map representations which are used as an initial path estimation for the
humanoid robot.

Second, a robust lightweight object processing system with a high de-
tection rate is developed. It can actually be used by mobile robots and
meet their hard constraints to recognize landmarks during navigation. A
landmark processing system is developed to detect, identify, and localize
different types of landmarks during robot navigation in indoor or miniature
city environments. The system is based on a two-step classification stage
which is robust and invariant towards scaling and translations. By combin-
ing the strengths of appearance-based and model-based object classification
techniques, it provides a good balance between fast processing time and high
detection accuracy.

Finally, a time-efficient hybrid motion planning system for a humanoid
robot in indoor environments is implemented. The proposed technique is
a combination of sampling-based planner and D* Lite search to generate
dynamic footstep placements in unknown environments. A modified cylinder
model is used to approximate the trajectory for the robot’s body-center
during navigation. It calculates the actual distances required to execute
different actions of the robot and compares them to the distances from the
nearest obstacles. D* Lite search is then used to find dynamic and low-cost
footstep placements within the resulting configuration space.

Zusammenfassung

Da die Fähigkeiten von mobilen Robotern einschließlich ihrer Möglichkeiten,
Aufgaben autonom durchzuführen, erweitert wurden, muss die Interaktion
zwischen Mensch und Roboter neu betrachtet werden. Human-Robot-Intera-
ction (HRI) ist ein aktuelles Thema in der Forschung, in Technologie-Untern-
ehmen und in den Medien. Der interdisziplinäre Charakter des HRI-Bereiches
erfordert Forschung innerhalb eines breiten Themenkomplexes. Da natürliche
Sprache das einfachste und natürlichste Mittel der Kommunikation für Men-
schen ist, ist es wünschenswert, diese Form der Kommunikation auch bei
der HRI zu nutzen, um einem Roboter Anweisungen zu geben und leicht
verständliche Botschaften für den Benutzer zu generieren. Die Verwendung
natürlicher Sprache zur Instruierung bei Navigations-Aufgaben ist eine An-
wendung einer allgemeineren instruktions-basierten Lernmethodologie. Dem
Roboter können so übergeordnete Ziele mitgeteilt werden, bestimmte Ver-
haltensweisen geändert oder auch die Ausführung einzelner Aktionen mod-
ifiziert werden. Eine effiziente Methode zur Beschreibung der Route ist die
Verwendung multimodaler Anweisungen.

Weil die vergangenen Jahre einen bedeutenden Fortschritt auf dem Ge-
biet der humanoiden Roboter und des stabilen zweibeinigen Gehens ge-
bracht haben, besteht ein verstärktes Forschungsinteresse an der Entwick-
lung autonomer Navigationsstrategien, die speziell auf humanoide Roboter
zugeschnitten sind. Von besonderem Interesse sind effiziente Ansätze zur
kombinierten Perzeptions- und Aktionsplanung, die an die speziellen Eigen-
schaften von zweibeinigen humanoiden Robotern und ihre typischen Betrieb-
sumgebungen angepasst sind. Ein wichtiges Gebiet der Forschung ist der En-
twurf von Algorithmen zur Berechnung von robusten Navigations-Strategien
für humanoide Roboter in menschlicher Umgebung. Aus diesem Grunde
ist die auf Routen-Instruktion beruhende autonome Roboter-Navigation ein
zunehmend interessantes Thema im Hinblick auf humanoide und andere mo-
bile Roboter.

Diese Dissertation befasst sich mit dem Problem der humanoiden Roboter-
Navigation in Innenräumen. Es wird ein komplettes Framework für hu-

viii Zusammenfassung

manoide Roboter-Navigation basierend auf einer multimodalen Schnittstelle
vorgestellt. Zunächst wird eine formale Sprache eingeführt, mit der die
routen-basierten Navigationsaufgaben beschrieben werden können. Diese
Sprache stellt eine intuitive Schnittstelle bereit, mit der auch unerfahrene
Anwender leicht einen mobilen Roboter in einer Route in Innenräumen in-
struieren können. Ein Befehls-Interpreter analysiert die Benutzer-Eingabe
und generiert entsprechende symbolische und topologische Darstellungen,
die als erste Pfad-Schätzung für den humanoiden Roboter verwendet wer-
den.

Des Weiteren wird in dieser Arbeit ein robustes und effizientes Objek-
terkennungssystem mit einer hohen Erkennungsrate entwickelt. Es kann
bei mobilen Robotern eingesetzt werden und erfüllt die Anforderung, Land-
marken während der Navigation zu erkennen. Das Landmarken-Detektions-
System ist in der Lage, während der Roboter-Navigation in einer Miniatur-
Stadt verschiedene Typen von Landmarken zu detektieren, identifizieren und
zu lokalisieren. Das System basiert auf einem zweistufigen Klassifikations-
Prozess, der robust und invariant gegenüber Skalierung und Translation ist.
Durch die Kombination der Stärken der erscheinungs-basierten und modell-
basierten Objekt-Klassifikation bietet es einen guten Kompromiss zwischen
schnellen Bearbeitungszeiten und hoher Erkennungsgenauigkeit.

Ebenfalls Bestandteil dieser Arbeit ist die Implementierung eines zeitef-
fizienten hybriden Bewegungs-Planungs-Systems für humanoide Roboter in
einer Innenraum-Umgebung. Die vorgeschlagene Technik ist eine Kombi-
nation aus Sampling-basierter Planung und D* Lite-Suche, die ermöglicht,
dynamisch Tritt-Platzierungen in unbekannten Umgebungen zu erzeugen.
Ein modifiziertes Zylinder-Modell wird verwendet, um die Trajektorie des
Roboters während der Navigation näherungsweise zu bestimmen. Die Pla-
nungskomponente berechnet die benötigten Freiräume, um verschiedene Ak-
tionen des Roboters auszuführen und vergleicht sie mit der aktuellen Ent-
fernung zu den nächstgelegenen Hindernissen. D* Lite-Suche wird dann
verwendet, um eine dynamische und effiziente Platzierung der Schritte in-
nerhalb des resultierenden Konfigurations-Raumes zu finden.

Acknowledgments

First and foremost, I would like to thank Allah for supporting me to con-
tinue my research and compile this thesis.

Many people contributed to this thesis in one way or another, and I offer
my regards and blessings to all of those who supported me in any respect
during the completion of this work.

I am heartily thankful to my supervisors, Prof. Dr. Jianwei Zhang
and Prof. Dr. Christopher Habel for their inexhaustible wisdom. Their
brilliant discussions and comments have made me enjoy working with them.
Without their help, it would have been impossible to continue my stay in
Germany. Their bright observations always helped me to see the big picture
of the problem. Their suggestions and improvements have helped shape this
thesis.

I would like to express my deepest appreciation to Dr. Houxiang Zhang
and Dr. Carola Eschenbach for their valuable advices and friendly help.
Their discussions around my work have been very helpful for this study.

I warmly thank my colleagues from the TAMS & WSV groups for provid-
ing professional support and personal advice during my research and writing
of this thesis. Specifically, I want to thank Tatjana Tetsis (Lu), Hildegard
Westermann, Dr. Andreas Mäder, Manfred Grove, Hannes Bistry, Bernd
Schütz, Denis Klimentjew, and Dr. Norman Hendrich.

I wish to thank my colleagues from the CINACS graduate research group:
Tian Gan, Patrick McCrae, Cengiz Acartürk, Sascha Jockel, Martin Weser,
Christian Graf, Dominik Off, and Kris Lohmann.

I send all my respect and gratitude to the Egyptian Cultural Bureau and
Educational Mission for supporting me financially during my scholarship.

Last but not the least, I would like to dedicate this work to my family
and all my friends. My parents who always inspired me to work hard and to
be positive at all times deserve a special word of gratitude and dedication. I
am grateful for my lovely wife, Nabila, and my children, Mariam and Yousuf,
for their endless support. Without their encouragement and understanding
it would have been impossible for me to finish this work.

x Acknowledgments

CONTENTS

Abstract v

Zusammenfassung vii

Acknowledgments ix

List of Figures xvi

List of Tables xvii

List of Algorithms xix

1 Introduction 1
1.1 Robot Navigation Challenges 2

1.1.1 Cognitive Interface for Robot Navigation 2
1.1.2 Object Processing during Navigation 3
1.1.3 Motion Planning for Humanoid Robots 3

1.2 Contribution . 4
1.3 Thesis Outline . 5

2 Interaction and Communication with Humanoid Robots 7
2.1 The Need for Humanoid Robots 8
2.2 Humanoid Robot Features . 10

2.2.1 Humanoid Robot Shape 11
2.2.2 Biped Locomotion . 12
2.2.3 Degrees of Freedom 14

2.3 Interaction with Mobile Robots 15
2.4 From HCI to HRI . 16
2.5 Evolution of HRI Systems . 18
2.6 Human Roles in HRI Systems 19

xii CONTENTS

2.7 Effective Attributes of HRI 21
2.7.1 Levels of Autonomy 23
2.7.2 Information Exchange 24
2.7.3 Common Grounding 25
2.7.4 The Structure of the Team 26
2.7.5 The Shape of The Task 27

2.8 Summary . 27

3 Route–Based Navigation for Mobile Robots 29
3.1 Natural Language Interface for Artificial Agents 29
3.2 Navigation Problem at a Glance 33
3.3 Mobile Robot Navigation . 34
3.4 Route Instructions for Robot Navigation 36
3.5 Perception–Based Symbolic Representations 40
3.6 Environment Map-like Representations 41
3.7 Summary . 42

4 Vision–Based Robot Navigation 43
4.1 Autonomous Navigation Based on Vision Sensors 43
4.2 Stereo Vision of Mobile Robots 45

4.2.1 Camera Calibration 46
4.2.2 Epipolar Rectification of Stereo Pairs 49
4.2.3 Stereo Correspondences 50
4.2.4 Triangulation . 52

4.3 Object Processing in Robot Navigation 52
4.3.1 Object Detection and Segmentation 53
4.3.2 Object Recognition . 54

4.4 Summary . 58

5 Humanoid Robot Motion Planning 61
5.1 Robot Motion Planning . 61
5.2 Configuration Space . 64
5.3 Obstacle Avoidance . 65
5.4 Robot Motion Planning Constraints 67

5.4.1 System Dynamics . 67
5.4.2 Time-changing and Unknown Workspaces 68
5.4.3 Real-time Motion Planning 69
5.4.4 Handling Uncertainties 69

5.5 Sampling-based Motion Planning 69
5.5.1 Roadmap-based Planners 71
5.5.2 Tree-based Planners 77

5.6 Summary . 78

CONTENTS xiii

6 Humanoid Robot Navigation System 81
6.1 System Architecture . 81

6.1.1 Route Processing Module 83
6.1.2 Vision Processing Module 84
6.1.3 Motion Processing Module 84

6.2 Experimental Platform (HOAP-2) 84
6.3 Experimental Environment 87
6.4 Discussion . 89

7 A Cognitively Motivated Route–Interface 91
7.1 Multimodal Route Instructions 91

7.1.1 Verbal Route Description 92
7.1.2 Graphical Route Description 95

7.2 Instruction Interpreter . 97
7.2.1 The parser . 98
7.2.2 The Syntactical Analysis 98
7.2.3 The Lexicon . 99
7.2.4 The Symbolic Representation 99

7.3 Topological Map . 101
7.4 Experimental Results and Evaluation 102

7.4.1 RIL for Novice Users 102
7.4.2 Route Description Analysis 104

7.5 Discussion . 109

8 Robot Landmark Processing System 111
8.1 Vision System Architecture 112
8.2 Stereo Camera Calibration . 113
8.3 Stereo Vision and Landmark Localization 118
8.4 Landmark Detection and Segmentation 120
8.5 Vision Planner . 122
8.6 Landmark Classification . 123

8.6.1 Appearance–Based Stage 123
8.6.2 Model–Based Stage . 126

8.7 Experimental Results . 129
8.7.1 Evaluation of The Logo Landmarks’ Technique 130
8.7.2 Evaluation of The Color Landmarks’ Technique 135

8.8 Discussion . 137

9 Humanoid Robot Motion Planner 139
9.1 Overview of The Proposed Motion Planner 140
9.2 Symbol Grounding . 142
9.3 Head-motion Planner . 145
9.4 Collision Detection . 146
9.5 Path Planner . 148

xiv CONTENTS

9.5.1 Grid Generation . 149
9.5.2 Sampling Process . 149
9.5.3 Roadmap Generation 151

9.6 Footstep Planner . 151
9.7 Motion Trajectory Generator 154
9.8 Experimental Results . 155
9.9 Discussion . 158

10 Conclusion 161

A Symbols and Acronyms 165

B Symbol Grounding in Autonomous Robotics 169
B.1 Symbol Grounding Problem 169
B.2 Symbol Grounding in Robotics 170
B.3 Perceptual Anchoring . 173

B.3.1 Mechanisms of Anchoring 173
B.3.2 The Challenges of Anchoring 174

B.4 Conceptual Spaces . 176

C Heuristic Search Algorithms 179
C.1 A* Algorithm . 179
C.2 D* Algorithm . 180
C.3 LPA* Algorithm . 180
C.4 D* Lite Algorithm . 181

D Publications 185

Bibliography 187

Index 203

LIST OF FIGURES

2.1 Some current humanoid robot prototypes 9
2.2 Evolution of Honda bipedal humanoid robots 12
2.3 Continuous transition from walking to making a turn 14
2.4 Different models of HRI . 21
2.5 Levels of autonomy with emphasis on human interaction . . . 24

4.1 Geometry of stereo vision in mobile robotics 46
4.2 Tsai Camera re-projection model 48
4.3 Epipolar geometry . 50

5.1 A roadmap graph for a point robot in a 2D Euclidean space . 74
5.2 The query phase of the PRM planner 76
5.3 Bidirectional and unidirectional searches in tree-based planners 78

6.1 The architecture of our Humanoid Robot Navigation System 83
6.2 The experimental platform (HOAP-2) 85
6.3 Names and positions of the joints on HOAP-2 86
6.4 The software composition on the command PC of HOAP-2 . 87
6.5 The experimental environment 88
6.6 The 3D model of the miniature city 88

7.1 A route example by using RIL 94
7.2 The graphical representation of a route 97
7.3 The structure of the instruction interpreter. 98
7.4 The resulting symbolic representation of a route 101
7.5 The topological map representation of a route 103
7.6 The sample and tested routes of the experiment 104
7.7 The five routes used in the experiment 105
7.8 The graphical user interface of the RIL 106

xvi LIST OF FIGURES

7.9 Occurrence statistics of RIL categories 107
7.10 Occurrence statistics of RIL instructions 108
7.11 Occurrence statistics of “GO” instruction types 108

8.1 The architecture of the robot landmark processing system . . 113
8.2 The calibration of the robot’s cameras 114
8.3 The complete distortion model of the left camera 115
8.4 The complete distortion model of the right camera 116
8.5 The extrinsic model of the stereo camera calibration 117
8.6 The corresponding features in the left and right images 118
8.7 The resulting rectified image of the stereo pair 119
8.8 The disparity and depth maps of the stereo images 120
8.9 A set of landmarks used in our system 121
8.10 The flow diagram of the landmark detection stage 122
8.11 The color histograms of logo landmarks 125
8.12 The color detection stages of color landmark 126
8.13 The detection of the crossroads and street boundaries 127
8.14 The block diagram of the SIFT approach 127
8.15 The SIFT descriptors of detected features for logo landmarks 128
8.16 The SIFT matching . 128
8.17 An example of some images used for evaluating RLPS 130
8.18 RLPS performance for landmarks with occlusions 131
8.19 RLPS performance for landmarks with viewpoint variations . 132
8.20 Images with different illumination conditions 133
8.21 RLPS performance for landmarks with illumination changes . 133
8.22 The detection rate vs. the distance from the robot’s position 134
8.23 The corresponding features vs. the distance 134
8.24 The ratio of the correct classifications for all tested images . . 135

9.1 The architecture of the humanoid robot motion planner . . . 141
9.2 The anchoring process for a landmark 143
9.3 The symbolic and dynamic procedures of robot actions 145
9.4 HOAP-2 cylinder model . 147
9.5 Different motion actions by using a cylinder model 148
9.6 Examples of eight-connected grids 153
9.7 Footstep placements for HOAP-2 154
9.8 The hardware components of HRNS 155
9.9 The resulting roadmap graphs of the tested routes 157
9.10 HOAP-2 executing a route in the miniature city 159

B.1 Graphical illustration of the anchoring problem 171
B.2 Relations among anchoring and symbol grounding 172
B.3 Anchoring a symbol by using conceptual space 178

LIST OF TABLES

2.1 Examples of roles and proximity patterns of HRI applications 22

3.1 The hierarchy of navigation strategies 37

5.1 Sampling strategies for sampling-based motion planners . . . 75

7.1 The command set of the Route Instruction Language (RIL) . 93
7.2 The symbols of the graphical representation 96
7.3 Descriptive operators used in symbolic representation 99
7.4 The statistical analysis of the resulting route descriptions . . 106

8.1 The resulting calibration parameters of the cameras 117
8.2 Detection rate of the tested images 136
8.3 The average consumed time of the used techniques 136
8.4 The detection time and rate of the color landmarks 137

9.1 Database table of the landmark properties 144
9.2 The ranges of head movement for HOAP-2 humanoid robot . 146
9.3 Total consumed time in the path planning phase 156

xviii LIST OF TABLES

LIST OF ALGORITHMS

1 Probabilistic Roadmap Planner (PRM) 73
2 Rapidly-exploring Random Tree (RRT) 79
3 Head-motion planner . 147
4 The proposed path planner . 150
5 D* Lite Search . 183

xx LIST OF ALGORITHMS

CHAPTER 1

Introduction

Humanoid robots are developed to have an overall appearance and behavior
based on that of humans. They have many unique characteristics that dis-
tinguish them from the other types of mobile robots, such as a human-like
shape, bipedal locomotion, and many degrees of freedom. These features
help them to behave like and interact with humans, as well as integrate into
human environments without any special considerations.

As the capabilities of the humanoid and mobile robots as well as their
abilities to perform more tasks in an autonomous manner are increased,
we need to think about the interactions that humans will have with these
robots. We also need to design systems that can be used by inexpert users to
communicate with the robot. Consequently, human–robot interaction (HRI)
has recently received considerable attention in the academic community,
government labs, technology companies, and through the media. HRI can be
defined as understanding and shaping the interactions between one or more
humans and one or more robots. Interactions between humans and robots
are inherently present in all of robotics, even for so-called autonomous robots
– after all, robots are still used by and are doing work for humans. The
interdisciplinary nature of HRI requires researchers in the field to understand
their research within a broader context. This field includes many challenging
problems and has the potential to produce solutions with positive social
impact.

Since natural language is the easiest and most natural mode of com-
munication for humans, it is desirable to use it to instruct the robot and
to generate easy-to-understand messages for the user. Using natural lan-
guage to teach a navigation task to a robot is an application of a more
general instruction-based learning methodology. It can be used to instruct
the robot with higher-level goals or to handle certain behaviors and modify
their execution. Spatial knowledge can be represented in various ways to

2 Introduction

increase the interaction between humans and mobile robots. Autonomous
mobile robots need to use spatial information about the environment in or-
der to effectively plan and execute navigation tasks. The information can
be represented at different levels of abstraction. One effective way is to de-
scribe the route to the robot in a multimodal way. This method can permit
computer language-naive users to instruct their mobile robots to perform
complex tasks using simple instructions.

On the other hand, significant progress has been made towards stable
robotic bipedal walking in the last few years. This is creating an increased
research interest in developing autonomous navigation strategies which are
tailored specifically to humanoid robots. Efficient approaches to percep-
tion and motion planning, which are suited to the unique characteristics of
bipedal humanoid robots and their typical operating environments, are re-
ceiving special interest. One important area of research involves the design
of algorithms to compute robust navigation strategies for humanoid robots
in human environments. Therefore, autonomous robot navigation based on
route instruction is becoming an increasingly important research topic for
both humanoid and mobile robots.

1.1 Robot Navigation Challenges

The ultimate goal of robot navigation systems is that the robot should be
able to easily navigate in dynamic or unknown environments. To accomplish
this goal, the robot should have a dialog with the user; should detect, local-
ize, and classify landmarks, avoid obstacles; and generate a feasible path to
the goal position. It has been widely recognized that, for such systems, dif-
ferent processes have to work in synergy: high-level cognitive processes for
abstract reasoning and planning, low-level sensory-motor processes for data
extraction and action execution, and mid-level processes mediating these
two levels.

The design and application of robot navigation systems face multiple
challenges in the intersection of natural language processing, computer vi-
sion, robot control, and motion planning. Some of the key issues targeted
in this thesis are summarized in the following subsections.

1.1.1 Cognitive Interface for Robot Navigation

The first challenge is how to give the robot the ability to use human-like
spatial language and provide the human user with an intuitive interface that
is consistent with his innate spatial cognition.

The second challenge is how the robots overcome ambiguities and misun-
derstanding in route descriptions to increase the interaction between them
and the humans. The robots must not only have the ability to understand

1.1 Robot Navigation Challenges 3

perfectly clear and complete instructions, but they must also resolve ambi-
guities and complement missing information that is inherent in information
supplied by humans.

Finally, there is the problem of how to represent a good route description
that contains adequate information about the navigation actions which are
performed by the robot to reach its destination and the spatial environment
in which the intended locomotion of the robot will take place. This informa-
tion can be represented at different levels of abstraction. One effective way
is to describe the route for the robot in a multimodal way. Multimodal route
instructions combine natural language route descriptions and visualizations
of the route. This method can permit inexpert users to instruct their mobile
robots, which understand spatial descriptions, to naturally perform complex
tasks using succinct commands.

1.1.2 Object Processing during Navigation

Vision provides the ideal sensor for robots due to its low cost, wide avail-
ability, high data content and information rate, and suitability for human
environments. For autonomous navigation in unknown or dynamic envi-
ronments, being able to extract significant information about the world is
crucial to operate effectively, making vision an attractive sensor for many
robot platforms.

For vision-based robot navigation, there are two basic challenges. The
first one is how to choose robust and fast vision processing algorithms to
process in real-time scenarios. The choice is based on past experience and
intuition to learn which algorithm should be used in execution time. In a
dynamic or unknown world, information about the objects in the scene can
become obsolete even before it is ready to be used if the recognition algo-
rithm is not fast enough to handle the current robot’s view. Consequently,
robust and light-weight techniques for object detection, image segmentation,
object recognition, and pose estimation are essential for robots working in
human environments.

The second challenge is how to detect and classify objects in real scenes
during robot navigation. The visual appearance of objects can change enor-
mously due to viewpoint variation, occlusions, and illumination changes.
Therefore the vision processing techniques should be capable to deal with
these difficulties.

1.1.3 Motion Planning for Humanoid Robots

Motion planning can be defined as the problem that requires the computa-
tion of a collision-free feasible path for a robot from a given initial position to
a destination position through a workspace populated with obstacles which
may be either stationary or moving objects.

4 Introduction

For humanoid robots, the motion problem poses two main challenges
to developing practical motion planning methods. The first one is how
to re-plan a shortest path from the robot’s current position to the goal
position. While obstacle avoidance remains a key issue, the path planner
should consider some important constraints during path generation such as
robot dynamics, time-changing workspaces, real-time planning, and dealing
with uncertainty in motion and sensors.

The second challenge is how the humanoid robot plans online the se-
quence of footstep locations to execute the resulting roadmap graph of the
path and avoid obstacles while walking in an unknown environment.

1.2 Contribution

The contribution of this work is to present a complete framework for hu-
manoid robot navigation based on a multimodal cognitive interface. The
goal is to enable robots to automatically compute their motions from high-
level descriptions of tasks and models acquired through sensing. The specific
research contributions this thesis makes to the problem of humanoid robot
navigation may be summarized as:

• We implemented a complete navigation system for a humanoid robot
to execute navigation tasks in indoor environments without any prior
knowledge of its environment. The system is used by novice users to
describe routes for the robot via a multimodal interface.

• We proposed a spatial language to describe route-based navigation
tasks for a mobile robot. This language is implemented to present an
intuitive interface that will enable users to easily and naturally describe
a route to a mobile robot in indoor and miniature city environments.
An instruction interpreter is implemented to analyze the user’s route
to generate its equivalent symbolic and topological map representa-
tions which are used as an initial path estimation for the humanoid
robot. A topological map is generated to describe relationships among
features of the environment in a more abstract representation without
any absolute reference system. It is used to handle uncertainty condi-
tions when the robot cannot recognize the current landmark.

• A robust lightweight object processing system with a high detection
rate is implemented. It can actually be used by mobile robots and
meet their hard constraints to recognize landmarks during navigation.
We developed a landmark processing system which is used by a hu-
manoid robot to detect, identify, and localize different types of land-
marks during its navigation in indoor or miniature city environments.
The system is based on a two-step classification stage which is robust

1.3 Thesis Outline 5

and invariant towards scaling and translations. By combining the
strengths of appearance-based and model-based object classification
techniques, it provides a good balance between fast processing time
and high detection accuracy. On the other hand, stereo triangulation
is calculated to determine the landmark’s position in the environment
by using the robot’s cameras.

• A time-efficient hybrid motion planning system for a humanoid robot
in indoor environments is proposed. The proposed technique is a com-
bination of sampling-based planner and D* Lite search to generate
dynamic footstep placements in unknown environments. It generates
the search space depending on non-uniform sampling of the free con-
figuration space. A modified cylinder model is used to approximate
the trajectory for the robot’s body-center during navigation. It calcu-
lates the actual distances required to execute different actions of the
robot and compares them to the distances from the nearest obstacles.
D* Lite search is then used to find dynamic and low-cost footstep
placements within the resulting configuration space.

1.3 Thesis Outline

The thesis is organized in ten chapters:
In Chapter 2, we present a brief introduction to humanoid robots and

their applications. The main features of bipedal humanoid robots, which
distinguish them from other types of mobile robots, are discussed. After-
wards, the general issues of HRI and the relationship to HCI are presented.
Finally, the basic effective attributes which affect the behavior of the HRI
problem are elucidated.

Chapter 3 describes the route-based navigation for the mobile robots.
First, the natural language interaction between humans and robots is repre-
sented. The spatial reasoning effect on the robot’s ability to use human-like
spatial language is described. Then, some current implementations of natu-
ral language interfaces for both mobile robots and simulated artificial agents
are introduced.

The robot navigation systems based on vision sensors are discussed in
Chapter 4. The general issues and classes of vision-based robot navigation
are introduced. The basic stages of stereo vision which are used to calculate
the landmarks’ positions and range information from the environment are
elucidated. Finally, the object detection and recognition techniques which
are suitable for mobile robotics scenarios are presented.

In Chapter 5, a review of previous work carried out on the robot motion
planning problem is presented. An overview of the current research efforts in
motion planning for mobile and humanoid robots is given. Then, the obsta-
cle avoidance problem and some issues related to real robot motion planning

6 Introduction

are presented. Finally, the sampling-based motion planning algorithms are
elucidated.

The architecture of our Humanoid Robot Navigation System (HRNS) is
introduced in Chapter 6. The main modules of HRNS are described briefly.
The hardware and software characteristics of the experimental platform are
discussed. Finally, the experimental environment of HRNS is presented.

Chapter 7 discusses the route processing module of the HRNS in detail.
The multimodal route description interface of the system is presented. The
structures of the proposed spatial language and the graphical route represen-
tation are introduced. The instruction interpreter and the lexicon structure
are illustrated. Then the generation of the topological map of the processed
route is described. Finally, the results of some conducted experiments are
discussed.

In Chapter 8, our robot landmark processing system (RLPS) is de-
scribed. RLPS is developed to detect, identify, and localize different types
of landmarks during humanoid robot navigation. The architecture of RLPS
is discussed in detail. Following this, the results of the vision experiments
are presented.

Chapter 9 presents our proposed hybrid motion planning system for a
humanoid robot. The components of the proposed technique are described
in detail. Then the results of the conducted experiments are discussed.

Chapter 10 concludes with a brief summary of this dissertation. It sum-
marizes the principal achievements of our work, points out the most serious
limitations, and suggests a few directions for future work.

CHAPTER 2

Interaction and Communication with Humanoid Robots

An essential aspect distinguishing robotics from other areas of artificial intel-
ligence is their interaction with humans and their surrounding environments.
The field of robotics is changing at an unprecedented pace. For example,
humanoid robotic hardware and control techniques have been developed
rapidly during the last two decades. Lately, several companies have an-
nounced the commercial availability of various bipedal humanoid robot pro-
totypes such as Sony QRIO, Fujitsu HOAP, Pal REEM, and Honda ASIMO.
As humanoid robots continue to advance and gain new capabilities, software
for high-level control and autonomous motion generation will be required to
integrate them in human environments without any special considerations.

Therefore, as the capabilities of robots and their ability to perform more
tasks in an autonomous manner are increasing, we need to think about the
interactions that humans will have with robots. We also need to design
systems that can be used by inexpert users to communicate with the robot.
Consequently, human–robot interaction (HRI) is a growing field of research
and application. Its interdisciplinary nature requires that researchers in the
field understand their research within a broader context. This field includes
many challenging problems and has the potential to produce solutions with
positive social impact.

In this chapter, we first discuss the main characteristics, technologies,
and the current humanoid robot prototypes. Next, the technical features
which distinguish humanoid robots from other mobile robots are presented.
The shape, bipedal walk, and the usage of many degrees of freedom are
elucidated. The general issues of HRI and the accepted practices that
are emerging in HRI are illustrated. Afterwards, the relationship between
human–computer interaction (HCI) and HRI is presented. The unique chal-
lenges posed by HRI are discussed. Then, different roles of humans in HRI
applications will be described. Finally, the basic ingredients which affect

8 Interaction and Communication with Humanoid Robots

the nature of the HRI problem are elucidated.

2.1 The Need for Humanoid Robots

Robots are increasingly being used in assistive technology, rehabilitation,
surgery, and therapy. Other areas, in which the use of robotics is grow-
ing, include service and entertainment domains. Methods that enable easy
and effective communication between robots and humans are crucial in all
of these areas [124]. Humanoid robotics labs worldwide are working on
creating robots that are one step closer to science fiction’s androids. Build-
ing a humanlike robot is a multidisciplinary engineering task requiring a
combination of mechanical, electrical, and software engineering; computer
architecture; and real-time control. However, over the past 20 years, hu-
manoid robots have become the focus of many research groups, conferences,
and special issues. The target of the researchers is to create robots which are
capable of interacting with humans in humanlike ways. At the same time,
the development of humanoid robots will also lead to learning more about
the nature of human intelligence and how to simulate it to create intelligent
practical applications.

Humanoid robots can be defined as robots with an overall appearance
and behavior based on that of humans [159, 131]. They usually possess a
large number of degrees of freedom (DOFs) to imitate some of the same
physical and mental tasks that humans carry out daily. They are suitable
for coexisting with humans in built-for-human environments because of their
anthropomorphism, human-friendly design and applicability of locomotion.
The goal is for humanoid robots to be able to both understand human in-
telligence and reason and act like humans one day. If humanoid robots were
able to do so, they could eventually coexist and work alongside humans.
They also could act as proxies for humans to do dangerous or dirty work
that would not be done by humans if there were a choice, hence provide
humans with more safety, freedom, and time. Figure 2.1 shows some cur-
rent prototypes of humanoid robots which were developed by companies,
research institutes, and universities. It also lists some technical details of
these prototypes, such as number of degrees of freedom, length, and weight
[2, 65, 109, 57, 138, 112, 41].

Therefore, humanoid robots can be considered as a challenging area both
in terms of engineering human-like movements and expressions and in terms
of the challenges that arise when a robot takes a human form [44]. With
such a form, social and emotional aspects of interaction become paramount.
Humanoid robots have been widely investigated, particularly in the field
of dynamic walking control and mechanical design [111, 23]. However, the
current status of these humanoid robots is to walk along a pre-programmed
path. To realize humanoid robots in real and unknown environments, a

2.1 The Need for Humanoid Robots 9

Figure 2.1: Some current humanoid robot prototypes.

sensor-based navigation system is required. A navigation system generates
a path that a robot moves along, from a current position to a target position
based on spatial information around a robot.

Rapid development of humanoid robots brings about new shifts of the
boundaries of robotics as a scientific and technological discipline. On the
one hand, new technologies of components, sensors, microcomputers, as well
as new materials have recently put up the barriers to real-time integrated
control of some very complex dynamic systems, like the fact that humanoid
robots already possess about thirty DOFs and are updated in microseconds
[136, 156]. On the other hand, significant progress has been made in the
design and control of humanoid robots, particularly in the realization of
dynamic walking in several full-body humanoid robots [77]. As the tech-
nology and algorithms for real-time 3D vision and tactile sensing improve,
humanoid robots will be able to perform tasks that involve complex inter-
actions with the environment (e.g. navigation and grasping/manipulating
objects). The enabling software for such tasks includes motion planning for
obstacle avoidance and integrating planning with visual and tactile sensing
data.

To improve the performance of the current humanoid robots, the results
of the other research worldwide could be integrated to the humanoid body
to provide a powerful platform to develop. There are many examples of

10 Interaction and Communication with Humanoid Robots

several technologies available which can be incorporated in the humanoid
robots, such as [142]:

Language technologies: They include voice recognition, speech to text,
and voice synthesis. They are sufficiently developed to allow simple
interaction with the robot in spoken language.

Face and gesture recognitions: They sufficiently developed to allow robots
to read “moods” of the instructor, follow cues, etc. [108].

Knowledge base, dialog and logical reasoning: They prove useful ar-
tificial intelligent techniques for the humanoid robots.

Sensing: They include improved vision, hearing, olfaction, tactile sensing,
etc. They are developed to a certain extent and incorporated in various
commercial devices (artificial retinas, e-nose, and e-tongue) [124].

Consequently, incorporating available technologies and developing new
ones on the same integrated platform is an efficient way to bridge the gap
between the current state of the art and the future humanoid robots. There
is a tight connection between achieving human-friendly means for cognitive-
motor skill transfer and interaction through dialog in natural language; sim-
ilarly, cognition and self-awareness are also related to the development of
perceptual maps and schemes; embodying and experimenting with the world
are dependent on perceiving the world with multiple sensors, etc.

2.2 Humanoid Robot Features

Recent studies show additional advantages of humanoid robots over other
types of robots. First, human acceptance and interaction with robots are
easier if the robots have a human shape [64, 130, 5]. Second, the efficiency
of teaching and programming a robot is highest with humanoid robots [142,
17]. In particular related to the last aspects, one should stress here that
mobility, flexibility, and adaptation to human environments offered by the
human shape are a convenient advantage. Then, the key reason for preferring
humanoid robots is their optimal shape for being taught by humans and
learning from humans. This can be considered as the only way to develop
cognitive and perceptual-motor skills for truly intelligent, cognitive robots.
A wealth of knowledge ready to be transmitted to the humanoid robots is
waiting to be used: while in the first stage robots may learn directly from
humans, in the future they could learn by watching humans on training
videos and movies.

Consequently, humanoid robots have many features that distinguish
them from other types of mobile robots. These features and characteris-
tics let them navigate in complex environments and handle difficult situa-

2.2 Humanoid Robot Features 11

tions. In the ensuing subsections, the main features of humanoid robots are
discussed.

2.2.1 Humanoid Robot Shape

One of the most exciting aspects of humanoid robotics research is the poten-
tial for a wide range of applications, such as maintenance tasks of industrial
plants, security services of home and office, human care, teleoperations of
construction machines, and cooperative works in the open air. With their
shape and movement inspired by that of humans, they are poised to suc-
cessfully operate in a human environment, and possibly to perform any task
that a human can perform [63]. The humanoid robot shape also produces
feelings useful for friendly communication between the robot and the human
[81]. Additionally, the humanoid robot shape can be considered as one of
the best shapes for controlling robots remotely [145].

With human-like physical form, humanoid robots are potential tools to
function in the real world, which is designed for humans. They can coex-
ist and collaborate with humans, and perform tasks that humans cannot.
These robots have the ability to move forward and backward, turn in any
direction, sideways to the right or the left, and move diagonally [55]. In
addition, legged humanoid robots have the unique ability to step onto and
over obstacles or unsafe footholds, which can allow them to traverse terrains
that would be impassable to a wheeled mobile robot [46, 24]. Their feet can
be placed with a greater choice and the change of their body posture permits
them to overcome different types of obstacles where the wheeled robots fail.
Therefore, these features enable humanoid robots to be integrated in human
environments without any special considerations and they can do some ac-
tions which cannot be done by any other type of robots, such as step onto
objects, climb up and down stairs, step over obstacles, or crawl underneath
objects.

Furthermore, due to the unique posture stability control of humanoid
robots, they are able to maintain their balance despite unexpected compli-
cations such as uneven ground. As a part of their integrated functions, they
are able to move on a planned path autonomously and to perform simple
operations via wireless teleoperation. Consequently, humanoid robots can
work in human environments without any special requirements and they
can handle many types of obstacles, such as entrances, stairs, doors, and
furniture [55].

Consequently, humanoid robots can be proxies for humans to do danger-
ous or dirty work that would not be done by people if there were a choice,
hence providing humans with more safety, freedom, and time [131, 159].
Projects utilizing teleoperated humanoid robots have begun in searching for
systems which can do the same work currently done by humans in critical
environments, for example executing space missions, operations of power

12 Interaction and Communication with Humanoid Robots

Figure 2.2: Evolution of Honda bipedal humanoid robots [56].

generation plants, tasks at construction sites, and disaster relief missions.

2.2.2 Biped Locomotion

Biped locomotion has become a key topic in robotic research over the last
two decades. Both hardware improvements and new software architectures
have allowed the implementation of impressive humanoid robots, such as
ASIMO, QRIO, REEM, and HOAP. These prototypes have attracted many
researchers for their performance of human-like behaviors (see Figure 2.1).

Theoretical studies from various aspects have been accompanied by a lot
of simulation work and various practically realized systems, from the sim-
plest cases of planar mechanisms to the Honda and Sony humanoid robots,
the most advanced biped locomotion robots designed to date. Figure 2.2
shows the evolution of the biped walking of Honda humanoid robots [56, 57].
The research started with straight and static walking of the first two-legged
prototype until the development of ASIMO, which is considered as the most
advanced robot of Honda in the mechanism and the control system.

Irrespective of the structure of humanoid robots and the number of DOFs
involved, all biped locomotion systems have some basic characteristics which
can be summarized in the following three points [122]:

1. The possibility of rotation of the overall system about one of the foot
edges caused by strong disturbances, which is equivalent to the ap-
pearance of an unpowered (passive) DOF.

2. Gait repeatability (symmetry), which is related to regular gait only.

3. Regular interchangeability of single-support (SSP) and double-support
phases (DSP).

2.2 Humanoid Robot Features 13

During humanoid robot walking, two different situations arise in se-
quence: the statically stable DSP in which the mechanism is supported on
both feet simultaneously and statically unstable SSP when only one foot of
the mechanism is in contact with the ground while the other is being trans-
ferred from the back to front positions. Thus, the locomotion mechanism
changes its structure during a single walking cycle from an open to a closed
kinematic chain. All these circumstances have to be taken into account in
artificial gait synthesis.

From another perspective, most of the researchers in biped locomotion
use one of the two main approaches to execute robot motion: static or
dynamic [122, 136]. Static walkers rely on the static equilibrium condition:
maintain the Center of Gravity (CoG) on the convex hull of the contact
area with the ground. This approach denies inertial forces and therefore
can be applied only if robot movements are very slow. Dynamic walkers
achieve a fast and natural walking motion following the principle of dynamic
equilibrium: they use Zero Moment Point (ZMP) [155, 156, 63] instead of
CoG, so that inertia components and gravity are considered. The main
objective, in any case, is to produce a gait as natural and stable as possible.

In ZMP, all of the biped mechanism joints are powered and directly
controllable except for the contact of the foot with the ground, which is
the only point at which the mechanism interacts with the environment.
This contact is essential for the walk realization, because the mechanism’s
position with respect to the environment depends on the relative position of
the foot with respect to the ground. The foot cannot be controlled directly,
but in an indirect way – by ensuring appropriate dynamics of the mechanism
above the foot. Thus, the overall indicator of the mechanism’s behavior is
the point where the influence of all the forces acting on the mechanism can
be replaced by one single force. This point was termed ZMP. Recognition
of the significance and role of ZMP in biped artificial walking was a turning
point in gait planning and control. Figure 2.3 illustrates the position of
ZMP in straightforward and turning movements in humanoid robots.

As mentioned above, all of the bipedal mechanism joints are powered
and directly controllable except for the contact between the foot and the
ground (which can be considered as an additional passive DOF), where only
the interaction of the mechanism and the ground takes place. This contact
is essential for the walk realization because the mechanism’s position with
respect to the environment depends on the relative position of the foot/feet
with respect to the ground.

In addition to the ease of design and speed of ZMP calculation, this
method of describing a walking trajectory has another advantage. One can
easily change the points that are interpolated to define the trajectory. This
means that the walking pattern is highly adjustable, because parameters
such as stride length (how far the robot steps in one cycle), sway distance
(how far the robot shifts its weight to one side when the other leg swings

14 Interaction and Communication with Humanoid Robots

Figure 2.3: Continuous transition for the humanoid robot from walking in
a straight line to making a turn [56].

forward), step clearance (how high the robot lifts its feet when it steps), as
well as the home position of its feet (the location of the feet beneath the
robot when it stands still, to which all other positions are relative) can all
be changed easily [63].

2.2.3 Degrees of Freedom

The number of degrees of freedom (DOFs) in modern humanoid robots is
large and ever-increasing. The aim of researchers is to produce smooth
movements for humanoid robots such as in humans by providing robots with
more DOFs. The number of DOFs of the current humanoid robots ranges
from about 20 to about 40, while a human has more than 200 DOFs. Figure
2.1 lists the number of DOFs of some current humanoid robot prototypes. In
addition to these prototypes, there have been seen some attempts to create
a humanoid robot with many DOFs, such as Kotaro (91 DOFs) [104].

On the other hand, methods that attempt to search for or automati-
cally construct complex movements in the full joint space often run afoul
of the well-known curse of the dimensionality principle. As the number of
DOFs increases, finding and representing an optimal control policy becomes
difficult. Approaches, which work well in low-dimensional spaces such as
discretization, succumb to unmanageable (exponential) space and process-
ing time requirements [20]. In order to achieve a stable walk for humanoid
robots with many DOFs, the previous methods need very accurate param-
eters and models of robot dynamics and its environment to execute smooth
and flexible movements.

2.3 Interaction with Mobile Robots 15

2.3 Interaction with Mobile Robots

Human–Robot Interaction (HRI) has recently received considerable atten-
tion in the academic community, government labs, technology companies,
and through the media. It can be defined as understanding and shaping the
interactions between one or more humans and one or more robots. Interac-
tions between humans and robots are inherently present in all of robotics,
even for so-called autonomous robots – after all, robots are still used by and
are doing work for humans. As a result, evaluating the capabilities of humans
and robots and designing the technologies and training that produce desir-
able interactions are essential components of HRI. Such work is inherently
interdisciplinary in nature, requiring contributions from cognitive science,
linguistics, and psychology; from engineering, mathematics, and computer
science; and from human factors engineering and design.

Both the widely acknowledged shifts from industrial to service/mobile
robotics and the resulting increase of robots that operate in close proxim-
ity to people raise a number of research and design challenges. The most
important characteristic of these new target domains is that service/mobile
robots share physical spaces with people. In some applications, people will
be professionals that may be trained to operate robots. In others, they may
be children, elderly, or handicapped people whose ability to adapt to robotic
technology may be limited. The design of the interface, while dependent on
the specific target application, will require substantial consideration of the
end user of the robotic device. Herein lies one of the great challenges that
the field of robotics faces today [149, 164].

Interaction between a human and a robot may take several forms, but
these forms are largely influenced by whether the human and the robot are in
close proximity to each other or not. Thus, the interaction can be separated
into two general categories: remote and proximate [149]. In remote interac-
tion, the human and the robot are not co-located and are separated spatially
or even temporally. The operator controls the robot, whereas the robot gives
feedback to the operator and provides him with information about its envi-
ronment and its task. Remote interaction with robots is often referred to as
teleoperation or supervisory control, and remote interaction with a physical
manipulator is often referred to as telemanipulation. In proximate interac-
tion, the humans and the robots are co-located (for example, service robots
may be in the same room as humans). Therefore, proximate interaction
with mobile robots may take the form of a robot assistant, and it may in-
clude a physical interaction. Social interaction includes social, emotive, and
cognitive aspects of interaction. In social interaction, the information flow
is bi-directional. The information is communicated between the robot and
the user in both directions, and they are interacting as peers or companions.

On the other hand, there are a number of accepted practices that are
emerging in HRI [44]. A key practice is to include experts from multiple

16 Interaction and Communication with Humanoid Robots

disciplines on research efforts. These disciplines frequently include robotics,
electrical and mechanical engineering, computer science, Human–Computer
Interaction (HCI), cognitive science, and human factors engineering. Other
relevant disciplines include design, organizational behavior, and the social
sciences.

A second emerging practice is to create real systems (robot autonomy,
interaction modes, and etc.) and then evaluate these systems using ex-
periments with human subjects. Proof-of-concept technologies, although
important, are less valuable than they would be if they were supported by
careful experiments that identify key attributes of the design or principles
that span applications. Identification of descriptive interaction phenomena
is interesting, but elaboration on the psychological principles underlying
these phenomena with an eye toward harnessing these principles in design
is more useful. Thus, engineering, evaluation, and modeling are key aspects
of HRI.

A third emerging practice is conducting experiments that include a care-
ful blending of results from simulated and physical robots. On the one hand,
because of the cost and reliability issues, it is often difficult to conduct care-
fully controlled experiments with physical robots. On the other hand, it is
often difficult to replicate simulation-only results with physical robots be-
cause the physical world presents challenges and details that are not present
in many simulations. It is common to “embody” at least one portion of
the interaction, be it a physical robot, some physical sensor, or real-world
speech. Some research includes work using carefully controlled simulation
environments and replication of selected results with physical robots.

2.4 From Human–Computer Interaction to Human–
Robot Interaction

As the field of HRI has grown, it has seen many contributions from re-
searchers in HCI and it has been nurtured by HCI organizations. HRI
research is attractive to many members of the HCI community because of
the unique challenges posed by the field. Of particular interest is the fact
that robots occupy physical space. This offers unique challenges not offered
in desktop metaphors or even pervasive computing. Physical location in a
3D space imposes strong requirements on how information is displayed in
remote operation, and even stronger requirements on how space is shared
when robots and humans occupy the same space. HRI benefits from contri-
butions presented by HCI researchers in the form of methodologies, design
principles, and computing metaphors [44].

Therefore, HRI is fundamentally different from typical HCI in several
dimensions. HRI concerns systems which have complex, dynamic control
systems, exhibit autonomy and cognition, and which operate in changing,

2.4 From HCI to HRI 17

real-world environments. In addition, differences occur in the types of inter-
actions (interaction roles); the physical nature of robots; the number of sys-
tems a user may be called to interact with simultaneously; and the environ-
ment in which the interactions occur. Accordingly, the differences between
HRI and HCI can be summarized in the following points [126, 44, 149, 130]:

Human roles: In HRI, humans can interact with robot in different ways.
Each of these interactions has different tasks and hence different sit-
uational awareness needs. The interactions of the human with the
robot can be classified into seven different roles: supervisor, operator,
mechanic, peer, bystander, pupil, and information consumer (for more
details, see section 2.6).

The physical nature of mobile robots: Robots need some awareness of
the physical world in which they move. As robots can physically move
from one location to another, they present more interesting challenges.
As robots move about in the real world, they build up a “world model”.
This model needs to be conveyed to the human in order to understand
decisions made by the robot as the model may not correspond exactly
to reality due to the limitations of the robot’s sensors and processing
algorithms.

The dynamic nature of the robot platform: Typical HCIs assume that
computer behavior is for the most part deterministic and that the
physical state of the computer does not change in such a way that
the human must track it. However, robotic platforms have physical
sensors that may fail or degrade. While some functionality may be
affected, the platform may be able to carry out some limited tasks.

The environment : Platforms to monitor robots may have to function in
harsh conditions such as dust, noisy, and low-light conditions. Envi-
ronments may be dynamic as well. For example, search and rescue
robots may encounter more building or tunnel collapses during the
operation.

The number of independent systems: Typical HCI assumes one user
interacting with one system. In the case of humans and robots, the
ultimate HRI goal is to have a person interacting with a number of
heterogeneous robots.

The ability to perform autonomously: While typical desktop comput-
ers perform autonomously in that they execute code based on user
commands, robots use planning software to alleviate the user from
dealing with low-level commands and decisions. Thus a robot can go
from point A to point B without asking the operator how to deal with
each obstacle encountered along the path.

18 Interaction and Communication with Humanoid Robots

2.5 Evolution of HRI Systems

In the last two decades, the HRI field has developed rapidly. It was first
associated with teleoperation of factory robotic platforms. Telerobotics are
defined as “direct and continuous human control of the teleoperator” or a
“machine that extends persons sensing and/or manipulating capability to
a location remote from that person” [149]. In this period, telerobotics was
considered as a part of HCI.

HRI goes beyond teleoperation of a remote platform and allows for some
set of autonomous behaviors to be carried out by the robot. This could range
from a robot responding to extremely precise commands from a human about
adjustment of a control arm to a more sophisticated robot system planning
and executing a path from a start point to an end point supplied by a user.
The concept of HRI has only become possible in the last two decades because
of advances in the field of robotics (perception, reasoning, and programming)
that make semi-autonomous systems feasible [126].

Kidd [68] noted that human skills are always required in robotic systems.
He maintained that designers should use robot technology to support and
enhance skills of the human as opposed to substituting skills of the robots for
skills of the human. He argued for developing and using robotic technology
such that human skills and abilities become more productive and effective,
such as freeing humans from routine or dangerous tasks. He pointed out that
robotic researchers tend to focus on issues that are governed by legislative
requirements such as safety. Human-centered design issues have been mostly
ignored. Kidd suggested that human-centered design of HRI needs to look
beyond technology issues and to consider issues such as task allocations
between people and robots, safety, and group structure. These issues need
to be considered in the early stages of the technology designs. If they are
only considered in the final stages, the issues become secondary and have
little impact on design considerations.

Fong et al. [40] argued that if robots and humans work together as
partners, the system will gain many benefits from this cooperation. But
partners must engage in dialogue, ask questions of each other, and jointly
solve problems. They proposed a system for collaborative control which
provides the best aspects of supervisory control without requiring user in-
tervention within a critical window of time. In collaborative control, the
human gives advice but the robot can decide how to use human advice.
This is not to say that the robot has the final authority but rather than the
robot follows a higher-level strategy set by the human with some freedom in
execution. If the user is able to provide relevant advice, the robot can act on
that. However, if the user is not available within the time needed, the robot
will use default behaviors to react to the situation. Collaborative control is
only possible if the robot is self-aware, has self-reliance and can maintain
its own safety, has a dialoge capacity, and is adaptive. Dialoge management

2.6 Human Roles in HRI Systems 19

and user models are needed to implement collaborative control systems.
At the Idaho National Laboratory (INL), Nielson et al. [107] focused

primarily on the use of robots as tools that can effectively help first respon-
ders, soldiers, and other individuals involved in emergency response and
other critical, hazardous endeavors. To develop the technologies correctly
required numerous user studies of differing types and situations including
simulation, the physical world, different environments, different tasks, and
participants with varying levels of prior knowledge regarding the task and
use of robots. All the different experiments were required because each led
to new insights about how people view and use robots as team members.

Robotics researchers use the term human–robot intervention, often in
place of human-robot interaction. For robotic systems that have plan-based
capabilities, the term intervention is used when a human needs to modify a
plan that has some deficiency or when the robot is currently unable to exe-
cute some aspect of a plan. While robots carrying out preplanned behaviors
is certainly desired (e.g., clean the kitchen floor, watch the perimeter, check
all the rooms on the floor for an object), more closely coupled human–robot
teams need to interact spontaneously as well [126].

Kollar et al. [75] are taking steps towards building a robust natural lan-
guage system by focusing on understanding a subset of robot tasks. They
presented an HRI system that follows natural language directions by ex-
tracting a sequence of spatial description clauses from the linguistic input
and then infers the most probable path through the environment given only
information about the environmental geometry and detected visible objects.
They used a probabilistic graphical model that factors into three key com-
ponents. The first component grounds landmark phrases such as “the com-
puters” in the perceptual frame of the robot by exploiting co-occurrence
statistics from a database of tagged images. Second, a spatial reasoning
component judges how well spatial relations such as “past the computers”
describe a path. Finally, verb phrases such as “turn right” are modeled
according to the amount of change in orientation in the path.

2.6 Human Roles in HRI Systems

The goal of HRI is to create teams of both humans and robots that are
efficient and effective to take advantage of the skills of each member in the
team. An important sub-goal is to increase the number of robotic platforms
that can be handled by individuals. In order to accomplish this aim, the
types of interactions that will be needed between humans and robots should
be examined first. Then, the desirable information that will be interchanged
between humans and robots should be defined. Finally, the software and
interaction architectures are developed to accommodate these needs.

With respect to the interaction between humans and robots, a taxonomy

20 Interaction and Communication with Humanoid Robots

of roles that robots can assume from humans can be divided into seven
different classes as follows [126, 44, 60]:

Supervisor: A supervisor role could be characterized as monitoring and
controlling the overall situation. This could mean that a number of
robots would be monitored and the supervisor would be evaluating
the given situation with respect to a goal that needs to be carried out.
For robots that possess planning systems, the goals and intentions have
been given to the planning system, and the robot software is generating
the actions based on a perception of the real world. The supervisor
can step in and specify an action or modify plans. In either case, a
formal representation of the goal and intention is necessary so that
the supervisor can formulate the effect an intervention will have on
the longer-term plan. The main loop in this type of interaction is the
perception/evaluation loop as most of the actions are automatically
generated by the robot software. Supervisor interactions at the action
and intention level must be supported as well (see Figure 2.4).

Operator: The operator is called upon to modify internal software or mod-
els when the robot behavior is not acceptable. The operator deals
mainly with interacting at an action level which contains the allowed
actions to the operator.

Mechanic: The mechanic deals with physical interventions, but it is still
necessary for the mechanic to determine if the interaction has the
desired effect on the behavior. So, the model looks similar to the model
for the operator interaction. However, the difference is that while the
modifications have been made to the hardware, the behavior testing
needs to be initiated in software and observations of both software and
hardware behavior need to be made to ensure that the behavior is now
correct.

Peer: Teammates of the robots can give them commands within the larger
goal/intentions. The supervisor has only the authority to change the
larger goal/intentions. Therefore, the interaction needs to occur at a
higher level of behavior than the operator interactions allow [40].

Bystander: The bystander might be able to cause the robot to stop by
walking in front of it, for example. In this model, the bystander has
only a subset (sub A) of the actions available. He is not able to interact
at the goal or intention level. Feedback must be directly observable.
The largest challenge here is how to advise the bystander of the capa-
bilities of the robot that are under his control.

Pupil: The robot is in a teaching or leadership role for the human. The
pupil has only a subset (sub A) of the actions available, such as the

2.7 Effective Attributes of HRI 21

Figure 2.4: Different models of human–robot interaction.

bystander. He is not able to interact at the goal or intention level [60].

Information Consumer: The human does not control the robot, but the
human uses information coming from the robot in, for example, a
reconnaissance task or a game [157].

Similar taxonomies are certainly possible, but identifying how people
perceive a robot’s role has important ramifications for how they interact
with the robot. The last classification provides insight into the current
and future interactions in these applications. Table 2.1 classifies the most
frequent types of interactions in different application areas of robotics.

2.7 Effective Attributes of HRI

From the design perspective, it is helpful to adopt the designer’s perspective
by breaking the HRI problem down into its constituent parts. In essence,
a designer can affect five attributes that have influence on the interactions
between humans and robots [44]: (1) the level and behavior of robot auton-
omy; (2) the nature of information exchange between the user and the robot;
(3) the adaptation, learning, and training of people and the robot (common
grounding); (4) the structure of the team; and (5) the shape of the task.

22 Interaction and Communication with Humanoid Robots

Application Area Type Role Example

Search and rescue
Remote Human is super-

visor or operator
Remotely op-
erated search
robots

Proximate Human and robot
are peers

Robot supports
unstable struc-
tures

Assistive robotics
Proximate Human and robot

are peers, or
robot is tool

Assistance for
blind, and ther-
apy for the
elderly

Proximate Robot is mentor Social interaction
for autistic chil-
dren

Military and police
Remote Human is super-

visor
Reconnaissance
de-mining

Remote or
Proximate

Human and robot
are peers

Patrol support

Remote Human is infor-
mation consumer

Commander
using reconnais-
sance information

Edutainment
Proximate Robot is mentor Robotic class-

room assistant
Proximate Robot is mentor Robotic museum

tour guide
Proximate Robot is peer Social companion

Space
Remote Human is super-

visor or operator
Remote science
and exploration

Proximate Human and robot
are peers

Robotic astro-
naut assistant

Home and industry
Proximate Human and robot

are peers
Robotic compan-
ion

Proximate Human is super-
visor

Robotic vacuum

Remote Human is super-
visor

Robot construc-
tion

Table 2.1: Examples of roles and proximity patterns that arise in several
areas of HRI applications [44].

2.7 Effective Attributes of HRI 23

HRI emerges from the confluence of these factors to achieve the system’s
goal. The designer attempts to understand and shape the interaction itself,
with the objective of making the exchange between humans and robots ben-
eficial in some sense. In the following subsections, these attributes will be
discussed in detail.

2.7.1 Levels of Autonomy

Autonomy refers to a robot’s ability to accommodate variations in its envi-
ronment. Hence, a system with a high level of autonomy is one that can be
neglected for a long period of time without interaction. Autonomy is not an
end in itself in the field of HRI, but rather a means to support productive
interaction. Indeed, autonomy is only useful insofar as it supports beneficial
interaction between a human and a robot. Consequently, the physical em-
bodiment and type of autonomy varies dramatically across robot platforms.

Perhaps the most strongly human-centered application of the concept of
autonomy is in the notion of levels of autonomy (LOA). Levels of autonomy
describe to what degree the robot can act on its own accord. Different robots
exhibit different degrees of autonomy. The degree of autonomy is often
measured by relating the degree at which the environment can be varied
to the mean time between failures, and other factors indicative of robot
performance. HRI cannot be studied without consideration of a robot’s
degree of autonomy, since it is a determining factor with regards to the tasks
a robot can perform, and the level at which the interaction takes place.

The kinds of robotics are characterized by different levels of autonomy,
largely pertaining to the complexity of environments in which they operate
[149]. It should come as no surprise that industrial robots operate at the
lowest level of autonomy. In industrial settings, the environment is usu-
ally highly engineered to enable robots to perform their tasks in an almost
mechanical way. As a result, careful environment engineering indeed mini-
mizes the amount of autonomy required – a key ingredient of the commercial
success of industrial robotics.

While environment modifications are still commonplace, the complexity
of service/mobile robot environments mandates higher LOA than in indus-
trial robotics. In general, robots which operate in close proximity to people
require a high degree of autonomy, partially because of safety concerns and
partially because people are less predictable than most objects. It is common
practice to endow service/mobile robots with sensors capable of detecting
and tracking people. The type and degree of autonomy in service robotics
varies more with the specific tasks a robot is asked to perform and the
environment in which it operates.

Some researchers have gone as far as devising techniques whereby robots
learn about people’s routine behavior and actively step out of the way when
people approach. Personal robots tend to be aimed at low-cost markets. As

24 Interaction and Communication with Humanoid Robots

a result, endowing a personal robot with autonomy can be significantly more
difficult than its more expensive professional relative. These robots are used
to build autonomous systems which provide robustness and flexibility that
task-specific systems can never achieve.

While such average scales are appropriate to describe how autonomous
a robot is, from an HRI point of view, a complementary way to consider
autonomy is by describing to what level humans and robots interact and
the degree to which each is capable of autonomy. The scale presented in
Figure 2.5 puts an emphasis on mixed-initiative interaction, which has been
defined as a “flexible interaction strategy in which each an agent (human or
robot) contributes what it is best suited at the most appropriate time”.

Figure 2.5: Levels of autonomy with emphasis on human interaction [44].

In order to achieve peer-to-peer collaboration, the robot must indeed be
able to flexibly exhibit “full autonomy” at appropriate times. Moreover, it
may need to support social interactions. As a result, peer-to-peer collabo-
ration may be considered more difficult to achieve than full autonomy.

2.7.2 Information Exchange

Autonomy is only one of the components required to make an interaction
beneficial. A second component is the manner in which information is ex-
changed between the human and the robot. Measures of the efficiency of an
interaction include the interaction time required for intent and/or instruc-
tions to be communicated to the robot, the cognitive or mental workload of
an interaction, the amount of situation awareness produced by the interac-
tion (or reduced because of interruptions from the robot), and the amount
of shared understanding or common ground between humans and robots.

There are two primary dimensions that determine the way information
is exchanged between a human and a robot: the communications medium
and the format of the communications. The primary media are delineated
by three of the five senses: seeing, hearing, and touch. These media are
manifested in HRI as follows [44]:

• Visual displays: They are typically presented as graphical user inter-

2.7 Effective Attributes of HRI 25

faces or augmented reality interfaces [64].

• Gestures: They include hand and facial movements and movement-
based signaling of intent.

• Speech and natural language: It includes both auditory speech and
text-based responses, which frequently emphasizes dialog and mixed-
initiative interaction.

• Non-speech audio: It is frequently used in alerting.

• Physical interaction and haptics: They are frequently used remotely
in augmented reality or in teleoperation to invoke a sense of presence
especially in telemanipulation tasks, and also frequently used proxi-
mately to promote emotional, social, and assistive exchanges.

Recently, attention has focused on building multimodal interfaces [113,
120, 124] for robots to provide intuitive and pleasant interactions with non-
expert humans. These interfaces are partly motivated by a quest to reduce
workload and also a desire to make interactions more natural and easier to
learn.

Regarding the robots that interact with humans, the robots’ appearance
and initial behavior must create in humans an appropriate mental model of
the robots’ abilities and intentions. The robots must be able to clear up
inevitable misunderstandings, and they must adapt to the needs of different
users [69].

2.7.3 Common Grounding

Two persons cannot even begin to coordinate on content without assuming
a vast amount of shared information or common ground – that is, mutual
knowledge, mutual beliefs, and mutual assumptions. To coordinate on pro-
cess, they need to update their common ground moment by moment. All
collective actions are built on common ground and its accumulation [27, 121].
In communication, common grounding cannot be properly updated without
a process which is called grounding (least collaborative effort). The ground-
ing process has been described within a framework that views communica-
tion as a form of collaborative action [10].

Effective communication between people and interactive robots will ben-
efit if they have a common ground of understanding. The common ground
principle of least collective effort can be used to predict and design HRI ap-
plications. Social cues lead people to create a mental model of a robot and
estimates of its knowledge. People’s mental model and knowledge estimate
will, in turn, influence the effort they make to communicate with the robot.
People will explain their message in less detail to a knowledgeable robot
with which they have more common ground. This process can be leveraged

26 Interaction and Communication with Humanoid Robots

to design interactions that have an appropriate style of robot direction and
that accommodate differences among people.

The theory of common ground was developed to understand communi-
cation between people [26, 121]. Its main assumption is that communication
between people requires coordination to reach mutual understanding, just
as ballroom dancers and basketball teams do. The process of coordination
relies on a large amount of shared knowledge between the parties, that is,
common ground. One of the key postulates of the theory of common ground
is least collaborative effort, that is, people in conversation minimize their col-
lective effort to gain understanding. Achieving least collective effort should
be an ultimate goal of successful HRI. The solution for achieving this most
basic form of common ground is to create in people’s minds an appropriate
mental model of the robot automatically.

Kiesler [69] discussed research demonstrating the tendency for people
to attribute knowledge to a strange robot based on their beliefs about the
robot’s origin, the tendency for people to communicate with a strange robot
differently based on the robot’s physical characteristics, and the ways that
a robot could speak to a person depending on the expertise level of the
person. She called on these lines of evidence to support the argument that
the common ground principle is an important factor in HRI. The results
showed that when the agent looked like a person, people cooperated with
the person-like agent at the same level as they did with the real person.
The results of her experiment also suggested that mental models are not
just general beliefs (e.g., this robot is nice, funny, or respectful). Mental
models also comprise a set of task-specific expectations of process, that is,
how the system will work. She also argued that mental models are situation-
specific, that is, that expectations of process can change depending on the
situation. The more the robot can adapt to the person, the less the person
needs to adapt to the robot.

2.7.4 The Structure of the Team

HRI problems are not restricted to a single human and a single robot, though
this is certainly one important type of interaction. Robots used in search and
rescue, for example, are typically managed by two or more people, each with
special roles in the team. Similarly, managing Unmanned/Uninhabited Air
Vehicles (UAVs) is typically performed by at least two people: a “pilot” who
is responsible for navigation and control, and a “sensor/payload operator”
who is responsible for managing cameras, sensors, and other payloads.

A question that has received considerable attention, but which is directly
addressed by few scientific studies, is how many remote robots a single
human can manage [44]. In general, the answer is dependent on factors
such as the level of autonomy of the robot (e.g., teleoperation requires a
great deal of direct attention from the human), the task (which defines not

2.8 Summary 27

only the type and quantity of data being returned to the human but also
the amount of attention and cognitive load required of the human), and the
available modes of communication.

2.7.5 The Shape of The Task

Robotic technology is introduced to a domain either to allow a human to
do a task that he could not do before, or to make the task easier or more
pleasant for the human. Implicit in this assertion is the fact that introducing
technology fundamentally changes the way that humans do a task. Task-
shaping is a term that emphasizes the importance of considering how the
task should be done and will be done when new technology is introduced.
Compared to the other ways that a designer can shape HRI, there is little
written about task-shaping.

There are formal processes for understanding how the task should be
done and is currently done. These processes include goal-directed task analy-
ses, cognitive work analyses, and ethnographic studies. Although frequently
used to specify how a task is done and how it should be done, it is imperative
to consider how the task will be done, including unintended consequences of
design.

2.8 Summary

An essential aspect distinguishing robotics from other areas of artificial intel-
ligence is their interaction with humans and their surrounding environments.
The field of robotics is changing at an unprecedented pace. In the past, most
robots operated in industrial settings, where they performed tasks such as
assembly and transportation. Equipped with minimal sensing and comput-
ing, robots were created to perform the same repetitive task over and over
again. Currently, researchers try to let robots provide services directly in
human environments without applying any special settings.

In this chapter, we presented a brief introduction about humanoid robots
and their applications. The main features of bipedal humanoid robots, which
distinguish them from other types of mobile robots, were discussed. We also
introduced the general issues of HRI and the accepted practices that are
emerging in HRI. Then, the relationships and differences between HCI and
HRI were presented. The different models of HRI and human roles in these
models were illustrated. Finally, the basic effective attributes which affect
the behavior of the HRI problem were elucidated.

28 Interaction and Communication with Humanoid Robots

CHAPTER 3

Route–Based Navigation for Mobile Robots

Since natural language is the easiest and most natural mode of communica-
tion for humans, it is desirable to use it to instruct the mobile robot and to
generate easy-to-understand messages for the user. Using natural language
to teach a task to a robot is an application of a more general instruction-
based learning methodology. It can be used to instruct the robot with
higher-level goals or to handle certain behaviors and modify their execu-
tion.

Spatial knowledge can be represented in various ways to increase the nat-
ural language interaction between humans and mobile robots. Autonomous
mobile robots need to use spatial information about the environment in or-
der to effectively plan and execute navigation tasks. The information can
be represented at different levels of abstraction. One effective way is to de-
scribe the route verbally to the robot. This method can permit inexpert
users to instruct their mobile robots, which understand spatial descriptions,
to naturally perform complex tasks using succinct commands.

In this chapter, we mainly discuss the route-based navigation for the mo-
bile robots. Firstly, the natural language interaction between humans and
robots is represented. The spatial reasoning effect on the robot’s ability to
use human-like spatial language is described. Then, some current implemen-
tations of natural language interfaces for both mobile robots and simulated
artificial agents are introduced. Afterwards, the mobile robot navigation and
its broad categories are elucidated. Finally, the route description, symbolic,
and environmental representations for the mobile robots are discussed.

3.1 Natural Language Interface for Artificial Agents

Natural language interaction is considered as a challenging problem, not
only because it requires sophisticated speech recognition and language un-

30 Route–Based Navigation for Mobile Robots

derstanding, but also because it inevitably includes issues of mixed-initiative
interaction, multimodal interaction, and cognitive modeling [44]. Natural
language can express rules and sequences of commands in a very concise
way. It uses symbols and syntactic rules to interact with robots that have
knowledge represented at the symbolic level. Such symbolic communica-
tion can help robots to learn faster when they learn at the sensory–motor
association level [87].

To accept mobile robots as cooperative partners, they must not only have
the ability to understand perfectly clear and complete commands, but they
must also resolve ambiguities and complement missing information that is
inherent in information supplied by humans. Therefore, to build effective in-
teractions, humans and robots should have a common ground of understand-
ing [44, 5]. This common ground creates realistic expectations and forms
the basis communications. From a robot’s perspective, supporting effective
interactions also requires establishing and maintaining common ground. An
emerging approach to doing this is to create cognitive models of human
reasoning and behavior selection. The goal is to create rich enough models
either to allow the robot to identify a human’s cognitive state and adjust
information exchange accordingly, or to allow the robot’s behavior to be
generated by models that are interpretable by a human.

On the other hand, spatial reasoning on the natural language route is
essential for both humans and mobile robots. Spatial reasoning gives robots
the ability to use human-like spatial language and provides the human user
with an intuitive interface that is consistent with his innate spatial cognition.
It can also accelerate learning by using symbolic communication. A robot
capable of understanding spatial language could be controlled by a novice
user naturally to perform complex tasks using succinct, intuitive commands.
Moreover, there is evidence that spatial reasoning underlies many parts of
human cognition; a system that performs spatial reasoning may allow the
user to bootstrap human understanding of many other facets of intelligence.
By trying to build spatially competent machines, a useful system in itself is
created and it provides insight into possible mechanisms for modeling human
cognition [147, 135].

In the last three decades, there has been considerable research on spatial
language and spatial reasoning. This motivates the research interest of us-
ing spatial language for interacting with artificial agents. Many researchers
[93, 153, 147, 135, 100] have proposed frameworks using natural language
commands in simulated or real-world environments to guide their artificial
agents during navigation. For example, Tschander et al. [153] proposed
the idea of a cognitive-oriented Geometric Agent (GA) which simulates in-
structed navigation in a virtual planar environment. This geometric agent
can navigate on routes in its virtual planner environment according to nat-
ural language instructions presented in advance. The GA is implemented
to study the interaction between the spatial information given in route in-

3.1 Natural Language Interface for Artificial Agents 31

structions and the spatial information gained from perception. In their
approach, Conceptual Route Instruction Language (CRIL) is used to repre-
sent the meaning of natural language route instructions. CRIL-expressions
are constructed from a basic inventory of descriptive operators. On the one
hand, CRIL-expressions specify the semantics of natural language expres-
sions in the traditional method of formal semantics. On the other hand,
CRIL is an internal language of GA that relates to perceptual objects and
specifies actions carried out in GA. CRIL and formal reasoning based on
CRIL-expressions can be used to test contrasting proposals for the seman-
tics of spatial expressions regarding their consequences for the performance
of an instructed navigator.

MacMahon [98] introduced the MARCO system for understanding and
executing natural language route instructions in 3D large-scale virtual in-
door environments. MACRO is an agent that follows free-form, natural lan-
guage route instructions by representing and executing a sequence of com-
pound action specifications that model which actions to take under which
conditions. MARCO infers implicit actions from knowledge of both linguis-
tic conditional phrases and from spatial action and local configurations. It
performs explicit actions, implicit actions necessary to achieve the stated
conditions, and exploratory actions to learn about the world.

Tellex and Roy [147] implemented spatial routines to control the robot
in a simulator. They defined a lexicon of words in terms of spatial routines
and used that lexicon to build a speech-controlled robot in a simulator.
Their system is unified by a high-level module that receives the output from
the speech recognition system and simulated sensor data, creates a script
using the lexicon and the parse structure of the command, and then sends
appropriate commands to the simulated robot to execute that command.
However, their current implementation acts only on the current snapshot of
sensor readings which leads to errors in the robot’s behavior.

Levit and Roy [91] have developed components of an automated sys-
tem that understands and follows navigational instructions. The system
has prior knowledge of the geometry and landmarks of specific maps. This
knowledge is exploited to infer complex paths through maps based on natu-
ral language descriptions. Their approach is based on an analysis of verbal
commands in terms of elementary semantic units that are composed to gen-
erate a probability distribution over possible spatial paths in a map. An inte-
gration mechanism based on dynamic programming guides this language-to-
path translation process, insuring that resulting paths satisfy continuity and
smoothness criteria. In their implementation, parsing of text into semantic
units is performed manually. Composition and interpretation of semantic
units into spatial paths is performed automatically.

On the other hand, considerable research efforts are being made to
develop various command sets for mobile robots and robotic wheelchairs
[127, 148, 114, 133]. The mobile robot community has created systems

32 Route–Based Navigation for Mobile Robots

that can understand natural language commands. Many research efforts
[153, 135, 5, 150, 75] focus on using spatial language to control the robot’s
position and behavior, or to enable it to answer questions about what it
senses. Torrance [150] implemented a system that is capable of mediat-
ing between an unmodified reactive mobile robot architecture and domain-
restricted natural language. He introduced reactive-odometric plans (ROPs)
and demonstrates their use in plan recognition. The communication compo-
nent of this architecture supports a typewritten natural language discourse
with people. This system was brittle due to place recognition from odo-
metric data and the use of IR sensors for reactive motion control. The
resulting ROPs do not contain error-reducing stopping conditions, and this
had caused problems in some parts of the tested environment where hallways
did not sufficiently constrain the reactive navigation system.

In [87, 82, 15], Instruction-Based Learning (IBL) is built to train mobile
robots using natural language instruction to describe a navigation task. In
this project, a robot is instructed on how to travel from one place to an-
other in a miniature town. IBL uses unconstrained language in a real-world
robotic application that learns prior to execution. In IBL, the user’s verbal
instructions are converted into new internal program code that represents
new procedures. Such procedures become part of a procedure pool that
robots reuse to learn increasingly complex procedures. Hence, the robot
should be capable of executing increasingly complex tasks.

Skubic et al. [135] implemented robot spatial relationships combined
with a multimodal robot interface that provides the context for the human-
robot dialog. They showed how linguistic spatial descriptions and other
spatial information can be extracted from an evidence grid map and how
this information can be used in a natural human-robot dialog. With this
spatial information and linguistic descriptions, they established a dialog of
spatial language. To overcome the object recognition problem (the system
does not support vision-based object recognition), they had defined a class
of persistent objects that were recognized and named by the user.

Pradel and Hoppenot [116] proposed a method for symbolic trajectory
description in unknown indoor environments. The chosen form uses a panoramic
description called fresco. The method uses distance measurements from a
2D laser range finder, digitizes the robot’s visibility area, eliminates superflu-
ous data and reorients their presentation. The landmarks are then extracted
and organized into the fresco which is validated by means of neighborhood
rules. As the robot moves in the environment, the frescoes are created and
both the amount of new information a fresco carries out and its position
in relation to the preceding ones are evaluated. Only frescoes selected as
enough informative are stored to describe the robot’s route.

Kollar et al. [75] presented a system that follows natural language direc-
tions by extracting a sequence of spatial description clauses from the linguis-
tic input and then infers the most probable path through the environment

3.2 Navigation Problem at a Glance 33

given only information about the environmental geometry and detected vis-
ible objects. They used a probabilistic graphical model that factors into
three key components. The first component grounds landmark phrases in
the perceptual frame of the robot by exploiting co-occurrence statistics from
a database of tagged images. Second, a spatial reasoning component judges
how well spatial relations describe a path. Finally, verb phrases are modeled
according to the amount of change in orientation in the path.

3.2 Navigation Problem at a Glance

Spatial competence is a central aspect of human intelligence, and a crucial
component of any system that needs to intelligently move itself or objects
in the world. Spatial language is a window to spatial cognition: humans
use spatial language to describe spatial situations, to refer to objects, and
to request other humans to take actions. Humans possess the remarkable
ability to give and follow natural language route instructions through large-
scale spaces.

In navigation, a director describes the actions and observations along the
route by recalling the environment’s topology, metrical layout, and visual
features. A follower interprets these descriptions, navigating by applying
the instructions to the possibly unfamiliar environment. Furthermore, fol-
lowers must account for mistakes, ambiguities, and omissions in the route
description [148, 99]. In other words, despite the directors’ best efforts, not
all instructions are perfectly clear and reliable for reaching the goal. Of-
ten instructions contain ambiguous information, qualitative mistakes within
the instruction, or metrical mistakes. Because of these failings, the follower
must treat the instructions as guidance, not as strict commands.

Therefore, navigation is defined as the process that involves both plan-
ning and execution of agent’s movements. It consists of two main com-
ponents: locomotion and way-finding [105]. Locomotion is the movement
of one’s body around an environment, coordinated specifically to the lo-
cal or proximal surrounds. Accordingly, it is guided both perceptually by
current sensory information and cognitively by previously acquired informa-
tion. There are various modes of locomotion which can be classified into
two categories. Unaided by machines, people of different ages (or different
states of mind or body) can roll, crawl, climb, slither, walk, hop, jog, or
run. Aided by machines, there is the usual litany of planes, trains, and
automobiles (and then some). Modes of locomotion are important because
they determine much about the humans’ way of acquiring and processing
information as they locomote.

In contrast to locomotion, way-finding is the goal-directed and planned
movement of one’s body around an environment in an efficient way. It
is planning and decision making coordinated to the distal as well as local

34 Route–Based Navigation for Mobile Robots

surrounds. In general, way-finding requires controlled, explicit strategies and
working-memory processes when people are in unfamiliar places, including
when they are lost. Way-finding is composed of three activities: knowledge
storage and access (i.e., the cognitive map), decision making for planning
actions, and decision execution to turn decisions into behaviors.

The great majority of acts of navigation involve locomotion and way-
finding components to varying degrees. Perhaps the most interesting and
important cases where the mapping of declarative/non-declarative onto way-
finding/locomotion is problematic concern instances where spatial inferences
are made in relatively immediate surrounds.

Consequently, successful navigation means that agents reach their goal
in an efficient and accident-free manner. To do so, it is necessary that as
agents move, they maintain a sense of where they are relative to their goal,
where places and objects they should avoid are located, and so on [105].
A variety of sensory and motor systems provides information for updating
during locomotion. Humans recognize landmarks primarily visually, because
vision is the most precise channel for spatial and pattern information, par-
ticularly at a distance, but landmark recognition may be based on audition,
olfaction, radar or satellite signals, and so on.

3.3 Mobile Robot Navigation

In mobile robotics, navigation has always been an interdisciplinary topic of
research, because mobile agents of different types are inevitably faced with
similar navigational problems. Therefore, human navigation can readily be
compared to navigation in other biological organisms or in artificial mobile
agents like autonomous robots. The set of navigational strategies found in
mobile robots mirrors the complexity of navigational strategies employed
by biological organisms. In many instances, the close resemblance between
biological and artificial navigation is not a mere coincidence. Artificial nav-
igation often mimics evolutionary proven strategies in an attempt to build
robust technologies. In some instances, artificial agents are even specifically
designed to test biological models of navigation [158].

There are, however, a number of important differences between biological
and artificial agents. First, modern technology makes a wide range of very
accurate sensors possible, such as laser range finders, radar and ultrasonic
sensors, global positioning systems, etc., providing information about the
environment or the position of an agent. Unlike biological organisms, who
might possess a few highly developed sensory systems for particular sources
of information (e.g., the innate compass for the desert ant); the designer of
a robot system is free to use an arbitrary combination of different sensors.
In addition, robots sometimes are equipped from the start with a precise
representation of their spatial environment (e.g., a map).

3.3 Mobile Robot Navigation 35

In many cases, the environment is also specifically designed to match
the robot’s navigational or sensory abilities, e.g. by placing markers at
important points of a route or using well-demarcated paths along which the
robot travels. The basic tasks of spatial navigation, however, remain the
same for both robots and biological organisms. According to [151, 158],
four different, broad categories to classify natural and artificial navigation
can be distinguished:

Guidance: It is mainly concerned with directly leading an agent by external
cues – either by following a particular gradient or moving to match
the current sensory image with a stored image of the target or of the
surroundings. In all these cases, the agent tries to locally maximize
a predefined criterion without knowledge of spatial relations in the
environment or about its own position. A robot could, for example,
try to follow a wall of a corridor by keeping a constant distance to it.

Place Recognition–Triggered Response: For place recognition based
strategies, complex spatial behaviors are triggered at distinct points
in space. Once the correct place is recognized, the associated action
(e.g., movement in a particular direction or guided behavior) will lead
to complex trajectories. The main problem of this strategy obviously
consists in the correct identification of a place.

Topological Navigation: It describes navigation based on topological net-
works and is thus a more flexible extension of place-triggered naviga-
tion. The basic elements of this type of network are places and the
connections between these places. In this case, the agent possesses
knowledge how to get from one place to a second place which is con-
nected to it. The agent’s spatial knowledge is confined, however, to
the topological network. New places not included in the network, or
new connections between two places cannot be found by navigating on
the basis of a topological network.

Metrical Navigation: Unlike the last two approaches, which divide space
in a small number of distinct places and the space in between, metrical
navigation does not require such a distinction in principle. The met-
ric most frequently used is Euclidean, thus distances and angles are
well defined and can be used to drive spatial navigation. Pre-existing
maps, which specify the metrical relations between objects in the envi-
ronment of the agent, are often supplied directly or are autonomously
constructed by triangulation and integration of sensory information. A
coarse version of metrical navigation can be seen in world representa-
tions such as occupancy grids. Unlike navigation based on topological
networks, the agent can determine its position in space and its spatial
relation to each other object within the same metrical space for each

36 Route–Based Navigation for Mobile Robots

position. However, knowledge of its position does not, as in topolog-
ical navigation, automatically trigger the correct action. Instead, the
action usually has to be computed for the current situation.

Table 3.1 summarizes the previous four levels of navigation strategies ac-
cording to the following three criteria: (i) the information structure and con-
tent; (ii) the movement selection procedure; and (iii) the behavioral reper-
toire of the navigation strategy.

For mobile robots, their capability to autonomously go from one point to
another is considered as an important issue for their navigation in the sur-
rounding environment. Autonomous navigation is based on three main con-
cepts: planning, navigation, and environment representation [116]. Firstly,
planning computes a trajectory between the start and target points. Sec-
ondly, navigation gives motion orders to the robot to follow the computed
trajectory. It is based on three principal kinds of techniques: map-based nav-
igation using predefined geometric and/or topological models, map-building-
based navigation where the robot construct geometric and/or topological
models on their own, and mapless navigation using only object recognition
and actions associated to these objects. Finally, environment representation
permits the robot to know if it goes in the right direction or not.

In general, robot navigation can be processed in four basic steps. First,
the robot should perceive its environment by using its sensors, such as a
laser range finder, IR, and stereo cameras. The second step is to build the
digital representation of the environment. The third step is to extract the
landmarks from the environment. Finally, the robot specifies paths and
locations of landmarks [83].

Bipedal humanoid robots, as discussed in chapter 2, have unique charac-
teristics distinguishing them from other types of mobile and service robots.
They can be integrated in the human environment without applying any
special settings. They have the ability to recognize and avoid different types
of obstacles in their surrounding environment. To let the bipedal humanoid
robot navigate autonomously in human environments, it needs to solve the
last mentioned tasks and handle objects (landmarks) with respect to their
characteristics [159].

3.4 Route Instructions for Robot Navigation

Every day, people use route instructions to travel along previously unknown
routes. Route instructions can be defined as an instruction set intended to
guide a mobile agent toward a spatial destination. They are also referred
to as “route descriptions”, “route directions”, “route guidance”, or simply
“directions”. Route instructions are a special case of verbal instructions,
which include recipes, assembly instructions, and usage manuals. They are

3.4 Route Instructions for Robot Navigation 37

Name Stored spatial
information

Procedure Characteristics

0 Target Ap-
proaching

None Taxis Basic requirement
for navigation.

1 Guidance Identity of the
landmark configu-
ration. Raw state
of the sensory
inputs at goal
location.

Minimize the mis-
match between
the perceived
configuration and
the memorized
configuration
(approach).

Local navigation.
Only when direct
perception is
available.

2 Place
Recognition–
Triggered
Response

Landmark config-
urations defining
places. A lo-
cal directional ref-
erence frame for
each. The di-
rection of move-
ment that leads to
the goal from each
place.

Self-localize by
recognizing the
current places
as an already
experienced place.
Orient relative to
it. Move in the
goal-associated
direction.

Way-finding.
Stimulus-response
type of behavior.

3 Topological
Navigation

A set of landmark
configurations
linked by topolog-
ical relationships.

Search for the se-
quence of places
linked by experi-
enced routes from
the current place
to the goal.

Way-finding.
Stimulus-
response-stimulus
type of behav-
ior. Topological
detours (path
section).

4 Metric
Navigation

A set of landmark
configurations
linked by metric
relationships.

Plan a trajectory
which will be
followed by lower
level strategies.
The resulting
path is not neces-
sary a previously
taken one.

Way-finding.
Metric detours,
metric shortcuts,
novelty.

Table 3.1: The hierarchy of navigation strategies [151].

38 Route–Based Navigation for Mobile Robots

limited enough to be tractable and applicable to useful real-world tasks with
clear criteria for evaluation.

Route instructions are considered as one of the more important natu-
ral language interfaces between humans and mobile robots for applying an
effective HRI. They are an interesting combination of robotics, artificial in-
telligence, cognitive psychology, and natural language processing [98, 100].
Route instructions are easily evaluated, despite the complexity of integrating
modules doing linguistic modeling, abstract spatial reasoning, and moving
a robot through a world. They frequently involve two kinds of expressions
that connect to spatial structure: a verb of motion (such as go, turn, enter,
and throw) and a directional adverb or a directional prepositional phrase
(such as into the zoo, through the park, back, and straight on) [36].

Therefore, route instructions specify spatial information about the en-
vironment of the route and temporal information about the actions (move-
ments, turns) to be performed [153]. Human route instructions are usually
conveyed either verbally in spoken discourse or written texts, or by graphi-
cal means, i.e. by illustrating the route on a map, or drawing sketch-maps.
Whereas verbal route instructions focus on the actions to be performed and
take the spatial environment as the frame for these actions, maps and other
pictorial representations foreground the spatial environment without pos-
sessing adequate means for representing the actions. The major deficit of
maps as means for route instruction is that they do not focus on the sequence
of actions to be performed but on the spatial environment. A third possi-
bility is to combine these two kinds of external representations leading to
multimodal route instructions. Multimodal route instructions combine nat-
ural language route descriptions and visualizations of the route to follow,
such that the strengths of both means for communication route knowledge
are brought together[49, 162, 161].

Nevertheless, all types of route instructions have to provide correlated
actions, paths, tracks, positions and landmarks to describe the navigation
path to the agent. All of these route instruction components can be classified
and categorized into main groups to facilitate the analysis of the navigation
task [153].

Verbal route instructions represent knowledge about spatial actions and
spatial layouts. A route instruction set is useful if it reliably guides follow-
ers to the intended destination. Verbal route instructions are explanations
given by a director intended to guide a mobile agent, the follower, toward
a specific spatial destination. When following route instructions, the fol-
lower must parse and interpret the text, model the instruction’s actions and
descriptions, and enact the instructions in the world, by performing these
actions and recognizing the descriptions. Typically, a follower cannot simply
execute instructions without inference, since the necessary actions are not
completely specified. Instructions often provide just a skeletal plan of action.
A follower can resolve the ambiguities and omissions by using knowledge of

3.4 Route Instructions for Robot Navigation 39

language, an understanding of spatial actions and relations, and a model of
the environment. The core measure of a set of instructions for a route is
simple – did the follower end up at the intended destination?

A property characteristic for in advance route instructions is that neither
the instructor nor the follower perceives the relevant environment, the criti-
cal landmarks, or the tracks, e.g., the roads, completely and directly. During
the instruction phase an instructor, who possesses knowledge about the en-
vironment in question, produces a route instruction. In comprehending the
instruction, the follower builds up conceptual, mental representations of the
route. These representations, which contain spatial information about the
route and the sequence of actions to be performed, have to be stored in
memory. Later, in the navigation phase, the instructed navigator has to
match the internal representations against the perceived scenes. This pro-
cess involves the recognition of spatial configurations of landmarks, tracks,
and positions in accordance with the spatial relations specified in the in-
struction.

The overall criterion for the adequacy of a route instruction is whether
it enables navigator agents to find their way. Thus, adequacy depends on
a wide spectrum of parameters. For example, epistemological parameters,
such as the knowledge of the participants (the instructor and the follower),
or perceptual parameters, which concern the navigator’s perception of the
environment and the perceptual salience of landmarks, can influence the
performance of the navigator. Since not all objects or spatial configurations
that the navigator will perceive on the route can be specified in the in-
struction, the type and amount of information, e.g. concerning landmarks,
provided by the instructor is crucial for successful route instructions.

Good route instructions should contain adequate information about the
two aspects. First, the aspect concerns navigation actions, in particular
locomotion actions and perception actions, which are performed by the robot
to reach its destination. The second is the spatial environment in which the
intended locomotion of the robot will take place. The instructor’s primary
task is to choose a good combination of communicational means to transfer
the relevant information concerning both aspects to the robot [49].

MacMahon [98] proposed four basic actions to be used in following verbal
route instructions: turning in place, moving from one place to another, ver-
ifying a view description against an observation, and terminating a current
action. The primary characteristic of a path is the change of location. Turns
can be viewed as changes in orientation. These considerations led to four
basic types of navigational information: moves, turns, positions and orien-
tations. Altogether, moves and turns can be subsumed under the general
notion of actions, and positions and orientations can be viewed as verifica-
tions.

Another important issue which should be considered in describing route
is the reference systems. Reference systems can be classified into relative,

40 Route–Based Navigation for Mobile Robots

intrinsic, and absolute [105, 127, 91]. Relative systems are essentially ego-
centric. The objects in the route description are described from the speaker’s
point of view or some other viewer. Intrinsic systems code direction rela-
tive to the asymmetric shape of a feature in the environment, i.e. from the
object’s point of view. Absolute systems code directions relative to global
features that function over large areas. These frames of reference can be
used to construct or describe spatial relationships in the environment. The
use of different frames of reference in different languages indicates that lan-
guage may restructure the spatial representations of the language speaker,
rather than the existence of innate and universal spatial concepts.

3.5 Perception–Based Symbolic Representations

Extracting basic instruction elements from sentences containing navigational
information and grounding them in action primitives is a common strategy
for understanding systems (for more details, see Appendix B). One approach
to solving the problem of vision-based robot navigation is to model both of
the 3D environment and the verbal route instructions as symbolic data and
to process all data input on this symbolic level. This approach will allow
the robot to perceive and interpret its environment if the symbolic represen-
tation of both the environment (i.e., landmarks) and the route description
can be mapped to their corresponding real world and verbal description, re-
spectively. This abstract representation will reduce the problems of machine
vision and artificial intelligence into a subset of the general symbolic data
[146].

Building the symbolic description of the route followed by a robot is a
threefold problem. The first problem is how to build the qualitative descrip-
tions in accordance with the robot’s sensors. The second one is how to de-
scribe the route by a sequence of the most pertinent symbols. Finally, there
is the question of how to use these symbols with the control-command level
of the robot [116]. Tedder and Hall [146] described the symbolic processing
methods in detail. The general method for perception and interpretation is
proposed to symbolically represent and manipulate data in a mapping pro-
cess. They solved the problem in modeling the 3D environment as symbolic
data and in processing all data input on this symbolic level. The results of
obstacle detection and avoidance experiments demonstrate that the robot
can successfully navigate the obstacle course using symbolic processing con-
trol.

3.6 Environment Map-like Representations 41

3.6 Environment Map-like Representations for Mo-
bile Robots

Building a representation of the environment is an important task for a
mobile robot that aims to move autonomously in the surrounding space.
Over the past decades, the problem of building maps and navigating indoor
environments has received significant attention in the mobile robotics com-
munity. The problem of building maps is the problem of determining the
location of certain entities, such as landmarks or obstacles, in a global frame
of reference. To build a map of the environment, a robot must know where
it is. Since robot motion is inaccurate, constructing maps of large indoor
environments requires a robot to solve an inherent concurrent localization
problem.

In robotics, the common descriptions of the space are metric and topo-
logical maps. A metric map represents the environment according to the ab-
solute geometric position of obstacles. A topological map is a more abstract
representation that describes relationships among features of the environ-
ment without any absolute reference system. Topological maps are usually
represented in graph form [160, 80, 105].

On the one hand, metric maps generate fine-grained, metric descriptions
of a robot’s environment. They include distance, direction, and shape, or-
ganized in a global allocentric reference system. These are modeled best
by statistical estimation theory, such as Bayesian modeling [105]. In these
representations, the robot’s environment is defined by a single global coordi-
nate system, in which all mapping and navigation takes place. Typically, the
map is a grid with each cell of the grid representing some amount of space
in the real world. These grids became quite sophisticated at representing
the spatial structure of the world. These approaches typically work well in
bounded environments, with little consistent structure and where the robot
has opportunities to realign itself with the global coordinate system using
external markers.

On the other hand, topological maps generate coarse, graph-like de-
scriptions of environments, where nodes correspond to significant, easy-to-
distinguish places or landmarks, and arcs correspond to actions or action
sequences that connect neighboring places. Topological maps are quali-
tative descriptions of the robot’s workspace, in which the environment is
represented as places and connections between places. Indeed, the idea of
a map that contains no metric or geometric information, but only the no-
tions of proximity and order, is very attractive because such an approach
eliminates the inevitable problems of dealing with movement uncertainty in
mobile robots. Movement errors do not accumulate globally in topological
maps as they do in maps with global coordinate systems since the robot only
navigates locally, between places. Topological maps can also be more com-

42 Route–Based Navigation for Mobile Robots

pact in their representation of space, in that they represent only interesting
places and not the entire environment. Topological maps have become in-
creasingly popular in mobile robotics. Being more abstract, a topological
map has the advantage of being more compact and more stable with respect
to sensor noise and to small changes in the environment. Unfortunately, the
semantics associated to topological maps are still somehow ambiguous [80].

In principle, topological maps could be scaled to the size of large-scale in-
door environments better than metric maps could, because a coarse-grained,
graph-structured representation is much more compact than a dense array,
and more directly suited to problem solving algorithms. However, purely
topological maps have difficulty in distinguishing adequately between dif-
ferent places, and have not been applied to large environments in practice.
Recent progress in metric mapping has made it possible to build useful and
accurate metric maps of reasonably large-scale environments, but memory
and time complexity pose serious problems [79, 160].

3.7 Summary

Natural language is considered as the easiest and most natural mode of
communication for humans. It is desirable to use it to instruct the robot
and to generate easy-to-understand messages for the user. Using natural
language to teach a route for a robot is an application of a more general
instruction-based learning methodology.

In this chapter, we discussed the main features of the natural language
interfaces for artificial agents and the general issues of mobile robot naviga-
tion. The spatial reasoning effect on the robot’s ability to use human-like
spatial language is described. Then, some current implementations of natu-
ral language interfaces for both mobile robots and simulated artificial agents
are introduced. Afterwards, the mobile robot navigation and its broad cat-
egories are elucidated. The importance of generating symbolic representa-
tions for both route descriptions and 3D environments is discussed. Finally,
the representations of the robot’s environments are elucidated.

CHAPTER 4

Vision–Based Robot Navigation

For many robot domains, vision provides the ideal sensor for robots due to its
low cost, wide availability, high data content and information rate, and suit-
ability for human environments. For autonomous navigation in unknown or
dynamic environments, being able to extract significant information about
the world is crucial to operate effectively, making vision an attractive sensor
for many robot platforms. For vision-based autonomous robots, it is impor-
tant that vision processing algorithms are fast in addition to being robust.
Selecting which algorithms should be used by a mobile robot is a decision
that is usually made a priori by the system developer. The choice is based
on past experience and intuition to learn which algorithm should be used in
execution time. Consequently, robust techniques for object detection, im-
age segmentation, object recognition, and pose estimation are essential for
robots that work in human environments.

This chapter discusses the mobile robot navigation based on vision sen-
sors. In the next section, the general issues and classes of vision-based robot
navigation are introduced. Then, the basic stages of robot stereo vision,
which are used to calculate the landmarks’ positions and range information
from the environment, are elucidated. Finally, the object detection and
recognition techniques which are suitable to mobile robotics scenarios are
presented.

4.1 Autonomous Navigation Based on Vision Sen-
sors

Vision is one of the most powerful and popular sensing methods used for au-
tonomous robot navigation that continues to demand a lot of attention from
the mobile robot research community. When vision sensors are compared

44 Vision–Based Robot Navigation

with other on-board sensing techniques, the vision sensor has the ability
to provide detailed information about the environment which may not be
available using combinations of other types of sensors. The past decade has
seen the rapid development of vision-based sensing for indoor mobile robot
navigation tasks.

For mobile robot navigation, autonomous robots operating in unknown
and uncertain environments have to cope with dynamic changes in these
environments. The major challenge of the autonomous robot navigation is
to navigate successfully to its goal while avoiding both static and dynamic
obstacles in its surroundings. In other words, when the robot is in an area
it does not know, it becomes necessary for it to identify and learn a useful
set of landmarks in its surroundings so that it can return through the area,
knowing exactly where to go and what is around it. Throughout this learn-
ing process the robot must identify potential landmarks based on sensory
information, learn where those landmarks are, and then be able to predict,
with reasonable accuracy, where to expect to sense the next landmark. Yet
most robotic applications tend to be one of the two [134]: Either entirely
blind to everything in their surroundings except what is required merely for
navigating through the environment, or else designed to function in a fixed
setting, where they have a well-known and unchanging frame of reference
that they can relate objects to.

On the other hand, vision-based robot navigation can be classified into
three main groups with respect to the familiarity of the robot with its en-
vironment [47]. The first class is the map-based navigation which consists
of providing the robot with a model of the environment. These models may
contain different degrees of detail, varying from a complete CAD model of
the environment to a simple graph of interconnections or interrelationships
between the elements in the environment. The second group is the map
building based navigation. In this approach, a 2D or 3D model of the en-
vironment is first constructed by the robot using its on-board sensors after
which the model is used for navigation in the environment. Finally, the third
group is the mapless navigation. This category contains all systems in which
navigation is achieved without any prior description of the environment. The
required robot motions are determined by observing and extracting relevant
information about the elements in the environment, such as walls, desks,
doorways, etc. It is not necessary that the absolute position of these ob-
jects is known for further navigation to be carried out. Mapless navigation
falls into three sub-groups: Navigation using optical flow, navigation using
appearance-based matching, and navigation using object recognition.

For robot navigation, object recognition has the ability to learn and
detect hundreds of arbitrary objects in images from uncontrolled environ-
ments which can be considered as a major breakthrough for many intelligent
robotics applications. Object recognition has many applications in mobile
robotics, such as self-localization of mobile robots and object manipulation

4.2 Stereo Vision of Mobile Robots 45

of autonomous robots. Object recognition enhances the representation of the
environment that robots will use for their reasoning processes. The capacity
to perceive and understand the environment is an important limitation for
designing robots suitable for being deployed in human environments to per-
form domestic tasks or help the disabled. Also, being able to communicate
at human-level semantics with its owners would make these robots much
easier to control for a non-technical end user.

Object recognition in real scenes is deemed one of the most challenging
problems in computer vision. The visual appearance of objects can change
enormously due to viewpoint variation, occlusions, illumination changes,
or sensor noise. Furthermore, objects are not presented alone to the vi-
sion system, but they are immersed in an environment with other elements
which clutter the scene and make recognition more complicated. In a mobile
robotics scenario, a new challenge is added to the last list: computational
complexity [117]. In a dynamic world, information about the objects in the
scene can become obsolete even before it is ready to be used if the recognition
algorithm is not fast enough to handle the current robot’s view.

4.2 Stereo Vision of Mobile Robots

Stereo vision is an important mechanism in animal and machine vision,
allowing judgments to be made based on disparity between the images cap-
tured by each eye/camera. It is based on the human visual apparatus that
uses two eyes to gain depth information. Stereo vision produces a doubling of
the processing time in comparison to a monocular visual apparatus, because
two images must be analyzed. Therefore, it is recommended to implement
stereo approaches with parallel algorithms [39]. In other words, stereo vi-
sion is a technique for inferring the 3D position of objects from two or more
simultaneous views of a scene [61, 163, 165]. Mobile robots can take advan-
tage of a stereo vision system as a reliable and effective way to extract range
information from the environment. Accuracy of results is usually adequate
for applications such as navigation and map building. Moreover, stereo vi-
sion is a passive sensor and there is no interference with other sensor devices
(when multiple robots are present in the environment). Finally, it can be
easily integrated with other vision routines, such as object recognition and
tracking.

To calculate the position of objects and obstacles in the robots’ environ-
ment, the robot should be equipped with at least two cameras to retrieve the
depth information. Stereo vision requires that two lines of sight intersect
in the scene point X for which the depth information is to be processed.
Figure 4.1 shows the general geometry of a stereo vision system that is used
in mobile robotics. The two optical centers F and F ′ are associated with
a baseline. The lines of sight belonging to F and F ′ intersect at the point

46 Vision–Based Robot Navigation

Figure 4.1: Geometry of stereo vision in mobile robotics [39].

X and generate a triangular plane that intersects every image plane in the
epipolar lines g and g′. The projections u and u′, respectively, of the scene
point X can be found on these two lines. All possible positions of X lie on
the line FX for the left image and on the line F ′X for the right image.

To obtain the depth information and reconstruct the 3D world by the use
of at least two cameras, the stereo vision is processed in four essential stages.
The first phase is the calibration of the cameras to determine each camera’s
line of sight. It calculates the internal and external parameters of the cam-
eras as well as eliminating the distortion of the lenses. The second stage is
to rectify the captured images by using epipolar geometry. It simplifies the
problem of finding correspondences between pairs of pixels in the two im-
ages by transferring the search space from two-dimensions to one-dimension
search. The third step is to find the corresponding features between the
captured images and compute the disparity map (distance in pixels) of the
stereo pair. The final step is to calculate the triangulation. Given the dis-
parity map, the focal distance of the two cameras and the geometry of the
stereo setting (relative position and orientation of the cameras), the world
coordinates of all points in the images are computed to determine the object
positions in the 3D environment. The stereo vision stages will be discussed
briefly in the next subsections.

4.2.1 Camera Calibration

Camera calibration is an important step in the initialization of many stereo
vision systems. The accuracy of camera parameters has a marked effect on
the data obtained from a stereo vision system. It computes the mapping
between points in the real world and where they arrive in the captured

4.2 Stereo Vision of Mobile Robots 47

image. This allows graphics to be rendered into an image in the correct
position. Given this information for a pair of stereo cameras, it is possible
to reverse the process to compute the 3D position of a feature given its
position in each image.

In stereo vision, calibration is usually dealt with by calibrating each
camera independently and then applying geometric transformation of the
external parameters to find out the geometry of the stereo setting. Camera
calibration calculates two categories of parameters. First, it determines the
intrinsic parameters (internal calibration) of the camera. These parameters
are used to relate the ideal pinhole model of the camera with an actual
imaging device. The calculated internal parameters of a camera are: the
focal distance of the lens (f), the pixel dimension Px, Py, the rth coefficient
of radial distortion (k1), the center of the image (Ox, Oy), and the scale factor
(αx). Second, it determines the extrinsic parameters (external calibration)
that define the position and orientation of the camera within an arbitrarily
defined three-dimensional coordinate system. They are needed for both
the correspondence problem (determining the epipolar lines for determining
point correspondences) and triangulation (for reconstruction). The world
reference system is chosen to be the left camera, so the parameters to be
found are the translation vector T and rotation matrix R of the right camera
with respect to the left one [61, 39].

Therefore, camera calibration is a fundamental step for 3D reconstruc-
tion and in particular for stereo vision analysis. It allows not only for de-
termining the geometry of the stereo setting (needed for triangulation), but
also for removing distortions provided by common lenses to avoid errors in
range determination. Two kinds of distortion can be observed in camera
lenses: radial distortion and tangential distortion. Radial distortion bends
the camera’s line of sight and de-centering shifts the principal point from
the principal axis. Tangential distortion is caused by defects in the manu-
facturing process.

Many calibration approaches are developed to calculate the internal and
the external camera parameters. They can be classified into two cate-
gories: test-area-calibration and self-calibration approaches [39]. Test-area-
calibration approaches use images where the three-dimensional world coor-
dinates are known to derive the internal and external camera parameters.
Very precisely measured test areas or reference objects are often used. The
manufacturing and measuring of such reference objects requires much effort
and is often afflicted with errors. The self-calibration approaches determine
the external and internal camera parameters as well as the world coordinates
of the reference points.

A well-known method for calibrating a camera taking into account lens
distortion has been proposed by Tsai [152, 90]. The method is based on
the knowledge of the position of some points in the world and the corre-
spondent projections on the image. It requires the user to use a calibration

48 Vision–Based Robot Navigation

Figure 4.2: Tsai Camera re-projection model with perspective projection
and radial distortion [152, 90].

grid (that must be accurately prepared) and to individuate the projections
of calibration points in the image. Figure 4.2 illustrates the Tsai Camera
re-projection model with perspective projection and radial distortion. The
Tsai model calculates the focal length of the camera (f), the radial lens dis-
tortion coefficient (k), the coordinates of the center of radial lens distortion
(Cx, Cy), the scale factor to account for any uncertainty due to imperfections
in hardware timing for scanning and digitization (Sx), the rotation angles for
the transformation between the world and camera coordinates (Rx, Ry, Rz),
and the translation components for the transformation between the world
and camera coordinates (Tx, Ty, Tz).

The origin of the three-dimensional camera coordinate system is deter-
mined by the focal point of the camera. If object coordinates are actually
known in the camera coordinate system, it is possible to derive the world co-
ordinates. The determination of the coordinates can use a stereo technique.
At least two images from different positions are necessary for these purposes
[39]. The mapping between 3D coordinates of features and 2D positions of
their corresponding image points is given by a 4x3 projection matrix P . A
graphics renderer applies a projection matrix to a feature in 3D space in
order to discover where to draw the feature in the image. A real camera
effectively does the same.

Many other calibration techniques exist, including techniques that rely
on a mix of estimation and non-linear search, such as the algorithm described
by Zhang [166]. A popular area of research involves methods of calibration

4.2 Stereo Vision of Mobile Robots 49

which do not require a purpose-built calibration pattern, and use multiple
images taken using a moving camera as input data.

On the other hand, while it is tempting to rely on algorithms for un-
calibrated stereo vision, or those calibration algorithms which provide only
intrinsic parameters, there are shortcomings to these approaches. Without
information about the relative positions of the two cameras, stereo vision
becomes less useful and more complicated. The distance between the cam-
eras is crucial to the recovery of accurate depth information. Perhaps more
importantly, the relative positions of the two cameras are necessary for rec-
tification of the images [118].

4.2.2 Epipolar Rectification of Stereo Pairs

Epipolar rectification (or simply rectification) is a classical problem of stereo
vision. It is a transformation of the coordinate systems of the two cameras,
such that the image planes of the cameras are made coplanar and the scan-
lines in each re-projected image are parallel to the corresponding scan-lines
in the other image. The rectified images can be thought of as acquired by
a new stereo rig, obtained by rotating the original cameras. This simplifies
the problem of finding correspondences between pairs of pixels in the two
images. In order to find a pixel in one image which corresponds to a pixel
in the other, it is only necessary to search along a single horizontal scan-
line of the rectified image. Without extrinsic parameters of the camera, the
information required to rectify the images must be estimated.

Therefore, this is almost twice as fast as the simpler algorithm, since
scanning the whole image from each camera is slower than scanning the
whole of one image followed by one line in another [54]. However, it does
rely on the feature being accurately located in camera 1. If a feature projects
to a point (x, y) in one camera view, the corresponding image point in the
other camera view must lie somewhere on an epipolar line in the camera
image. An image point in camera 1 corresponds to an epipolar line in
camera 2 and vice versa. If the feature is mis-located, the epipolar line is
likely to be wrong. Finding the best match on this incorrect epipolar line
might give a reconstructed point which is significantly inaccurate.

Fusiello et al. [42] have proposed an algorithm for stereo rectification.
They assume that the stereo rig is calibrated, i.e., the cameras’ internal
parameters, mutual position, and orientation are known. They considered
a stereo rig composed of two pinhole cameras (see Figure 4.3). C1 and C2

represent the optical centers of the left and right cameras, respectively. A
3D point W is projected onto both image planes, to points M1 and M2,
which constitute a conjugate pair. Given a point M1 in the left image plane,
its conjugate point in the right image is constrained to lie on a line called
the epipolar line (of M1). Since M1 may be the projection of an arbitrary
point on its optical ray, the epipolar line is the projection through C2 of the

50 Vision–Based Robot Navigation

Figure 4.3: Epipolar geometry. The epipole of the first camera E is the
projection of the optical center C2 of the second camera (and vice versa)
[42].

optical ray of M1. All the epipolar lines in one image plane pass through
a common point (E1 and E2, respectively) called the epipole, which is the
projection of the optical center of the other camera.

When C1 is in the focal plane of the right camera, the right epipole
is at infinity, and the epipolar lines form a bundle of parallel lines in the
right image. A very special case is when both epipoles are at infinity, which
happens when the line C1C2 (the baseline) is contained in both focal planes,
i.e., the retinal planes are parallel to the baseline. Epipolar lines, then,
form a bundle of parallel lines in both images. Any pair of images can be
transformed so that epipolar lines are parallel and horizontal in each image.

4.2.3 Stereo Correspondences

The computation of correspondences between features in different views is
a necessary precondition to obtain depth information. Features that repre-
sent the same in different images must be found and thereafter geometrically
analyzed. Approaches to the correspondence problem can be broadly classi-
fied into two categories: the intensity-based matching and the feature-based
matching techniques. In the first category, the matching process is applied
directly to the intensity profiles of the two images, while in the second, fea-
tures are first extracted from the images and the matching process is applied
to the features.

4.2 Stereo Vision of Mobile Robots 51

As shown in the previous section, the epipolar lines coincide with the
horizontal scan-lines if the cameras are parallel, the corresponding points in
both images must therefore lie on the same horizontal scan-line. Such stereo
configurations reduce the search for correspondences from two-dimensions
(the entire image) to one-dimension. In fact, a close look at the intensity
profiles from the corresponding row of the image pair reveals that the two
intensity profiles differ only by a horizontal shift and a local foreshortening.

Generally it is possible to find matching features in the captured right
and left images by using many approaches. These approaches use several
features to reduce ambiguities during matching process. Features can be
derived from geometry, which affects the image taking, photometry, or from
the object attributes. Many approaches to calculate correspondences be-
tween pixels have been developed. Some of them are outlined at this point
[39]:

1. Epipolar constraint: It is used to find the corresponding pixel in the
second image. The epipolar line is used to find the corresponding
pixels in the second image. The search space is diminished from 2D
space to 1D space.

2. Photometric compatibility constraint: The gray values of the pixels are
used. It can be assumed that the gray values of corresponding pixels
are nearly equal. They are probably not completely equal, because
the luminosity differs due to different positions from which the images
are taken.

3. Geometric similarity constraints: Geometric attributes of objects like
length of lines, contours, or regions are used to get corresponding
pixels. It is supposed that the attribute values are equal.

In order to minimize false matches, some matching constraints must be
imposed. Below is a list of the commonly used constraints [39]:

1. Disparity smoothness constraint: This method is based on the assump-
tion that the amount of disparity differences between adjacent pixels
is similar in both images. Let PL1 and PL2 be the coordinates of two
adjacent pixels in the left image. PR1 and PR2 are the corresponding
coordinates in the right image, then the absolute difference computed
with the following formula is small, on condition that the two images
were taken from cameras arranged in parallel.

‖ PL1 − PR1 | − | PL2 − PR2 ‖

2. Figural continuity constraint: Additionally to the fulfillment of the
disparity smoothness constraint it is required that the neighboring
pixels lie on an edge in both images.

52 Vision–Based Robot Navigation

3. Disparity limit: In psychophysical experiments it has been verified
that stereo images can only be merged if the disparity does not exceed
a limit.

4. Ordering constraint: The corresponding pixels of objects that have
similar depths have the same order on the epipolar lines of both im-
ages. This is not valid if an object point is close to the camera and
additionally has a large depth difference to other objects in the scene.
In this case the corresponding pixels on the epipolar lines can be sorted
differently on both lines.

4.2.4 Triangulation

The triangulation problem is a small cog in the machinery of computer
vision, but in many applications of science reconstruction it is a critical
one on which ultimate accuracy depends. Triangulation is the problem of
finding the position of a point in space given its position in two images
taken with cameras with known calibration and pose. This process requires
the intersection of two known rays in space. In the absence of noise, this
problem is trivial. When noise is present, the two rays will not generally
meet, in which case it is necessary to find the best point of intersection.
This problem is especially critical in affine and projective reconstruction in
which there is no meaningful metric information about the object space. It
is desirable to find a triangulation method that is invariant to projective
transformations of space.

Hartley and Sturm [53] solved that problem by assuming a Gaussian
noise model for perturbation of the image coordinates. The triangulation
problem is formulated as a least-squares minimization problem. They pre-
sented a non-iterative solution which can find the global minimum. They
also show that in certain configurations, local minima occur which are
avoided by their method.

4.3 Object Processing in Robot Navigation

In the vision-based robot navigation systems, human-robot interactions take
place in three main modes: manual, autonomous, and semi-autonomous
modes [45]. In the manual mode, the user can determine the objects of
interest and these objects are recognized automatically by the robot. If the
robot fails to recognize the object, then it asks the user for help. The user
can interact with the robot vocally via the robot’s speech recognition capa-
bility or by using any other communication tool. In the autonomous mode,
the robot automatically detects the landmarks that have salient features. It
then records images of the landmark from different perspectives for object

4.3 Object Processing in Robot Navigation 53

recognition. In the semi-autonomous mode, the robot identifies some poten-
tial objects of interest that are distinguishable in the environment and asks
if the user is interested in these landmarks or not.

Object processing in vision-based robot navigation is used to detect and
classify landmarks during navigation. It is also used to localize the current
position of the robot with respect to the detected landmarks. This process is
called the robot’s self localization. It is defined as the process of estimating
the initial position of the robot with respect to a global coordinate system
or according to recognized landmarks [45]. Landmark-based localization
techniques are common in robotics. They can be classified into active and
passive landmarks. Active landmarks are captured and transmitted to the
robot for sensing and analysis, such as images acquired by the robot’s cam-
eras. Passive landmarks are detected by the robot without any transmitted
signals, such as the output of a laser sensor.

As described in the last section, the landmark position in the 3D environ-
ment can be calculated by using triangulation. In the following subsections,
the object detection and recognition techniques, which are suitable to the
mobile robot scenarios, will be discussed in detail.

4.3.1 Object Detection and Segmentation

Most object recognition methods typically assume that the object is either
already segmented from the background or that it occupies a large portion
of the image. In robotic applications, there is often a need for a system
that can locate objects in the environment. This means that neither of the
above assumptions is valid anymore since the distance to the object and
thus its size in the image can vary significantly. Therefore, the robot has to
be able to detect objects even when they occupy a very small part of the
image. This requires a method that evaluates different parts of the image
when searching for an object. This step is denoted as object detection.

In some real-time mobile robot applications, vision systems are employ-
ing region segmentation by color to detect objects or landmarks during in-
teraction with humans or navigating in a dynamic world. Traditionally, sys-
tems employing real-time color-based segmentation are either implemented
in hardware, or as very specific software systems that take advantage of
domain knowledge to attain the necessary efficiency. These detected image
regions or the whole image can be decomposed into segments. All contained
pixels must be similar in these segments. Pixels will be assigned to objects
in the segmentation phase. If objects are isolated from the remainder of the
image in the segmentation phase, feature values of these objects must be
acquired in the detection phase. The features determined are used in the
recognition phase to perform the object classification.

For example, Bruce et al. [13] implemented a segmentation system ca-
pable of tracking several hundred regions. It can classify each pixel in a full

54 Vision–Based Robot Navigation

resolution captured color image, find and merge regions of up to 32 colors,
and report their centroid, bounding box and area at 30 Hz. Michel et al.
[102] built an occupancy grid from the synthesized top-down floor view; a
step of color segmentation was performed in YUV space, which provides
robustness to color intensity changes due to variability in environmental
lighting. They defined segmentation thresholds by sampling pixel values of-
fline for obstacles placed in a variety of locations on the floor. To eliminate
noise, a pass of erosion/dilation using a rectangular structuring element is
performed, followed by a step of connected component labeling that groups
pixels belonging to the same obstacle.

4.3.2 Object Recognition

In order to make robots useful assistants to people in everyday life, the ability
to learn and recognize objects is of essential importance. Object recognition
in real scenes is one of the challenging problems in computer vision, as it
is necessary to deal with difficulties such as viewpoint changes, occlusions,
illumination fluctuations, background clutter, or sensor noise. Furthermore,
in a mobile robotics scenario a new challenge is added to the list: computa-
tional complexity. All these complications make object recognition in real
scenes a difficult problem that will demand a significant research effort in
the coming years.

Object recognition algorithms are typically designed to classify objects
into one of several predefined classes assuming that the segmentation of the
object has already been performed. In general, object detection tasks are
much more difficult. Their purpose is to search for a specific object in an
image while not knowing beforehand if the object is present in the image or
not. Most of the object recognition algorithms may be used for object de-
tection by scanning the image for the object. Regarding the computational
complexity, some methods are more suitable for searching than others.

In general, approaches to solving the recognition problem can be classi-
fied into two categories: appearance-based (or so-called global) methods, and
model-based (or so-called local) methods [119]. Appearance-based methods
are based on the overall visual appearance of the object. They often rep-
resent the object with a histogram of certain features extracted during the
training process, such as a color histogram which represents the distribution
of object colors. Whereas model-based methods rely on specific geometric
features of the object such as small texture patches or particular features.
For the robot to recognize an object, the object must appear large enough
in the camera image. If the object is too small, local features cannot be
extracted from it. Global appearance-based methods also fail to recognize
the object, since the size of the object is small in relation to the background,
which commonly results in a high number of false positives. A more natural
approach in terms of computational efficiency is the use of appearance-based

4.3 Object Processing in Robot Navigation 55

methods for providing a rough initial estimate followed by a refinement step
using model-based methods, to estimate the full pose of the object [31, 33].
In addition, this proposed method shows a significant robustness with re-
spect to scaling and translations.

Recently significant work has been done in visual object classification,
but few of the results actually scale to the demands posed by mobile robot
scenarios. In robotic applications, the robots should have lightweight, fast,
and robust object perception methods that allow them to interact with the
environment in real-time. In the remaining part of this section, we will
represent some recent object and landmark recognition methods which are
used and suitable for mobile robot applications.

Scale-Invariant Features Transform

Lowe [95] proposed an object recognition method that uses Scale Invariant
Features Transform (SIFT). SIFT is an approach for detecting and extract-
ing local feature descriptors that are reasonably invariant to changes in
rotation, scaling, small changes in viewpoint, illumination, and image noise
[132]. This object recognition approach is a single-view object detection and
recognition system with some interesting characteristics for mobile robots,
most significant of which is the ability to detect and recognize several objects
at the same time in an un-segmented image.

Another interesting feature is the Best-Bin-First algorithm used for ap-
proximating fast matching, which reduces the search time by two orders of
magnitude. SIFT can be used to detect and classify the objects in real-
time. Its average recognition time is approximately one second. On the
other hand, this algorithm has two significant drawbacks. First, it performs
poorly when recognizing sparsely textured objects [3]. Second, with repeti-
tive textures of the methods based on local features such as SIFT, which can
only find the reliable features when the object occupies a significant part of
the image, it is very hard to recognize objects that are far away from the
camera.

With respect to the efficiency of the SIFT approach, many researchers
have used it in robotic systems. For example, the authors in [34, 32, 33]
use Receptive Field Co-occurrence Histograms (RFCH) for generating hy-
potheses of object locations and then use a SIFT-based method for object
recognition once the object is zoomed-in. RFCH is an appearance-based
method capable of detecting objects far away from the camera. Once a hy-
pothesis is zoomed in, they again use RFCH for matching. If the match
value exceeds the threshold, they perform SIFT-matching to verify the hy-
pothesis. The more SIFT-matches found in an image, the more likely it is
that the image contains the object. If the number of matches exceeds an
object-dependent threshold, the object is considered recognized.

Sjö et al. [134] presented a method for search and localization of ob-

56 Vision–Based Robot Navigation

jects with a mobile robot using a monocular camera with zoom capabilities.
They showed how to overcome the limitations of low resolution images in
object recognition by utilizing a combination of an attention mechanism and
zooming as the first steps in the recognition process. The attention mech-
anism is based also on RFCH and the object recognition on SIFT feature
matching. The authors presented two methods for estimating the distance
to the objects which serve both as the input to the control of the zoom and
the final object localization.

Ribes et al. [118] used SIFT with some improvements in order to obtain
better results by using panoramic images from a mobile robot. They used
one training image per object in the library, storing its descriptors along
with their object ID in a descriptor database. All training images are taken
from a 1 Mpx digital camera. Testing images are panoramas built from 36
images acquired with the pan-tilt camera mounted on top of a mobile robot,
storing the set of SIFT descriptors extracted from image regions used to
construct the panorama. The position of each descriptor is relative to the
total panorama size, not to the individual images. The panoramic image
is used only to show recognition results, as the internal representation used
is the descriptor set. Their implementation of the SIFT object recognition
method differs from the original in the key point matching method.

In [117], the authors make an evaluation of the SIFT object recogni-
tion method in a challenging dataset, focusing on issues relevant to mobile
robotics. The method presents robustness to the typical problems of im-
ages acquired in the robotics domain, but its good performance was limited
mainly to well-textured objects. Several modifications and improvements
of the original method are proposed in order to adapt it to the domain of
mobile robotics.

Bag of Features Approach

On the other hand, Nistér and Stewénius [110] developed the bag of features
approach (BoF) to recognizing segmented objects. This algorithm comes
from the text categorization domain, where the occurrence of certain words
in documents is recorded and used to train classifiers that can later recognize
the subject of new texts. A histogram of descriptor occurrences is built
to characterize an image. In order to limit the size of the histogram, a
code-book or vocabulary computed by applying a clustering method to the
training descriptors is used. A hierarchical vocabulary tree is used, as it
allows the coding of a larger number of visual features and simultaneously
the reduction of the look-up time in proportion to the number of leaves.
The vocabulary tree is built using hierarchical k-means clustering, where
the parameter k defines the branch factor of the tree instead of the final
number of clusters.

One of the drawbacks of the bag of features method is that it is designed

4.3 Object Processing in Robot Navigation 57

to work with an accurate segmentation stage prior to classification which
can be very time consuming [3, 89]. The second drawback is that if one
image contains background with a value greater than a certain threshold,
the probability of miss-classification increases. The third drawback is that if
a particular image contains two objects, there is no way to recognize both.

Color-Based Techniques

Color-based object recognition, where objects of interest are colored in a
uniquely identifiable and known way, is a technique that has found wide use
in the robotics community. Correspondingly, there are now a number of fast
color segmentation vision libraries that are available such as CMVision [12]
and OpenCV [9].

On the other hand, there are many researchers who implemented their
mobile robot vision applications by using color-based object recognition
methods. For example, the authors in [31] proposed a recognition scheme
that is based on the color co-occurrence histograms (CCHs). It is used in
a classical learning framework that facilitates a “winner-takes-all” strategy
across different scales. The detected “windows of attention” are compared
with training images of the object for which the pose is known. The orien-
tation of the object is estimated as the weighted average among competitive
poses, in which the weight increases proportional by the degree of matching
between the training and the segmented image histograms. The optimal
color scheme for an object histogram is determined by K-means clustering,
in which cluster centers are distributed according to pixel density in color
space.

Fasola and Veloso [37] described an approach that performs visual object
detection in real-time by combining the strength of processing the color
segmented image along with that of the grayscale image of the same scene.
They used color segmented images for producing initial hypotheses for the
location of robots in the image, and grayscale images for final classification
purposes. Using both representations to process a scene allows each to make
up for the deficiencies of the other, and provides a good balance between
fast processing time and high detection accuracy.

In [70], the object tracking system is implemented by using moving color
and shape information. A group of candidates for objects is extracted using
the color distribution and the motion information. The system decides final
object regions using a signature parsing algorithm. Then, it suggests the
tracking method for detected object regions. The basic stages of the system
can be summarized as follows. First, the normalized RGB color distribution
and moving color information are combined for robust separation between
the object and the background. Second, this method shows that the ob-
jects are segmented and extracted well using the signature parsing method,
regardless of the shape variation. Third, recovering noises and unexpected

58 Vision–Based Robot Navigation

variation is important for robust object tracking, the major control points of
shape information are defined to the boundary region of the moving object
to guarantee the tracking performance. Finally they show one application
of a mobile robot avoiding obstacles and tracking the special object.

Artificial Neural Network

Artificial neural networks (ANNs) are among the most powerful object clas-
sifiers. They only use object shape information as input. In mobile robotics,
there are a number of existing algorithms that have been developed using
ANNs to recognize landmarks. For example, Gopalakrishnan et al. [45]
implemented a vision-based system for semi-autonomous mobile robot nav-
igation. Initially, the robot can localize itself in an indoor environment with
its laser range finder. Then, the user can teleoperate the robot and point
out the objects of interest via a graphical user interface. In addition, the
robot can automatically detect potential objects of interest. The objects
are automatically recognized by the object recognition system using Neu-
ral Networks. If the robot cannot recognize an object, it asks the user to
identify it. The user can ask the robot to navigate back autonomously to
an object recognized or identified before. The human and the robot can
interact vocally via an integrated speech recognition and synthesis software
component. Their ANN-based object recognition system is initially trained
with a group of known object types such as ball, cylinder, trashcan, fire ex-
tinguisher, cube, or cone. In this technique a library of images of the objects
of interest is created and used for training the ANNs.

In [30], the authors addressed the problem of automatically selecting and
predicting landmarks for use in way-finding on a mobile robot. They em-
ployed back-propagation to teach a multilayer neural network to predict the
image location and appearance of future landmarks based on the appear-
ance and image location of currently visible landmarks. The authors used a
hybrid reactive/deliberative architecture. The reactive component collects
candidate landmark feature measurements while the robot explores its (pre-
viously unknown) environment. For the deliberative component, they used
a neural network running on a Beowulf cluster to process the large amount
of data being collected from the camera.

4.4 Summary

Vision is one of the most powerful and popular sensors used for mobile
robot navigation that continues to demand a lot of attention from the mobile
robot research community. For autonomous navigation, vision-based robotic
systems are considered as one of the most challenging problems because
the visual appearance of objects can change enormously due to viewpoint
variation, occlusions, illumination changes, or sensor noise.

4.4 Summary 59

To obtain depth information and reconstruct the 3D world by the use of
at least two cameras, the stereo vision is processed in four essential stages.
The first step is the calibration of the cameras to determine each camera’s
line of sight and also to retrieve the camera’s parameters. Then, the cap-
tured images are rectified by using epipolar geometry. The third phase is to
find correspondence features between the captured images and compute the
disparity map of the stereo pair. Finally, the triangulation is calculated to
determine the position of the landmarks in the 3D environments.

To recognize landmarks or obstacles during robot navigation, there are
many object recognition techniques which can be robustly used for the mo-
bile robot applications in real time. SIFT, bag of features, color techniques,
and neural networks are some of the most often used approaches in classi-
fying objects in robotic systems.

60 Vision–Based Robot Navigation

CHAPTER 5

Humanoid Robot Motion Planning

Over the years, motion planning has become a major research theme in
robotics. Its main goal is to enable robots to automatically compute their
motions from high-level descriptions of tasks and models acquired through
sensing. It is used in building many obvious applications within robotics.
Museum tour guides, search and rescue, medical surgery, assembly and dis-
assembly, and planetary exploration are some of many examples of robotics
applications that need motion planning. Nowadays, motion planning is no
longer restricted to just robotics applications. It also plays an important
role in animation, virtual environments, computer games, computer aided
design and maintenance, and structural analysis and fold proteins in biol-
ogy. Beside the robotics applications, these new applications increasingly
motivate the progress in motion planning techniques and algorithms.

In recent years, many motion planning algorithms have been introduced.
They have had remarkable success in solving challenging motion planning
problems, such as handling many degrees of freedom (DOFs), considering
physical and dynamic constrains of the real robots, and dealing with un-
certainties in both motion and sensors. In this chapter, an overview of the
current research efforts in motion planning for mobile and humanoid robots
is discussed. Then, the obstacle avoidance problem and some issues related
to the real robot motion planning are presented. Finally, the sampling-based
motion planning algorithms are elucidated.

5.1 Robot Motion Planning

Motion planning is considered as one of the most important issues of build-
ing autonomous or semi-autonomous robotic systems [143]. The motion
planning problem has been studied for several decades and there are many
algorithms that have been described in the literature [85, 25, 88]. It can be

62 Humanoid Robot Motion Planning

characterized by the ability of computing a collision-free feasible path for a
mobile robot from a given initial position to a destination position through
a workspace populated with stationary or moving obstacles. In some ap-
plications, the motion planning problem can be defined to maintain a set
of constraints in the state of the world such as following a target, achiev-
ing knowledge about the world, or exploration in an unknown environment.
Therefore, there are many different aspects to the motion planning prob-
lem, such as optimal path planning among rectangular obstacles, optimal
path finding among weighted regions, and path planning to traverse narrow
passages [154].

In the past, research on motion planning used to be neatly divided be-
tween theory and practice. Today, this distinction has largely disappeared.
Most recent contributions to the field combine effective algorithms tested
on significant problems along with some formal guarantees of performance.
On the other hand, in the ’80s and part of the ’90s, finding collision-free
paths was the main or only goal of the motion planning problem. Today,
while obstacle avoidance remains a key issue, other important constraints
are considered as well such as visibility, coverage, kinodynamic, optimality,
equilibrium, and uncertainty constraints [25]. These constraints make mo-
tion planning problems more interesting and entail the implementation of
more useful algorithms for real mobile robots.

In the last ten years, the significant progress in stable dynamic bipedal
walking has been leading to an increased research interest in developing au-
tonomous navigation strategies tailored specifically to humanoid robots. As
autonomous navigation becomes an increasingly important research topic for
humanoid robots, efficient approaches to perception, mapping, and motion
planning, which are suited to their unique characteristics, will be required to
integrate them easily in their typical operating environments. The ability of
legged robots to step not only around but also over and onto some obstacles
makes them particularly well-suited for environments designed for humans,
which often contain a wide variety of objects and obstacles such as furniture,
stairs, doors, and uneven ground [102]. In addition to the bipedal walking of
the humanoid robots, the large amount of their degrees of freedom (DOFs)
should be considered while developing practical motion planning techniques
for them. Typically, humanoid robots have 20 or more DOFs which must be
controlled very carefully in order to maintain overall static and dynamic sta-
bility. These constraints severely restrict the set of allowable configurations
and prohibit the direct application of existing motion planning techniques
[77]. Motion planning techniques for humanoid robots should pose these
particular challenges during the design phase.

There exists an extensive literature on the motion planning problem in
2D static environments. Previous research with wheeled robots usually mod-
eled a robot as a 2D circle and planned a path on a 2D grid map. These
robots use a laser range sensor or a stereo vision sensor to generate a 2D map

5.1 Robot Motion Planning 63

for planning. For example, Jan et al. [62] used a single circle and multiple
circle modes for the robot to solve the narrow passages piano mover’s prob-
lem in a 2D simulated environment. In this approach, a single cell object
travels along the optimal path in a grid plane without any collision. For the
multiple circles model, the checkpoints of the single cell object are ensured
to be collision-free regarding all of the obstacles. The concepts involved in
this algorithm are simple and can be implemented in the image plane or
grid plane.

On the other hand, some attempts are reported in 3D motion planning
for simulated and real humanoid robots. For example, Lau and Kuffner [86]
presented a behavior planning approach to automatically generate realistic
motions for animated characters. Motion clips are abstracted as high-level
behaviors and associated with a behavior finite-state machine (FSM) that
defines the movement capabilities of a virtual character. During runtime,
motion is generated automatically by a planning algorithm that performs
a global search of the FSM and computes a sequence of behaviors for the
character to reach a user-designated goal position. Shiller et al. [129] imple-
mented a practical motion planner for animated human figures that can also
be used for humanoid robots. They focused on path planning and sensor-
based recognition of the environment. The human motions are modeled
as a sum of rigid body and cyclic motions. They identified body postures
that represent the rigid-body part of typical motion patterns. This leads
to a model of the configuration space that consists of a multi-layered grid,
each layer corresponding to a single posture. A global search through this
reduced configuration space yields a feasible path and the corresponding
postures along the path.

Numerous research groups worldwide concentrate on the design and
implementation of various motion planning algorithms that consider the
bipedal capabilities of humanoid robots. For example, Bourgeot et al. [8]
proposed a method to generate footprints from a reference path. This
method finds a path and footprints in terrain under robot stability and
motion continuity between starting and goal positions. The path is planned
in a 3D simulated environment. The researchers studied the biped walking
problem on horizontal flat and sloping grounds. Lorch et al. [94] have de-
veloped a sensor-based planning system using a biped robot with a stereo
vision sensor. They proposed a footprints planner using a local environment
map based on visual sensor inputs. This planner finds the step sequence
while the robot is walking in a straight line. They recognized an obstacle
under the assumption that any object in the scene is a rectangle. Okada et
al. [111] described the vision-based navigation system for humanoid robots
with vision based floor recognition and path planning using a multi-layered
body image. They utilized an RRT-Connect Planner as a path planning
method. This method generates a path which connects a start position to a
goal position by using randomly growing trees in configuration space. Path

64 Humanoid Robot Motion Planning

smoothing is performed on the final path to reduce jaggedness.
Kuffner et al. [77] developed a footprints and leg trajectory planner for

humanoid robots using a global method. This method enables the robot to
step over obstacles and consider global information to cope with local min-
ima. Their approach adapts a variation of the randomized planner to com-
pute full-body motions for humanoid robots that are both dynamically stable
and collision-free. The first phase computes a statically stable, collision-free
path and the second phase smoothes and transforms this path into a dy-
namically stable trajectory for the entire body. They employed a random-
ized search strategy based on Rapidly-exploring Random Trees (RRTs) [38].
Their algorithm has some limitations. First, their current implementation of
the planner can only handle a fixed position for either one or both feet. Sec-
ond, the effectiveness of different configuration space distance metrics needs
to be investigated. Finally, they currently have no method for integrating
visual or tactile feedback.

5.2 Configuration Space

To create motion plans for robots, the position of the robot must be specified
precisely. More specifically, a specification of the location of every point on
the robot must be calculated to ensure that no point on the robot collides
with the obstacle. Most of the current approaches for robot path planning
are based on the concept of configuration space introduced by Lozano-Pérez
[96]. Therefore, the concept of the configuration space is first introduced
and then the difference between the path and motion planning is discussed.

The configuration of the robot system is defined as a complete specifica-
tion of the position of every point of that system. The configuration space of
the robot system (C-space or Q) is the space of all possible configurations of
the system. Thus a configuration (c) is simply a point in this abstract con-
figuration space. The number of DOFs of a robot system is the dimension
of the configuration space, or the minimum number of parameters needed
to specify the configuration [25]. To illustrate these definitions, consider a
circular mobile robot that can translate without rotating in the plane. A
simply way to represent the robot’s configuration is to specify the location
of its center, (x, y), relative to some fixed coordinate frame. If the radius r
of the robot is known, then the set of points occupied by the robot can be
easily determined from the configuration c = (x, y) as follows:

R(x, y) = {(x́, ý)|(x− x́)2 + (y − ý)2 ≤ r2} (5.1)

As seen from the last equation, these two parameters, x and y, are sufficient
to completely determine the configuration of the circular robot. Therefore,
for the circular mobile robot, the configuration space can be represented by
R2 once a coordinate frame in the plane has been chosen. Hence, robots that

5.3 Obstacle Avoidance 65

move in a two- or three-dimensional Euclidean ambient space are represented
by R2 or R3, respectively. This ambient space is referred to as the workspace
(W) [25]. Consequently, a robot with k DOFs can be described by k values,
which can in turn be considered as a single point in a k-dimensional C-space
of the robot. This configuration is considered free if two parts touch and
blocked when two parts overlap [143].

According to the last definitions of configuration and configuration space,
the obstacle configuration space (Cobst) is defined as a set of all configura-
tions in C-space at which the robot is in collision with some obstacle in the
workspace, i.e.:

Cobsti = {c ∈ C|R(c) ∩Wi 6= ∅} (5.2)

Otherwise, the free space or free configuration Cfree is the set of configura-
tions at which the robot does not intersect with any obstacle, i.e.:

Cfree = CÂ(∪iCobsti) (5.3)

With this notation, a free path is defined to be a continuous mapping p :
[0, 1] → Cfree, and a semi-free path to be a continuous mapping p : [0, 1] →
cl(Cfree), in which cl(Cfree) denotes the closure of Cfree. A free path does
not allow contact between the robot and obstacles, while a semi-free path
allows the robot to contact the boundary of an obstacle [25]. Therefore, The
motion planning problem can be defined as follows [154]:

Given an initial and a goal configuration cstart, cgoal ∈
Cfree, find a continuous path p : [0, 1] → Cfree where p(0) =
cstart and p(1) = cgoal.

The above definition describes the geometrical version of the motion-
planning problem. It is usually known as path planning. This is because
the planning algorithm is only asked to return a path without considering
the robot’s ability to implement that path. This is not an essential issue
if a robot is moving slow enough and the dynamic constraints such as fric-
tion, gravity, etc. can safely be ignored. Otherwise, there is an increasing
interest in planning problems where the dynamic constraints can no longer
be ignored. For those cases, planning algorithms need to come up not only
with a geometrical path, but rather with what is called a motion planning,
i.e. a complete description of what controls need to be applied so the robot
can execute a feasible and collision-free trajectory to reach its goal [154].

5.3 Obstacle Avoidance

Global navigation strategies for mobile robots can usually be obtained by
searching for a collision-free path in a 2D environment. Because of the low
dimensionality of the search space, very efficient and resolution-complete

66 Humanoid Robot Motion Planning

algorithms can be employed. Global path planning and obstacle avoidance
strategies for mobile robots and manipulators have a large and extensive his-
tory in the robotics literature [67, 35, 62, 123, 111, 78]. In the configuration
space, the robot is reduced to a point. Hence, the motion planning problem
becomes a question of finding a path for a point from an initial point to a
goal point in the configuration space. This contrasts with previous methods
which plan directly in the workspace, using methods such as swept volumes
to determine whether or not a path was feasible (i.e., did not collide with
an obstacle). However, planning in C-space poses a problem: unlike the
obstacles in the workspace, which are well-defined, how does one represent
invalid configurations in C-space (i.e. Cobst)? [92].

For wheeled robots, many solutions on this subject have been presented
using ultrasonic sensors or laser range finders and they mainly detect walls
and relatively large obstacles around the robot. The traditional collision
avoidance approach is based on expanding the obstacles by a radius r equiv-
alent to the robot’s largest dimension, hence planning as if the robot could
navigate as a point in the environment. This over-simplification, however,
is not suitable for the case of large robots in constrained spaces, as expand-
ing the obstacles along narrow passages will effectively block the passage.
A more suitable solution is proposed in [143] by finding the largest possible
expansion radius R that allows the robot to pass through the narrowest path
and then divide the area of the robot into circles of that radius. The center
points of those circles will then be used to check for obstacle collision.

From another point of view, solving the problem of obstacle avoidance
for a humanoid robot in unstructured or unknown environments is a big
challenge, because the robot can easily lose its stability or fall down if it
hits or steps on an obstacle. Otherwise, biped humanoid robots have the
unique ability to traverse obstacles by stepping over or upon obstacles in a
cluttered terrain [103, 24, 76].

Conservative global navigation strategies for biped humanoid robots can
be obtained by choosing an appropriate bounding volume (e.g. a cylinder),
and designing locomotion gaits based on stereo vision system outputs for
following navigation trajectories computed by a 2D path planner. However,
this always forces the robot to circumvent obstacles. As the humanoid robots
are non-holonomic, they cannot turn in place without requiring additional
space. The trajectory of the body center describes a curve similar to a car-
like robot, although the turn radius is generally quite small. It is possible to
account for the extra turning space in a cylinder model of the robot enlarged
by twice the turn radius [123]. In the cylinder model, the shape of the robot
is approximated by two cylinders sharing the same axis. Cylinders allow
for fast collision checking and the smaller cylinder for the legs enables the
robot to pass close to low obstacles where upper body and arms are above
the obstacle [46]. Cylinder models of robots make it possible to perform this
check in constant time if the distance to the nearest obstacle is known; the

5.4 Robot Motion Planning Constraints 67

distance is simply compared to the radius of the cylinder.

5.4 Robot Motion Planning Constraints

In the area of mobile robotics, it is an interesting and challenging goal to
try and embed a motion planner in a real robot as a black box that can
automatically drive a robot to wherever its goal might be. For such func-
tionality in real-life scenarios, there are various constraints and difficulties
that need to be addressed on top of the basic geometrical motion-planning
problem. Robot dynamics, time-changing workspaces, real-time planning,
dealing with uncertainty in motion and sensors, and consequently problems
in localization and mapping are important constraints which should be con-
sidered when dealing with real robots [43, 154]. This section tries to identify
some of those issues, and show how motion planners are being adapted to
deal with these problems.

5.4.1 System Dynamics

Some motion planning algorithms have the underlying assumption that the
robots are 2D circles moving in 2D static environments. Other planning algo-
rithms consider the robots as free-flying objects with 6DOFs (three transla-
tional and three rotational) in a 3D workspace moving in a static workspace.
One crucial extension towards more physical realism is to try and take into
account dynamic constraints of the robots. A real robot is not a circle or
a “free-flying” object. It has motor limitations that cannot generally be ig-
nored. These limitations, which are called kinodynamic constraints, impose
bounds on its maximum velocity and acceleration [154]. These constraints
can significantly increase the complexity of motion planning, as the robot
might be incapable of implementing certain collision-free paths (i.e. infea-
sible paths). Furthermore, real robots are subject to other physics-based
constraints such as gravity and friction that can and sometimes need to be
taken into account. Motion planning algorithms that account for system
dynamics (i.e. robot and physical constraints) typically approach the prob-
lem in one of two ways: (1) decoupling the problem by first computing a
kinematic path, and subsequently transforming the path into a dynamic tra-
jectory, or (2) searching the system state-space directly by reasoning about
the possible controls that can be applied [77].

To handle kinodynamic constraints, a very common approach, which
is called a decoupled trajectory planning, is used to solve motion-planning
problems [14, 71]. First, a path-planning algorithm computes a collision-
free trajectory ignoring system dynamics. Then, a controller is needed to
compute appropriate controls that will implement the desired path to gen-
erate feasible motions. There are a number of issues in this approach which
should be considered. Typically, controllers alone cannot avoid obstacles in

68 Humanoid Robot Motion Planning

the environment, and that is why an obstacle-free path must be found in an-
other way first. Moreover, the produced geometrical paths may be infeasible
for a real robot and even when the controller manages to follow a desired
path, this may require the robot to move slowly to minimize the influence of
dynamic and physical constraints. Finally, controllers are system-specific,
and as today’s robots become increasingly complex it becomes very hard to
develop good controllers.

In addition to the previous dynamic constraints, different directions
should be addressed in the motion planning algorithms depending on the
shape and walking style of the robot. Recently, the biped humanoid robots
have made considerable progress in stable dynamic walking, stable walking
trajectories, and dynamic balance and control [24]. These research prob-
lems have been developed to generate complete global navigation strategies
for biped robots. In particular, the ability to autonomously select footstep
placement positions to avoid obstacles while walking is an important step
towards improved navigation autonomy for humanoid robots.

5.4.2 Time-changing and Unknown Workspaces

Another extension is to relax the static known workspace assumption. This
is another important extension that is necessary for robots that are not re-
stricted to operating in a highly-controlled, stationary environment. The
difficulty of the motion planning in such cases can vary based on what is
known about the environment and the moving obstacles. In the best case,
the obstacles are executing repetitive motions and information about their
maximum velocity or acceleration is available. Then, the obstacles can be
handled in the motion planning algorithm. However, it could be that the
moving obstacles are unpredictable or even malevolent and moving arbitrar-
ily fast. In these cases, guaranteeing overall collision avoidance for a robot
may be impossible.

In the time-changing or unknown workspaces, the robot first builds a
roadmap in the state x time space of the environment and finds an initial
plan that takes any known dynamic obstacles into account. Then, as the
robot starts executing the plan, it is possible that new obstacles might be ob-
served that invalidate the plan. There are two main directions for addressing
this problem. One assumes the movement of obstacles to be predictable, in
which case time can be considered an extra parameter of the configuration
space. The other direction is to use roadmaps that permit updates. This is
a more general method but raises the problem of updating the roadmap in
a useful and efficient manner [154].

5.5 Sampling-based Motion Planning 69

5.4.3 Real-time Motion Planning

Real-time planning in a dynamically changing environment is considered as
one of the most interesting classes of motion planning problems. A robot
moving in an unknown and/or changing environment needs to change its
plan rapidly, depending on the latest sensor inputs. Therefore, in environ-
ments that are changing in time, the robot is expected to react to these
changes and re-plan in real-time while moving. For this reason, robots have
to gather new sensory information periodically, and then re-plan using the
latest available information. Finally, all these considerations become more
important when the robot’s dynamics are also taken into account. Therefore,
if the robot is limited by its dynamic constraints, it cannot instantaneously
change its behavior. All of these considerations have brought up the issue
of safety. It is no longer enough to simply produce feasible trajectories that
are collision-free with respect to static or moving obstacles. The trajectories
also have to be safe so that the robot never finds itself in what is called an
Inevitable Collision State or ICS [154]. Being in ICS means that due to
dynamic constraints, the robot will collide with an obstacle in the future no
matter what controls are applied from that state on.

5.4.4 Handling Uncertainties

In the last three decades, many approaches to planning robot motion with
uncertainty were developed [144, 7, 19]. As these approaches deal with large
cumulative uncertainty, environment sensors are often used by higher-level,
slower-rate control loops to reduce uncertainty. Then, a separate estimate
of the current robot’s configuration is computed by matching the incoming
sensory data against a prior model of the environment. This estimate is
called the sensed configuration [144]. As environment sensing is not perfect,
the sensed configuration is not error-free either. However, unlike the dead-
reckoning estimate, the error in the sensed configuration does not depend on
past history, nor does it result in cumulative uncertainty. It mainly depends
on the portion of the environment that is currently perceptible by the sen-
sors (in addition to being a function of the intrinsic quality of the sensors).
If appropriate environment features can be identified and localized by the
sensors from the current actual robot configuration, a sensed configuration
with relatively small uncertainty can be computed.

5.5 Sampling-based Motion Planning

Motion planning has been studied for several decades and many motion
planning algorithms have been proposed in the literature [85, 25, 88]. For-
merly, robot motion planning algorithms were classified with respect to the
processing scope into either being global or local planners [59]. A global

70 Humanoid Robot Motion Planning

planner is one that assumes complete knowledge about its environment,
whereas a local planner assumes partial knowledge about its surrounding
environment. Lately, researchers have started to look at the problem in
a more general and realistic form by considering some difficulties such as
navigation in higher-dimensional spaces, robot dynamics, and time-varying
environments.

A number of algorithms have been introduced and they have had remark-
able success in solving the motion planning problem, like grid-based search
approaches, geometric methods, potential field algorithms, and sampling-
based planners. Low-dimensional problems can be solved with grid-based
algorithms that overlay a grid on top of the configuration space, or geo-
metric algorithms that compute the shape and connectivity of Cfree. Oth-
erwise, exact motion planning for high-dimensional systems under complex
constraints is computationally intractable. Potential-field algorithms are ef-
ficient, but fall prey to local minima (an exception is the harmonic potential
fields). Sampling-based algorithms avoid the problem of local minima, and
solve many problems quite quickly. They are unable to determine that no
path exists, but they have a probability of failure that decreases to zero as
more time is spent.

Sampling-based algorithms are currently considered state-of-the-art for
motion planning in high-dimensional spaces [92, 125, 18]. Therefore, they
have been applied to problems which have dozens or even hundreds of dimen-
sions, such as robotic manipulators, biological molecules, animated digital
characters, and biped humanoid robots. In the remaining part of this sec-
tion, the sampling-based motion planning algorithms will be discussed in
detail.

For practical purposes, complete algorithms such as cell decomposition
and visibility roadmaps turn out to be computationally expensive and hard
to implement. Adding various restrictions to the problem made the use
of complete algorithms possible. For the general case of the problem, a
breakthrough was achieved with the development of sampling-based motion
planners [88]. The ultimate goal for such methods is to generate plans
that can be executed with few modifications in real mobile robot platforms
[154]. These algorithms quickly became popular for various reasons. Many
previously considered hard problems could be solved using sampling-based
motion planners, while the fundamental ideas behind these planners were in
general easy to describe and implement. The increased performance of these
algorithms comes at the cost of sacrificing completeness, which is due to the
fact that a set of sampling points are used to represent the C-space that is
used in constructing solutions [143]. These algorithms can only guarantee
probabilistic completeness instead. A probabilistically complete algorithm
will eventually find a solution if there is one, but it will run forever if no
solution exists.

From another point of view, sampling-based motion planning is thus

5.5 Sampling-based Motion Planning 71

fundamentally different from earlier approaches to motion planning since its
model of available information about C-space is substantially restricted. It
uses only information from a collision detector as it searches the configura-
tion space. This restriction eliminates many of the problems encountered
in methods that constructed a representation of Cobst. Since there is no
explicit model of Cobst, there is no need to characterize all possible contact
conditions for particular classes of problems, nor to compute the contacts
to solve a given problem. Also, a sampling-based motion planner can ap-
ply to a broad class of motion planning problems because it treats collision
detection as a separate module, which may be tailored to a particular kind
of problem. For these reasons, sampling-motion planning algorithms often
seem strikingly simple in comparison to combinatorial motion planners. The
simplicity and generality of these planners, along with increases in compu-
tation power and the development of efficient collision detection algorithms,
have resulted in the introduction of a number of powerful motion planning
algorithms, capable of solving challenging problems with many DOFs [92].

The sampling-based algorithms can be divided into two types: single-
query and multiple-query approaches [143]. Multiple-query approaches start
with a pre-processing step that usually takes a large amount of time but
makes solving path planning problems in the same environment faster. The
Probabilistic Roadmap planner (PRM) [25] is an example of a multi-query
approach that initially used uniform sampling in constructing the path. This
method was problematic because the entire C-space will be sampled with
a density required by the most complex area of the environment, such as a
narrow passage area [58]. Nowadays, PRMs are moving into non-uniform
methods for sampling, such as the Gaussian sampling method and the bridge
test, to insure that most of the configurations in C-space are actually close to
obstacles or inside a narrow passage, thus reducing the unnecessary samples
and decreasing the computational time.

Single-query methods were developed to avoid the large pre-computational
time that the multi-query methods take, and they have been proved to be
efficient. Randomly-exploring Random Trees (RRTs) [88, 38] are mainly
based on single-query methods. They have gained popularity for their good
performances, which has led to a number of extensions specifically target-
ing the solution to complicated geometrical problems. The next subsections
introduce the basic ideas presented in almost all sampling-based motion
planners and describe improvements in the aforementioned two categories
of algorithms.

5.5.1 Roadmap-based Planners

Roadmap-based planners are typically used as multi-query planners. As
their name implies, they maintain a roadmap that can be used to answer
different planning queries. The main data structure being used in these plan-

72 Humanoid Robot Motion Planning

ners is a graph whose nodes are points in the configuration space. Edges in
this graph exist between configurations that are close to one another, and the
robot can move from one point to the other without collisions [154]. There-
fore, the placement of nodes (vertices) is seen as constructing a reusable
roadmap in the roadmap-based planners, not as generating query sub-goals.
Second, these methods attempt to connect to a more carefully-chosen sub-
set of new nodes (sub-goals), which are typically the k nearest nodes from
each connected component, or all sub-goals within some specified radius.
Third, the roadmap-based planner uses a simpler local planner, often either
straight-line or rotate-at-s. Finally, methods are used to identify difficult
regions of C-space and sample in those regions (the “roadmap enhance-
ment” phase). Along with the use of more sophisticated collision detection
methods, these factors make the roadmap-based planners more effective for
challenging motion planning problems [92].

A popular roadmap-based planning technique is the probabilistic roadmap
planner (PRM) which is developed independently at different sites [25, 88].
It turns out to be very efficient, easy to implement, and applicable for many
different types of motion planning problems. The basic PRM approach
leaves many details to be filled in, in particular how to sample the space,
what local planner to use and how to select promising pairs. Over the past
decade, researchers have investigated these aspects and developed many im-
provements over the basic scheme [43]. The typical PRM approach consists
of a preprocessing phase and a query phase. In the preprocessing phase a
roadmap graph G = (V, E) is constructed. In the query phase, the start and
goal configurations are connected to the graph. As Cfree denotes the part
of C-space that consists of feasible configurations, then Cfree is sampled for
collision-free placements that are added as nodes to the graph G. Pairs of
promising nodes are chosen in the graph and a simple local motion planner
(normally a straight-line motion) is used to try to connect such placements
with a path. If successful an edge is added to the graph. This process con-
tinues until the graph covers the connectedness of Cfree. The complete list
of the basic PRM planner is shown in Algorithm 1.

In a sampling-based motion planner, one of the core issues is the sam-
pling strategy which can be considered as the most time-consuming step in
PRM. It samples the configuration space of the moving object to retrieve
Cfree. Sampling is defined as the process by which new configurations are
randomly selected to be added to the roadmap. Lately, there are multi-
ple possible directions for improving sampling [154]. Some of the previous
work focuses on sampling important areas of the configuration space using
workspace information to derive what the important areas are. A well-
known example is sampling in the areas of narrow passages. Increasing the
density of sampling around narrow passages increases the chances of find-
ing samples in areas that are hard to reach and are likely to be needed for
finding a solution. Table 5.1 lists some uniform and non-uniform sampling

5.5 Sampling-based Motion Planning 73

Algorithm 1: Probabilistic Roadmap Planner (PRM)
input : n← the number of nodes in the roadmap

k← the number of the closest neighbors to c
cinit ← the initial configuration
cgoal ← the goal configuration

output: A roadmap G = (V, E)
P ← a path from cinit to cgoal

V ← {}, E ← {};
repeat

c ← a random configuration in Cfree;
V ← V ∪ {c};

until |V | > n ;
forall c ∈ V do

Nc ← the k nodes of c from V ;
forall ć ∈ Nc, in order of increasing distance from c w.r.t. dist do

if (c, ć) /∈ E and M (c, ć) 6= NIL then
E ← E ∪ {(c, ć)};

Ninit ← the k nodes of cinit from V ;
Ngoal ← the k nodes of cgoal from V ;
V ← V ∪ {cinit} ∪ {cgoal};
ć ← the closest neighbor of cinit in Ninit ;
repeat

if M (cinit, ć) 6= NIL then
E ← E ∪ {(cinit, ć)};

else
ć ← the next closest neighbor of cinit in Ninit;

until connected or Ninit = ∅ ;
ć ← the closest neighbor of cgoal in Ngoal ;
repeat

if M (cgoal, ć) 6= NIL then
E ← E ∪ {(cgoal, ć)};

else
ć ← the next closest neighbor of cgoal in Ngoal;

until connected or Ngoal = ∅ ;
P ← shortest path (cinit, cgoal, G);
if P 6= ∅ then

return P ;
else

return failure ;

74 Humanoid Robot Motion Planning

strategies which are used in sampling-based motion planners [88, 43].

After applying a sampling strategy in C-space, the preprocessing phase
of the PRM planner is processed to connect the resulting samples to each
other to generate the roadmap graph (G). As connected samples play an
important role in retrieving the shortest path, different techniques have been
suggested to favor connections to samples [88, 25]. While the standard
nearest-k method tries to connect to the nearest k nodes, the component
method tries to connect the new configuration to the nearest node in each
connected sample that lies close enough. The component-k method is a
combination and tries to connect to at most k nodes in each connected
sample. While it may seem the more samples are connected, the better,
connecting samples is a time-consuming process and so a balance between
the number of connections and runtime needs to be achieved [154]. Figure
5.1, adopted from [25], shows an example of a roadmap for a point robot
in a 2D Euclidean space. The gray areas represent the obstacles in the
environment. The empty circles correspond to the nodes of the roadmap.
The straight lines between circles correspond to edges. The number of k
closest neighbors for the construction of the roadmap is three. The degree
of a node can be greater than three since it may be included in the closest
neighbor list of many nodes.

Figure 5.1: A roadmap graph for a point robot in a 2D Euclidean space [25].

5.5 Sampling-based Motion Planning 75

Table 5.1: Sampling strategies for sampling-based motion planners.
Method Description

Uniform Sampling Strategies
Random A sample is created by choosing random values for all

DOFs.
Grid It starts with a coarse unknown-resolution grid and re-

fines this grid in the process to have the cell size. Grid
points on the same level of the hierarchy are added in
random order.

Halton It uses Halton point sets as samples. These sets have
been used in the discrepancy theory to obtain coverage
of a region that is better than using a grid.

Cell-based The first sample is generated randomly in the whole
space, then the workspace is split into 23 equally sized
cells. In a random order, a configuration is generated
in each cell. Afterwards, it splits each cell into sub-
cells and repeats this process for each sub-cell.

Non-Uniform Sampling Strategies
Gaussian It adds more samples near obstacles. The idea is to

take two random samples, where the distance between
the samples is chosen according to a Gaussian distri-
bution. The free sample is added only if one of the
samples lies in Cfree and the other lies in Cobst.

Obstacle-based A random sample is picked. If it lies in Cfree, then
it will be added to the graph. Otherwise, a random
direction is picked and the sample moved in that di-
rection with increasing steps until it becomes free and
adds the resulting free sample.

Bridge Test Two random samples are taken, where the distance
between the samples is chosen according to a Gaussian
distribution. The free sample is added only if both
samples lie in Cobst and the point in the middle of
them lies in Cfree.

Medial Axis It generates samples near the medial axis of the free
space. All samples have 2-equidistant nearest points
resulting in a large clearance from obstacles. The
method increases the number of samples in small vol-
ume corridors but is relatively expensive to compute.

Nearest Contact It generates samples on the boundary of the C-space
and can be seen as the opposite to the medial axis
technique.

76 Humanoid Robot Motion Planning

To solve a particular query after finishing the preprocessing or learning
phase, the start and goal configurations are added to the roadmap and a
graph search algorithm is used to find a path. The efficiency of the algo-
rithm depends on how well the roadmap can capture the connectivity of the
configuration space. The path can be obtained by performing A∗ algorithm
(see Appendix C for more details) or a Dijkstra’s shortest path query on
the graph. Figure 5.2 shows an example of how to solve a query with the
roadmap presented in figure 5.1. The configurations cinit and cgoal are first
connected to the roadmap through ċ and c̈. Then a graph-search algorithm
returns the shortest path denoted by the thick black lines.

Figure 5.2: The query phase of the PRM planner [25].

From the performance perspective, the main drawback of PRM is that
it heavily relies on collision checking. To mitigate this effect, algorithms like
Lazy PRM [6] have been designed. Lazy PRM delays collision checks by
assuming edges to be valid and actually checking them only if they are part
of potential solutions. To reduce the number of collision checks even further,
and achieve better coverage of the configuration space at the same time,
the use of predictive models has been introduced in [16]. The idea behind
predictive models is to compute an approximation of the configuration space
using machine learning techniques. The approximation makes the inferring
of the probability of a certain configuration collision free. Use of these

5.5 Sampling-based Motion Planning 77

probabilities is made instead of collision checking when connecting samples
in the roadmap.

5.5.2 Tree-based Planners

In many cases, single query sampling-based motion planners can be used to
quickly solve one particular planning problem instance. In these planners,
the main data structure is typically a tree. The basic idea of these planners
is that an initial sample (cinit) is chosen as the root of the tree. Then, newly
produced samples are connected to samples already existing in the tree until
it reaches to the destination configuration (cgoal).

Significant amounts of work have been dedicated to developing sampling
and connection strategies of tree-based planners, biasing the direction in
which the tree grows and achieving better coverage of the space [154, 88, 25].
These tree-based planners applied to motion planning explore the collision-
free regions of the C-space trying to find a feasible path between two given
configurations. The exploration is biased to solve this particular planning
query and not to obtain information about the whole space. Most of the
algorithms construct trees whose nodes are configurations computed during
exploration. The search can be performed in unidirectional or bidirectional
directions as shown in Figure 5.3. The unidirectional strategy constructs a
single tree from one of the two given configurations until the other configu-
ration is reached. The bidirectional strategy constructs one tree from cinit

and another from cgoal. The solution is found when the two trees meet at a
point. Choosing an unidirectional or a bidirectional search mainly depends
on the characteristics of the problem to be solved [125]. The most popu-
lar representative of tree-based planners is the Rapidly-exploring Random
Trees (RRTs). In the literature, there are many tree-based planners using
an RRT-like algorithm as a base, such as Expensive-Spaces Tree (EST),
Execution-extended RRT (ERRT), Reconfigurable Random Forest (RRF),
and Dynamic RRT (DRRT).

RRTs have been shown to be effective for solving single-shot path plan-
ning problems in complex configuration spaces [38]. By combining ran-
dom sampling of C-space with biased sampling around the goal configu-
ration, RRTs efficiently provide solutions to problems involving vast, high-
dimensional C-spaces that would be intractable using deterministic approaches.

The basic RRT algorithm is outlined in Algorithm 2. Beginning with the
initial robot configuration (cinit) as the root node, it incrementally grows a
tree until the tree reaches cgoal. The growth is performed one configuration
at a time, by alternating the two steps that are common to most tree-based
planners: selection and propagation. In the selection phase, a target config-
uration (crand) is uniformly selected at random from C-space. Then, among
the samples already existing in the tree, the closest one to crand is selected
(cnear). In the propagation phase, a new node is created by growing the tree

78 Humanoid Robot Motion Planning

Figure 5.3: Bidirectional and unidirectional searches in tree-based planners
[125].

some distance from cnear towards crand. If extending the tree towards crand

requires growing through an obstacle, no extension occurs. This process is
repeated until the tree grows to within some user-defined threshold of the
goal. A very nice property that follows from this method of construction
is that the tree growth is strongly biased towards unexplored areas of the
configuration space. Consequently, exploration occurs very quickly.

One of the bottlenecks of RRTs is that in some environments most of the
randomly selected samples will cause the expansion from the closest node
in the RRT tree to fail. This produces a significant increase in the runtime
of the algorithm. One way to mitigate this problem is to attach a radius to
each sample in the built tree [154]. If the randomly selected sample is further
away than the specified radius, another sample is picked until the distance to
the nearest sample in the tree is less than the attached radius. This change
reduces the likelihood of having a connection failure. Samples added to the
tree are initially set to infinite radius; when a connection attempt fails from
a sample; its radius is set to some workspace-dependent constant.

5.6 Summary

The significant progress in stable dynamic bipedal walking is leading to an
increased research interest in developing autonomous navigation strategies
tailored specifically to humanoid robots. As autonomous navigation be-
comes an increasingly important research topic for the humanoid robots,
efficient approaches to perception, mapping, and motion planning, which
are suited to their unique characteristics, will be required to integrate them
easily in their typical operating environments.

To create motion plans for mobile or humanoid robots, the position of

5.6 Summary 79

Algorithm 2: Rapidly-exploring Random Tree (RRT)
input : n← the number of attempts to expand the tree (T)

cinit ← the initial configuration where the tree is rooted
cg ← a configuration toward which the tree is grown

output: A tree T = (V,E)

V ← {cinit};
E ← {};
for i = 1 to n do

crand ← a randomly chosen from Cfree;
cnear ← the closest neighbor of cg in T ;
cnew ← progress cnear by step-size along the straight line in
C-space between cnear and crand;
if cnew ∈ Cfree then

V ← V ∪ {cnew};
E ← E ∪ {(cnear, cnew)};
if cnew = cg then

return connected;
else if cnew = NIL then

return failure;
else

return NIL;

return T ;

80 Humanoid Robot Motion Planning

the robot must be specified precisely. More specifically, a specification of the
location of every point on the robot must be calculated to ensure that no
point on the robot collides with the obstacle. Most of the current approaches
for robot motion planning are based on the concept of configuration space.
In addition to the robot’s position specification, there are various constraints
and difficulties that need to be addressed on top of the basic geometrical
motion-planning problem to let the robot work in real-life scenarios, such
as Robot dynamics, time-changing workspaces, real-time planning, dealing
with uncertainty in motion and sensors, and consequently problems in lo-
calization and mapping.

For mobile and humanoid robots, a number of algorithms have been re-
cently introduced to plan their motion. The grid-based search approaches,
geometric methods, potential field algorithms, and sampling-based plan-
ners have had remarkable success in solving the motion planning problem.
Sampling-based motion planners are considered as a breakthrough in motion
planning and quickly became popular for various reasons. They avoid the
problem of local minima, and solve many problems quite quickly. Their ulti-
mate goal is to generate plans that can be executed with few modifications in
real robotic platforms. Sampling-based algorithms are currently considered
state-of-the-art for motion planning in high-dimensional spaces. Many pre-
viously considered difficult problems could be solved using sampling-based
motion planners, while the fundamental ideas behind these planners were in
general easy to describe and implement.

The sampling-based planner generates a roadmap graph for the robot’s
path. To compute footstep placements for biped humanoid robots from the
resulting graph, a search method is needed to calculate the shortest feasible
footstep sequence from the initial position to the target position. Heuristic
search methods can be used to follow the roadmap graph and retrieve a
shortest low-cost footstep sequence for the humanoid robots. They are fast
enough to sense uncertainty, model errors, and handle obstacles for real-time
re-planning in dynamic and unknown environments.

CHAPTER 6

Humanoid Robot Navigation System

A more natural interaction between humans and mobile robots can be
achieved by bridging the gap between the format of spatial knowledge used
by robots and the format of languages used by humans. This enables both
sides to communicate by using shared knowledge. Spatial knowledge can be
(re)presented in various ways to increase the interaction between humans
and mobile robots. One effective way is to describe the route to the robot
by using multimodal representation. This method can permit computer
language-naive users to instruct mobile robots, which understand spatial
descriptions, to naturally perform complex tasks using succinct and intu-
itive commands.

We implemented a complete navigation system for a humanoid robot
to execute navigation tasks in indoor environments. The system is used
by novice users to describe routes for the robot via a multimodal interface.
The resulting route description is processed and represented in symbolic and
topological map representations which are used as an initial path estimation
for the robot. These representations are used with the output from the stereo
vision to plan the path and footstep placements for the humanoid robot. In
this chapter, we introduce the architecture of our Humanoid Robot Navi-
gation System (HRNS). The main modules of HRNS are described briefly.
Afterwards, the hardware and software characteristics of the experimental
platform – HOAP-2 humanoid robot – are discussed. Finally, the experi-
mental environment of HRNS is presented.

6.1 System Architecture

A more natural interaction between humans and mobile robots – with the
least collective effort – can be achieved if there is a common ground of un-
derstanding [69, 10]. Most typical scenarios of interaction between humans

82 Humanoid Robot Navigation System

and robots include the user who instructs a robot to perform certain actions
in certain scenarios, such as moving to a location or manipulating an object.
To instruct the robot to navigate in its surrounding environment, the robot
navigation system should contain three basic components: planning process,
navigation process, and environmental representation [116]. The planning
process includes way-finding and locomotion levels of navigation [105]. It
computes a mobile robot path or trajectory between the start and end points
of the route. The navigation process provides the robot with the informa-
tion required to move and follow the computed path or trajectory and also
to plan the footstep locations of the bipedal humanoid robots. Finally, the
environmental representation enables the robot to know its location and
direction during navigation.

To describe a navigation task to a mobile robot, route instructions are
used to specify the spatial information about the route environment and
the temporal information about the move and turn actions which will be
executed by the robot. Good route instructions should contain adequate
information on these two aspects by considering the spatial environment of
the robot and the relevant navigation and perception actions. To express
the route in an effective way, the rules and sequence of commands should
be expressed very concisely. Natural language uses symbols and syntactic
rules to interact with the robots which dispose of represented knowledge at
the symbolic level.

We have developed a navigation system for a humanoid robot to enable
computer language-naive users to instruct their mobile robots by using a
multimodal cognitive interface. Our main goal is to let the robot execute
navigational tasks reasonably with some degree of autonomy to adapt to the
user’s route description. This requires both the adaptivity to dynamic or
unknown environments and the ability to generate plans. Our approach is
presented to qualify the humanoid robot to walk autonomously in miniature
city or indoor environments.

The user describes the route to the robot verbally or graphically by
using a Graphical User Interface (GUI) and the robot has no prior spa-
tial knowledge of the environment’s layout. The route description includes
the start point, target point, actions, spatial relationships, and landmarks;
whereas landmark locations are calculated in real-time from stereo vision.
Our system combines vision-based sensing with a motion planner to al-
low the humanoid robot to navigate toward a desired goal position while
avoiding obstacles. The motion planner computes an optimal sequence of
footstep placements within a time-limited planning horizon. Footstep plans
are reused and only partially recomputed as the humanoid robot discovers
new findings in the route environment during navigation.

Figure 6.1 shows the main building blocks of our system and the output
from each stage. The robot navigation is based on the route described
by the user to generate an initial path estimation which is supplied to the

6.1 System Architecture 83

Figure 6.1: The architecture of our Humanoid Robot Navigation System
(HRNS).

motion planner. The humanoid robot begins from the start point and moves
along that path to collect information and recognize the landmarks by using
its stereo vision. Based on the new findings and the processed route, the
path is then re-planned to adjust the robot’s position during navigation.
The system is composed of three main modules: route processing, vision
processing, and motion processing modules. These modules are discussed
briefly in the next subsections.

6.1.1 Route Processing Module

The route processing module receives and processes the route description
to generate symbolic and topological route representations. We present a
spatial language to describe route-based navigation tasks for a mobile robot.
In addition, we also present a graphical representation to provide the user
with a simple interface to sketch the route for the robot. The instructions
of this spatial language and graphical representation are implemented to
provide an intuitive interface with which the computer language-naive user
can easily and naturally describe a navigation task to a mobile robot in
any indoor environment. In our system, the instructions of the processed
route are analyzed to generate a symbolic representation of the navigation
task via the instruction interpreter. The resulting symbolic representation is
used to generate a topological map of the route to supply the robot with the

84 Humanoid Robot Navigation System

information about the route’s environment and the relationships between
the landmarks. It is also supplied to the robot motion planning stage as
the initial path estimation of the route description to ground the action and
landmark symbols with their equivalent physical procedures and objects,
respectively. The route processing module and the experimental results are
discussed in detail in Chapter 7.

6.1.2 Vision Processing Module

The vision processing module processes the captured images from the hu-
manoid robot’s cameras to detect, recognize, and localize landmarks during
navigation. It is based on a two-step classification stage which is robust and
invariant towards scaling and translations. Also, it provides a good balance
between fast processing time and high detection accuracy. An appearance-
based classification method is initially used to provide the rough initial es-
timate of the landmark. It is followed by a refinement step using a model-
based method to estimate an accurate classification of the landmark. The
distance estimation between the robot and the processed landmark is calcu-
lated by triangulation. The vision processing module and the experimental
results are discussed in detail in Chapter 8.

6.1.3 Motion Processing Module

The outputs of the last two modules are supplied to the motion process-
ing module to calculate and execute the shortest humanoid robot footstep
placements. The proposed motion planner is a combination of sampling-
based planner and D* Lite search to generate dynamic footstep placements
in an unknown environment. It generates the search space depending on
non-uniform sampling of the free configuration space to direct the computa-
tional resources to troubled and difficult regions, such as turns and narrow
passages. A modified cylinder model is used to approximate the trajec-
tory for the robot’s body-center during navigation. It calculates the actual
distances required to execute different motion actions of the robot and com-
pare them to the distances from the nearest obstacles. D* Lite search is
then implemented to find dynamic and low-cost footstep placements within
the resulting configuration space. The proposed hybrid algorithm reduces
the searching time and produces a smoother path for the humanoid robot
with low cost. The motion processing module and the experimental results
are discussed in detail in Chapter 9.

6.2 Experimental Platform (HOAP-2)

We implemented our navigation system on the second generation of Fujitsu’s
Humanoid for Open Architecture Platform (HOAP-2) [41]. HOAP-2 is a 7

6.2 Experimental Platform (HOAP-2) 85

Figure 6.2: The experimental platform (HOAP-2).

kg humanoid robot with 50 cm height, 25 cm width, and 16 cm depth (see
Figure 6.2). It is equipped with an accelerometer and gyroscope inside
the torso. It also has four force sensing registers (FSRs) in each foot to
detect reaction forces from the floor. The vision system consists of two
0.25” CMOS unsynchronized cameras (Logitech web quick-cameras) and is
capable of capturing frames of 320 X 240 pixels at 25 fps. These cameras
need an initial time between 10 to 15 seconds to focus and remove the
blurring effect. The robot’s cameras are connected via USB 1.0 connections
to a laptop with 1.73 GHz Duo processor and 3 GB RAM to process the
captured images.

HOAP-2 is equipped with 25 servo actuators (25 DOFs): six for each
leg, four for each arm, one for each hand, two for the head, and one for its
waist. Figure 6.3 illustrates the joints’ names and positions on the HOAP-2
humanoid robot.

Concern the robot motion, if the ZMP walking pattern is used on the
HOAP-2 humanoid robot, the robot does not fall over or trip itself up as
long as it remains on a smooth, horizontal surface. On the other hand, there
was a problem that caused the robot to wobble significantly and its feet to
slip each time it put its right foot down. This was due to the fact that there
are about 1 to 2 degrees of play in each servo. As the right foot was lowered
to the ground after swinging forward, the play in the lateral and sagittal hip
joints meant that the left back corner of the foot touched the ground before
the rest of the foot and caused the robot to wobble significantly on its left
foot, sometimes enough for the robot to fall over. The error in the swing
foot is compensated by increasing the distance from the hip to the bottom
of the support foot by 0.5 cm [63]. This meant that the swing foot did not

86 Humanoid Robot Navigation System

Figure 6.3: Names and positions of the joints on HOAP-2 [41].

touch the ground until it was supposed to. Furthermore, the adjustability of
the walking cycle proved to be successful as well. The stride length can be
adjusted to be anywhere from 0-6 cm without causing the robot to wobble
or to show signs of instability.

On the other hand, HOAP-2 can operate in both wired and wireless
modes. In the wired mode, high-speed, real-time communication is possible
using an USB interface between the command PC and the robot body. An
external 24 V power supply is used for the robot body. By using RT-Linux
for the command PC, real-time feedback control is realized using the USB
connection. In the wireless mode, a CPU unit inside the robot’s body is
used as a control host computer. Transmission of motion commands is done
from the user’s PC via wireless LAN. The internal battery is used as a power
supply for the robot.

As shown in Figure 6.4, the software on the command PC of the HOAP-2
humanoid robot is mainly divided into two parts. The first is the real-time
robot communication module which is carried out in real time kernel space.
The second is the program which loads indicated data on the robot and is
carried out in the user space. A data loading indication program and a real-
time robot communication module transmit and receive data and commands
by using the common memory. The data loading program writes data and
commands in the common memory to acquire data from the file and the
standard input. A real-time robot communication module, which is written
in the common memory, transmits and writes the result received from the
robot in the common memory. A data display program indicates the result

6.3 Experimental Environment 87

Figure 6.4: The software composition on the command PC of HOAP-2.

written in the common memory. Therefore, the user’s program can operate
and control the robot’s actuators if the user creates a program that is reading
and writing from the common memory.

6.3 Experimental Environment

We built a miniature city to be used as an experimental environment for our
humanoid robot navigation system. The advantage of using a miniature city
as a testing environment is the ability to build a complex route structure
in the limited space of a laboratory. We implemented a miniature city to
test our system and evaluate its performance. This city is a simulation of
the downtown of Hamburg. The design is as realistic as possible to enable
the users to apply natural routes for the outdoor real-size environment. The
miniature city is built on a 5.0 m x 3.5 m area which is suitable to the
dimensions of the HOAP-2 humanoid robot. Figure 6.5 shows the physical
realization of our experimental environment.

Some buildings in the miniature city have unique signs taken from real
life to indicate supermarkets, stores, or restaurants; such as the Lidl super-
market, the Karstadt store, and the Burger King Restaurant, respectively.
These signs are used to recognize these landmarks during the robot’s nav-
igation in the city. The other buildings have unique features which can
be easily noticed from the other surroundings. These features include the
style and color of the building. The railway stations, the town hall, and the
church are examples of this type. The boundaries of streets are presented
as black straight lines on the ground, whereas the crossroads are indicated
as white lines.

We used the Google SketchUp program [106] to created a 3D model for

88 Humanoid Robot Navigation System

Figure 6.5: The experimental environment.

Figure 6.6: The 3D model of the miniature city.

6.4 Discussion 89

the miniature city. This model is used to test our proposed motion planning
algorithm and compare it with some state-of-the-art sampling-based algo-
rithms. Figure 6.6 shows the 3D model of the experimental environment.

6.4 Discussion

In this chapter, the main building blocks of our humanoid robot navigation
system are discussed. The system is based on a multimodal interface which
is used to describe the route verbally or graphically. The hardware and
software characteristics of the experimental platform are discussed. Finally,
the experimental environment of HRNS is presented.

90 Humanoid Robot Navigation System

CHAPTER 7

A Cognitively Motivated Route–Interface

We present both spatial language and graphical representation to describe
route-based navigation tasks for a mobile robot. The instructions of this spa-
tial language are implemented to provide an intuitive interface with which
novice users can easily and naturally describe a navigation task to a mobile
robot in a miniature city or in any other indoor environment. The instruc-
tions of the processed route are analyzed to generate a symbolic representa-
tion via the instruction interpreter. The resulting symbolic representation
is supplied to the robot motion planning stage as an initial path estimation
of route description and it is also used to generate a topological map of the
route’s environment.

In this chapter, the route processing module is discussed in detail. First,
the multimodal route description interface is presented. The structures of
the proposed spatial language and the graphical route representation are
introduced. The instruction interpreter and the lexicon structure are il-
lustrated in Section 7.2. Afterwards, in Section 7.3, the generation of the
topological map of the processed route is described. Finally, the results of
the conducted route experiments are discussed.

7.1 Multimodal Route Instructions

At the beginning, the user, who is familiar with the environment, produces a
route description for the humanoid robot to execute a navigation task. The
route description should contain two prominent types of information. On
the one hand, it should contain information about landmarks and decision
points. These decision points represent positions on the route on which the
robot can choose between different tracks and they are mostly character-
ized with their relation to landmarks. On the other hand, it should include
information about actions the robot has to perform. Therefore, route in-

92 A Cognitively Motivated Route–Interface

structions specify actions, paths, tracks, positions and landmarks in relation
to each other [153]. Different groups of words characterize these components.
For example, the actions mentioned in route instructions are specifically de-
scribed with verbs of position, verbs of locomotion, and verbs of change of
orientation.

In our system, the route description can be presented in two different
ways. It can be represented in written form by using our proposed semi-
formal language or by using a simple graphical interface to indicate the path
between the start and end points for the robot. These two methods of route
descriptions will be discussed in the ensuing subsections.

7.1.1 Verbal Route Description

In our system, we present a spatial language – called Route Instruction Lan-
guage (RIL) – to describe route-based navigation tasks for a mobile robot.
This language is implemented to present an intuitive interface that will en-
able novice users to easily and naturally describe a route to a mobile robot
in indoor and miniature city environments. We proposed this language to
avoid ambiguity and misunderstanding during route description. Therefore,
a non-expert user can describe the route for the mobile robot by using simple
and easy to understand instructions.

The RIL is developed to describe the route between the start and end
points to a mobile robot. It is intended as a semi-formal language for in-
structing robots, to be used via a structured graphical user interface. RIL
provides elementary instruction statements which are processed to supply
the robot with a sequence of motion actions. During navigation, this se-
quence of actions is processed by the motion planner to determine the foot-
step placements which will be effected by the humanoid robot to execute the
route. Each statement in the RIL constitutes a spatial instruction which re-
lates verbally coded motion concepts to one or more landmarks by use of a
suitable spatial relationship.

The commands of the RIL and their syntaxes are shown in Table 7.1.
Each instruction of the RIL specifies motion verbs, directions, destinations,
and landmarks. The RIL commands are divided into three basic types:
position, locomotion, and change of orientation instructions.

The position commands are used to indicate the current position of the
robot during navigation. These instructions are primarily used to identify
the start and end positions of the robot. They can also be used during
the robot route description to describe relevant confirmations of the robot’s
current position with respect to one or more landmarks. These instruc-
tions are represented in RIL by using three different commands: $START(),
$STOP(), and $BE().

The Locomotion commands are used to instruct the robot to move in
the spatial environment in a specific direction or to follow a certain path.

7.1 Multimodal Route Instructions 93

Table 7.1: The command set of the Route Instruction Language (RIL).

In other words, these instructions give the robot the order to move to a
particular region or to go in a particular direction with respect to one or
more landmarks. In RIL, the locomotion commands are introduced by using
four basic instructions: $GO(), $CROSS(), $PASS(), and $FOLLOW().

The last category is the change of orientation commands, which are used
to rotate around a landmark or turn in a certain direction. These commands
are used to change the direction of the robot by turning or rotating to a
specific direction. $TURN() and $ROTATE() commands are used in RIL to
represent the changes in orientation of the robot’s current position during
navigation.

Table 7.1 also shows the syntaxes of the RIL instructions. The instruc-
tion’s syntax consists of a command word and an arbitrary number of ar-
guments. The command word indicates the action which will be taken by
the mobile robot and is represented in the imperative form of the verb, e.g.,
GO, TURN, BE, etc. Each argument is a place holder for a specific group of
words such as prepositions, directions, the number of turns, and landmarks.
To add more flexibility to the command syntax, multiple kinds of command
syntaxes have been defined. Mandatory arguments are typed without any
brackets, whereas optional arguments are placed between rectangular brack-
ets “[]”. The pipe symbol “|” indicates an OR operator.

For example, the $GO() command can be represented by the following

94 A Cognitively Motivated Route–Interface

Figure 7.1: “Town hall – railway station” route description by using RIL.

syntax:

$GO([Count],[Pre1|Direction],[Landmark1],[Pre2],[Landmark2])

where “Count” presents the number of turns in a specific direction. For
example, $GO(2, RIGHT) means that the robot will take the second
right turn. “Pre” represents the formal counterpart to a preposition or an
adverb which will be used in the spatial statement, such as to, between, and
at. “Direction” specifies the direction of the turn or a landmark, i.e. left,
right, forward, and backward. Finally, “Landmark” represents the name of
a pre-defined landmark in the knowledge database.

To prevent ambiguity and misunderstanding, RIL uses an extrinsic ref-
erence frame to refer to all landmarks and actions in route description which
is based on the robot’s viewing perspective. It also prevents transformation
between different reference types while the route is processed. Figure 7.1
shows an example of a route description from the town hall to the railway
station in our miniature city using RIL.

In this route, the robot is instructed to begin at a starting point with
the town hall to its left. First, the robot has to move to the crossroads, and
then it should turn right. Afterwards the robot is instructed to walk straight
on, to pass the Karstadt store on its right, to pass the Lidl supermarket on
its left, and to move to the next crossroads. Then it is to walk straight on,

7.1 Multimodal Route Instructions 95

pass a building to the left, and the Burger King restaurant to the right, and
go on until reaching the next crossroads. The next instructions include the
robot’s crossing of the street, going straight on, passing a building to the
right, passing a parking place to the left, and then turning right at the next
crossroads. Finally, the robot has to keep walking down the street until
it is standing to the left of the railway station, which is determined as its
destination.

7.1.2 Graphical Route Description

We proposed another way to describe the route for the robot by using a
simple graphical representation. The main aim of this interface is to provide
the user with a simple tool that attempts to discretize the route environment
as a graph-like representation of places connected by paths. It represents the
environment as a graph where nodes represent places and edges represent
connections between places.

On the other hand, the graphical route representation helps to facilitate
reasoning of the route, mainly due to the compactness of the representation.
It represents the route in a symbolic nature that allows higher-level reasoning
(such as order, connectivity, and regions) which can enhance the spatial
knowledge of the route environment.

In our implementation, we proposed three main actions of the robot:
move, notify, and stop. The move action is used to draw the estimated path
for the mobile robot. It is presented as solid straight lines. Robot turns are
indicated as straight lines in different directions. The notify action presents
the current robot’s position with respect to one or more landmarks. It
also indicates the position of landmarks during robot motion in a specific
direction. It is represented as dashed line which connects landmarks with
the robot’s path. Finally, the stop action is used to indicate the target point
of the robot with respect to one or more landmarks. Table 7.2 lists the
actions and landmarks which are used in the graphical representation.

In the graphical representation, the robot’s position is shown at the
bottom of the map as an origin of the route. The user begins to draw
the map by starting from the robot’s position until he reaches the target
point. At the beginning, the user localizes the current robot’s position by
drawing one or more landmarks connected to the robot’s image in a specific
direction. Then, he starts to draw the robot’s path by using motion action
and identifies the path by choosing some landmarks. Finally, he uses the
stop action to finish the robot’s route and indicates the target point. Figure
7.2 shows a graphical representation of the same route presented in the
previous section (“Town hall – railway station” route) by using the route
map editor.

For map reasoning, during the map drawing, the user’s actions are ana-
lyzed and converted to a symbolic representation. The initial robot’s posi-

96 A Cognitively Motivated Route–Interface

Name Symbol Name Symbol

Move Action Notify Action

Stop Action Town Hall

Railway Station Church

McDonald’s Burger King

Saturn Store C&A Store

KarStadt store Sport KarStadt store

Lidl Supermarket Aldi Supermarket

Crossroads Building

Parking Place Water pool

Table 7.2: The used symbols and landmarks in the graphical representation.

7.2 Instruction Interpreter 97

Figure 7.2: The graphical representation of the “town hall – railway station”
route.

tion is considered as the start point of the route with respect to one or more
landmarks. The stop position is considered as the robot’s target. The move
actions are translated into motion and turn actions. For more details about
the symbolic representation, see Section 7.2.4.

7.2 Instruction Interpreter

The instruction interpreter is used to discriminate, identify, and categorize
the motion actions of the processed route description. It converts the verbal
description of the route produced by using RIL into a sequence of actions
that the robot must take in order to successfully follow paths anticipated
by the instruction giver. It combines definitions from the lexicon according
to the parse structure of the instruction, creating a symbolic script that
describes the navigation process. The generated symbolic representation
is used to create a topological map for the route environment. It is also
supplied to the motion planner as an initial path estimation of the navigation
task to help in generating the footstep placements for the humanoid robot.

The instruction interpreter contains a simple parser, a lexicon, a syn-
tactic analysis, and a symbolic generator (see Figure 7.3). The parser is
supplied by the route description text to split it into a sequence of words.
The resulting list is entered at the syntactical analysis stage to identify the
structure of instructions by consulting in the lexicon to obtain the type and
features of the resulting words. Finally, the result will be supplied to the

98 A Cognitively Motivated Route–Interface

Figure 7.3: The structure of the instruction interpreter.

symbolic representation stage to generate an equivalent symbolic script of
the route. The components of the instruction interpreter will be elucidated
in the next subsections.

7.2.1 The parser

The parser analyzes the raw route description text supplied by the user
and prepares it for the syntactic analysis stage. The parser separates the
text into individual instructions. Each instruction is split into a sequence of
words using space and punctuation characters as delimiters. The resulting
list is entered at the syntactical analysis stage to identify the structure of
instructions.

7.2.2 The Syntactical Analysis

The syntactical analysis stage is provided by a list of the resulting words
from the parser to identify the structure of the instructions. It compares the
structure of the processed instruction with a list of all kinds of instruction
syntaxes which are understandable by the robot. Each word is looked up in
the lexicon to obtain its type and features.

The syntactical analysis is robust to unexpected input. If it encounters
a constituent that cannot be modeled, it will ignore it while modeling the
remainder of the instruction. Likewise, if it cannot analyze one instruction
from a set of route descriptions, it will analyze the others. Additionally, the
syntactical analysis is used to divide the route description into segments.
Each segment begins with a motion action (i.e. $GO() instruction) and
ends before the next one – except for the starting and ending statements.
All statements in the segment are processed in series and executed as a single
sub-route in the robot navigation task.

7.2 Instruction Interpreter 99

Type of expression Symbolic representation
Verbs of position BE AT(x, p)
Verbs of motion GO(x, w)
Verbs of change of orientation CH ORIENT(x, d)
Landmark notification VIEW(x, p)
Local preposition or adverb LOC(p, Pre(LM))

Directional preposition or adverb

TO(w, Pre(LM))
FROM(w, Pre(LM))
VIA(w, Pre(LM))
LOC(w, Pre(LM))

Projective terms Pre(LM, rsys)

Table 7.3: Descriptive operators used in symbolic representation.

7.2.3 The Lexicon

The lexicon is a module of linguistic knowledge that maps words onto struc-
tures representing their meaning. It combines syntactic and semantic infor-
mation about the words such that the syntactic structure can support the
derivation of the meaning of the instructions. Thus, the task to construct
the meaning of a route instruction presupposes a coherent and consistent
system of entries in the spatial lexicon.

We have defined a lexicon of words in terms of RIL, and used that
lexicon to analyze the route description. The lexicon is used to find the type
of the parsed words and also combines these words with their definitions.
The available types of words in the lexicon are command verbs, directions,
prepositions, numbers of turns, and landmarks. Each verb entry in the
lexicon consists of an action verb and an associated script composed from
the set of its primitives and depends on the specified arguments passed to
its instruction. It is defined as a script of primitive operations that run on
data extracted from the analyzed instruction. In other words, each entry in
the lexicon consists of a symbol and an associated script composed from the
set of primitives. Depending on the processed instruction, the lexicon picks
the suitable subscript for the processed word. Some spatial routines in the
lexicon return a subscript as their result.

7.2.4 The Symbolic Representation

After analyzing the route instructions syntactically and connecting each re-
sulting verb with its motion procedure, the symbolic representation of the
route is generated. This symbolic script is based on CRIL representation
which was developed by Tschander et al. [153]. Table 7.3 lists some descrip-
tive operators used in the symbolic representation.

The resulting symbolic script consists of three basic components: mo-

100 A Cognitively Motivated Route–Interface

tion actions, spatial relationships, and landmarks. The motion actions are
classified into the following four essential actions:

!BE AT() Action: It presents the position of the robot during navigation.
It identifies the start, current, and end positions of the robot during
navigation.

!GO() Action: It indicates the motion actions which should be taken by
the mobile robot.

!VIEW() Action: It is used to notice a landmark in a certain direction or
region during navigation.

!CH ORIENT() Action: It is used to indicate a change in the current
orientation of the mobile robot motion during navigation based on a
specific direction or landmark.

The spatial relationships are classified into two types. First, relations
represent a location with respect to a landmark. Second, relations specify a
direction with respect to one or two landmarks. The spatial or directional
relationships can be divided into four classes. The first class is the goal
relationships which specify the end of the path. The second one is the
source relationships which give the start of the path, the third class is the
course relationships which characterize the intermediate course of the path,
and the final class is the shape relationships which identify the shape of the
path.

Landmarks in our miniature city are classified into definite and indefinite
landmarks depending on their features. Definite landmarks have unique
characteristics which single them out from among the other landmarks in
the miniature city, such as the Burger king restaurant, the Saturn store,
and the town hall. On the other hand, indefinite landmarks have a number
of properties that are not unique such as buildings, crossroads, and streets.
The landmarks are represented in the symbolic representation by using the
following syntax:

LMi(Name, type)

where i presents the landmark number in the route. The “Name” argument
represents the landmark name. The “type” argument presents the way that
is used to recognize the landmark. The landmark features are retrieved from
the database which contains data about their shape, color or color histogram,
and recognition method values. In addition to the retrieved features, the
relationship feature is extracted from the processed route to describe the
relation between the current processed landmark and other landmarks in the
same path segment. It is used to handle uncertainty and missing information
during the robot navigation.

7.3 Topological Map 101

Figure 7.4: The resulting symbolic representation of the “town hall – railway
station” route description.

Figure 7.4 shows the resulting symbolic representation of the route de-
scribed in Figure 7.1. It displays the three types of information extracted
from the route description: actions, spatial relationships, and landmarks.
Where “rsys” refers to a spatial reference system that has to be anchored
relative to the conceptual representation of the preceding segments of the
route instruction. The “x”, “LM”, “w”, “p”, “t”, and “r” symbols refer
to the robot, landmark, path, position, track, and region, respectively. The
grounding of the symbolic representation with the perceptual data in the
physical environment will be discussed in Chapter 9.

7.3 Topological Map

After creating the symbolic representation of the route, the robot requires
an adequate representation of the route environment. This representa-
tion should be abstract enough to facilitate higher-level reasoning tasks like
strategic planning or situation assessment, and still be detailed enough to
allow the robot to perform lower-level tasks like path planning/navigation
or self-localization. The topological map is used to describe relationships
among features of the environment in a more abstract representation without
any absolute reference system. Our implementation of the topological map
represents the robot’s workspace in a qualitative description. It presents a

102 A Cognitively Motivated Route–Interface

graph-like description of the route where nodes correspond to significant,
easy-to-distinguish landmarks, and arrows correspond to actions or action
sequences which will be executed by the mobile robot.

The generated topological representation of the route is mainly used to
treat the ambiguity which can be occur in situations where a landmark
can be described not only by its properties, like color and shape, but also
by its relations to other landmarks. By considering relations, we may be
able to resolve cases where the known properties of the landmark are not
sufficient to distinguish it from other similar landmarks, or the robot cannot
recognize the current landmark. Therefore, the topological map is used to
comprehend the route instructions by building up a mental representation
of the processed route. This representation contains spatial information
about the route, the sequence of actions to be performed, and the relations
between landmarks. In the navigation phase, the robot has to match the
internal representation (i.e. topological map) against the perceived scenes.
Figure 7.5 shows the generated topological map of the “town hall – railway
station” route which is represented in Figure 7.1.

In the topological map representation, the blue arrows represent the
estimated robot path, whereas the yellow dashed lines represent the posi-
tions of the landmarks. The rounded rectangles represent the processed
landmarks and their colors indicate the type of landmarks. Finally, orange
circles indicate the start and destination points, whereas green circles rep-
resent intermediate nodes in the robot’s path.

7.4 Experimental Results and Evaluation

To evaluate the routes which are written by using the RIL instructions, we
conducted two different experiments. The first experiment is carried out to
test the suitability of the RIL for the novice users. The second experiment is
conducted to analyze the resulting RIL routes and compare them with their
equivalent verbal routes. It also tests the usability of both RIL instructions
and the graphical user interface of our system.

7.4.1 RIL for Novice Users

We carried out an experiment to test the suitability of the proposed route
instruction language as an interaction tool between a computer-language
naive user and a mobile robot. 18 participants took part in the experiment
(mean age = 29.5, SD = 3.35). None of the participants had any background
knowledge on route instructions and robotics.

The experiment was conducted in single sessions. The participants were
first supplied with instructions about the purpose of the experiment, a gen-
eral idea about RIL, and the estimated time of the experiment. Then, we
gave them a description of the RIL syntax, a map of the miniature city, and

7.4 Experimental Results and Evaluation 103

Figure 7.5: The topological map representation of the “town hall – railway
station” route.

104 A Cognitively Motivated Route–Interface

Figure 7.6: The sample and tested routes which were used in the experiment.

an example of a suitable route description. Figure 7.6 shows the example
route which represents the route from the railway station to the town hall in
the miniature city. Afterwards, we asked them to describe a route between
the railway station and the McDonald’s restaurant as depicted in the last
Figure. Finally, we gave them a questionnaire to know their impression of
the usage of the RIL. There were no time limitations in the experiment. The
entire session took approximately 15-20 minutes.

After analyzing the tested route and the answered questions for each
participant, we found that:

• 89% of the participants described the route correctly, but the rest were
confused about how to use some commands and parameters.

• 83% of the participants stated that the RIL is simple and easy to learn,
but the rest of them preferred to use a controlled natural language
without any specific syntax for the instructions.

• 78% of the participants agreed that it is better to provide the com-
mands of RIL with many optional parameters than to restrict them to
a single syntax.

7.4.2 Route Description Analysis

We conducted a second experiment to analyze the route descriptions written
by RIL using a GUI. This analysis had two main purposes. The first aim is
to dissect the resulting verbal and RIL routes produced by the participants.

7.4 Experimental Results and Evaluation 105

Figure 7.7: The five routes used in the experiment.

The second purpose is to analyze the RIL instructions to know the common
instructions used by the users.

15 participants (7 male, 8 female) took part in this study, ranging in age
from 23 to 35 (mean age = 31.07, SD = 3.49). The participants had no
previous experience with natural language processing and robotics. They
were tested individually. Each participant was asked to describe 5 different
routes in the miniature city. Figure 7.7 illustrates the routes used in the
study.

At the beginning, the participants were asked to describe these routes
verbally. After finishing the verbal description of the five routes, we ex-
plained the command syntax of the RIL to the participants and how to
instruct the robot to travel from one place to another in the miniature city.
Then, they were asked to describe these routes again by using the RIL via
a GUI (as shown in Figure 7.8). After finishing all route descriptions, the
users were asked to answer a simple questionnaire to get their impression of
describing the routes by using the GUI.

We analyzed the resulting 75 verbal route descriptions (5 routes/user).
We found that 98% of the resulting descriptions can be presented by using
RIL. For the RIL routes, we had 830 instructions resulting from the par-

106 A Cognitively Motivated Route–Interface

Figure 7.8: The graphical user interface used to write RIL routes.

Table 7.4: The statistical analysis of the resulting route descriptions.

ticipants’ routes. Table 7.4 shows the average and standard deviation of
the time, number of instructions per route, and correct percentage of in-
structions for the resulting route descriptions. Only 47 routes succeeded in
reaching the goal, whereas the other 28 routes contain one or more wrong
instructions which cannot be analyzed correctly to produce the equivalent
symbolic and topological map representations of the route.

Figure 7.9 shows the frequency of the three instruction categories of
RIL in the resulting route descriptions. It is obvious that the locomotion
instructions are the most used RIL category. On the other hand, Figure
7.10 illustrates the frequency of the RIL instructions in the resulting par-
ticipants’ routes. It is observed that the “Go” instruction is the most used
command and the “FOLLOW” and “ROTATE” instructions are the less
used commands in the resulting route descriptions. Consequently, the “GO”
instruction clearly dominates among all analyzed instructions and the “for-

7.4 Experimental Results and Evaluation 107

Figure 7.9: Occurrence statistics of RIL categories in the resulting routes.

ward” type that includes instructions such as “GO ahead”, “GO down”,
“GO along” etc., is the most frequent type among other “GO” instructions
as shown in Figure 7.11.

After analyzing the answered questions of the given questionnaire, we
found that:

• 88% (SD = 0.13) of the participants stated that the GUI is simple and
easy to use.

• 93% (SD = 0.11) of the participants declared that the RIL is simple
and easy to learn.

• 90% (SD = 0.21) of the participants did not face any ambiguity or
misunderstanding during route description.

• 78% (SD = 0.39) of the participants agreed that it is better to provide
the commands of RIL with many optional parameters than to restrict
them to a single syntax.

At the end, the results of the experiments confirmed that RIL is simple
to learn and it is well suited to describe the route in indoor environments.
The GUI facilitates the route description and lets the novice user describe
the routes easily without ambiguity and misunderstanding. On the other
hand, we have found that most of the commands that participants chose can

108 A Cognitively Motivated Route–Interface

Figure 7.10: Occurrence statistics of RIL instructions in the resulting routes.

Figure 7.11: Occurrence statistics of “GO” instruction types in the resulting
routes.

7.5 Discussion 109

be classified or decomposed into these categories, and by considering only
such commands, we can replicate the paths with reasonable accuracy.

7.5 Discussion

In this chapter, the route processing module of our humanoid robot navi-
gation system is discussed. The system is based on a multimodal interface
which is used to describe the route verbally or graphically. The route pro-
cessing model of our system is presented in detail. We have presented the
Route Instruction Language (RIL) – a semi-formal language – to be used
by inexpert users to instruct humanoid robots in a miniature city environ-
ment. Based on the RIL and graphical representation, we designed and
realized an intuitive interface to mobile robots preventing misunderstanding
and ambiguities in route descriptions. Starting from a set of commands, the
instruction interpreter stage performs the analysis of route instructions and
its lexicon relates the internal procedures to perceptual objects and speci-
fies actions that can be carried out by the humanoid robot. The instruction
interpreter analyzes the route to generate its equivalent symbolic represen-
tation which is supplied to the motion planner as initial path estimation.

The resulting symbolic representation of the route is used to generate
a topological representation of the route to supply the robot with global
information about the route and to prevent it from getting trapped in local
loops or dead-ends in unknown environments. The symbolic representation
is supplied to the motion planner to ground the landmark symbols in their
equivalent physical objects by using perceptual anchoring.

We conducted some experiments to test and evaluate the performance of
the interface of HRNS. We ran two different experiments to test the validity
of the proposed route instruction language (RIL). The first experiment was
conducted to test the suitability of the RIL for the naive user. The second
experiment was run to compare the verbal and RIL route instructions. The
results were analyzed to evaluate the performance the RIL and the GUI.
The results of the route experiments confirmed that RIL is simple to learn
and is well suited to describe the routes in indoor environments. They also
illustrated that the GUI provides the novice users with an easy interface for
the route description.

110 A Cognitively Motivated Route–Interface

CHAPTER 8

Robot Landmark Processing System

In mobile robot scenarios, it is expected that the robot autonomously navi-
gates through home or office environments and processes objects/landmarks
during navigation. Landmark processing is identified as one important re-
search area in robot navigation systems. It is a key feature for building
robots capable of navigating and performing tasks in human environments.
For autonomous navigation, the mobile robot requires a high-speed reliable
vision approach that does not introduce significant delays in the control loop
and can perform in real time. Therefore, the object detection and recogni-
tion approaches, which are suitable to be adapted to mobile robots, should
be fast, reliable, and flexible techniques.

In this chapter, we present our Robot Landmark Processing System
(RLPS) which is implemented to detect, identify, and localize different types
of landmarks during robot navigation in indoor or miniature city environ-
ments. The aim of our work is to develop a robust lightweight object pro-
cessing system with a high detection rate that can actually be used by mo-
bile robots and meet their hard constraints to recognize landmarks during
navigation. The system is based on a two-step classification stage which
is robust and invariant towards scaling and translations. Also, it provides
a good balance between fast processing time and high detection accuracy.
An appearance-based classification method is initially used to provide the
rough initial estimate of the landmark. It is followed by a refinement step
using a model-based method to estimate an accurate classification of the
processed landmark. On the other hand, stereo triangulation is calculated
to determine the landmark’s position in the environment by using the robot’s
cameras.

112 Robot Landmark Processing System

8.1 Vision System Architecture

We have developed an online robot landmark processing system (RLPS)
running on the HOAP-2 humanoid robot. RLPS is used to detect, classify,
and localize different types of landmarks during humanoid robot naviga-
tion. The robot autonomously navigates in an indoor environment, moves
according to the processed route description, and localizes its position in
the environment with respect to the detected landmarks. The robot rec-
ognizes predefined landmarks, estimates their position in the environment,
and integrates the result with the localization module to automatically pro-
cess the landmarks and use them in motion planning. Our main goal is to
implement a robust, accurate, and real-time landmark processing system for
mobile robot navigation which can handle different types of landmarks.

The robot uses the symbolic representation and the generated topologi-
cal map of the route description to decide which landmark will be processed
during navigation (for more details, see Chapter 7). The topological map
represents the route description in a graphical representation and it also re-
trieves the relationships between the landmarks to handle uncertainties dur-
ing robot navigation. The symbolic representation of the route is grounded
to the output of RLPS by using perceptual anchoring. The result is supplied
to the path and footstep planners to generate the shortest feasible footstep
placements of the humanoid robot (see Chapter 9).

As shown in Figure 8.1, the architecture of RLPS can be divided into
three basic stages: stereo calibration, stereo vision and triangulation, and
landmark classification. The stereo calibration is used to calculate the in-
ternal and external parameters of the left and right cameras of the robot.
The stereo vision stage is responsible for creating disparity and depth maps
of the captured images. The outputs from the stereo vision combined with
the external parameters of the stereo pairs are used to calculate the 3D po-
sition of the retrieved landmarks in the real world. Last but not least, the
landmark classification stage is responsible for detecting and recognizing the
landmarks from the captured frames.

RLPS is effectively based on a two-step classification process. An appea-
rance-based classification method is first used to get a fast and rough esti-
mation of the landmarks. The resulting hypotheses are refined by a model-
based classification method to get accurate landmark recognition. The com-
bination between these two methods provides a computational efficiency
procedure. The Hough transform, color detection, or color histogram of the
detected landmark provides a rough initial estimation of the landmark. It
is followed by a refinement step using Scale Invariant Features Transform
(SIFT) to get an accurate estimation for the landmark. On the other hand,
we used the disparity map combined with recognized landmarks to calculate
their position with respect to the robot’s position during navigation. The
position of the processed landmark is determined by calculating the stereo

8.2 Stereo Camera Calibration 113

Figure 8.1: The architecture of the robot landmark processing system
(RLPS).

triangulation. In the following sections, the main building blocks of RLPS
will be discussed in detail.

8.2 Stereo Camera Calibration

Camera calibration is the task of relating the ideal pinhole model of the
camera to an actual imaging device and it is also the task of retrieving the
relative position and orientation of the cameras. Therefore, it is used to de-
termine the geometry of the stereo setting which is needed for triangulation
and also for removing radial and tangential distortions provided by camera
lenses. Consequently, the process of the stereo camera calibration can be
divided into two main tasks: calculating the intrinsic parameters of each
camera to handle the distortions of the lenses and calculating the extrinsic
parameters of the stereo pair to calculate the landmarks’ positions in the
real environment.

Our stereo vision system receives the left and right frames from two
CMOS cameras located in the robot’s head. By calibrating the cameras,
image distortion is removed and cameras’ parameters such as the focal length
and the principal point are determined. These parameters are useful later
for computing 3D range data. We first recover the intrinsic parameters and
distortion coefficients offline by using Zhang’s camera model [166] during a
standard checkerboard-based calibration stage. This method works very well
and allows subsequent distance images to be rectified even if the sensors have

114 Robot Landmark Processing System

Figure 8.2: The calibration of the left and right robot’s cameras by using a
chessboard pattern.

comparatively low resolutions. The resulting matrix of the internal camera
parameters has the following shape:

M =

fx 0 cx

0 fy cy

0 0 1

fx and fy represent the product of the physical focal length of the lens
and the size of the individual imager elements in the x and y directions,
respectively. cx and cy introduce the coordinates of center of radial lens
distortion. A regular chessboard pattern is used as a calibration object
which is much easier to deal with. Ten different views of the chessboard are
used to calculate the cameras’ parameters where the corners of the black
squares are detected and used as calibration points. Figure 8.2 shows the
calibration of the left and right cameras by using a chessboard pattern.

We used Brown’s technique [11] to calculate the distortion parameters of
the camera’s lens. We have two main lens distortions: radial and tangential
distortions. The radial distortion arises as a result of the shape of the lens,
where the lenses of real cameras often noticeably distort the location of
pixels near the edges of the imager. This bulging phenomenon is the source
of the “barrel” or “fish-eye” effect. This distortion is small and can be
characterized by the first three terms of a Taylor series expansion around r =
0 (k1, k2, and k3). On the other hand, the tangential distortion arises from
the assembly process of the camera as a whole. It is due to manufacturing
defects resulting from the lens not being exactly parallel to the imaging
plane. It is minimally characterized by two additional parameters, p1 and
p2. Therefore, the distortion matrix of the camera can be represented as:

8.2 Stereo Camera Calibration 115

Pixel error = [0.1027, 0.09916]
Focal Length = (417.715, 417.898)
Principal Point = (160.678, 145.854)
Skew = 0
Radial coefficients = (0.4178, −0.2363, 0)
Tangential coefficients = (0.01332, 0.01296)

+/− [27.46, 26.92]
+/− [2.783, 4.445]

+/− 0
+/− [0.06689, 0.456, 0]

+/− [0.004796, 0.005334]

0 50 100 150 200 250 300

0

50

100

150

200

2

2
2

2

2
4

4

4 4

4

6

6

6
6

6

6

8

8

8

8

8

10

10

10

10

12

12

12

14
16

Complete Distortion Model

Figure 8.3: The complete distortion model of the left camera.

D =

k1

k2

p1

p2

k3

Figures 8.3 and 8.4 show the impact of the complete distortion models
on each pixel of the images captured by the left and right robot’s cameras,
respectively. These models contain the radial and tangential distortion com-
ponents of the cameras. Each arrow represents the effective displacement of
a pixel induced by the lens distortion. Observe that points at the corners of
the image are displaced by as much as 25 pixels. On these figures, the cross
indicates the center of the image, and the circle represents the location of
the principal point.

We implemented the stereo calibration of the robot’s cameras by calibrat-
ing each camera independently and then applying geometric transformation
of the external parameters to find out the geometry of the stereo setting.
The external camera parameters are needed for both the correspondence
problem, which determines the epipolar lines for determining point corre-
spondences, and for triangulation, which is used for determining positions
in the real world. Figure 8.5 illustrates the extrinsic model of the stereo

116 Robot Landmark Processing System

Pixel error = [0.1135, 0.1115]
Focal Length = (492.335, 491.697)
Principal Point = (170.584, 144.627)
Skew = 0
Radial coefficients = (0.7815, −3.664, 0)
Tangential coefficients = (0.0005544, −0.0003065)

+/− [33.05, 32.68]
+/− [4.545, 3.613]

+/− 0
+/− [0.1198, 1.452, 0]

+/− [0.004562, 0.008394]

0 50 100 150 200 250 300

0

50

100

150

200

1
1

1
1

2

2
2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6 6

6

6

7

7

7

7

7

Complete Distortion Model

Figure 8.4: The complete distortion model of the right camera.

camera calibration by using ten different views of the chessboard pattern.
We used the left camera as world reference system, so the parameters to
be found are the translation vector and rotation matrix of the right camera
with respect to the left one.

The extrinsic parameters of the stereo pair describe the pose of the object
relative to the cameras’ coordinate system in terms of a rotation and a
translation. In general, a rotation in any number of dimensions can be
described in terms of multiplication of a coordinate vector by a square matrix
of the appropriate size. Ultimately, a rotation is equivalent to introducing
a new description of a point’s location in a different coordinate system.
Rotation in three dimensions can be decomposed into a two-dimensional
rotation around each axis in which the pivot axis measurements remain
constant. The translation represents a shift from one coordinate system to
another system whose origin is displaced to another location; in other words,
the translation vector is just the offset from the origin of the first coordinate
system to the origin of the second coordinate system. Table 8.1 lists all the
calculated internal and external parameters of the stereo camera calibration
of the robot.

8.2 Stereo Camera Calibration 117

Figure 8.5: The extrinsic model of the stereo camera calibration.

Parameters Values

Left intrinsic matrix
457.584275 0.000000 153.147984
0.000000 457.584275 135.743784
0.000000 0.000000 1.000000

Left distortion matrix 0.429594 3.272839 0.00 0.00 -35.568513

Right intrinsic matrix
457.584275 0.000000 172.711794
0.000000 457.584275 148.465763
0.000000 0.000000 1.000000

Right distortion matrix 0.476268 1.252977 0.00 0.00 -21.456410

Stereo rotation matrix
0.999794 -0.006803 -0.019144
0.006036 0.999188 -0.039830
0.019400 0.039706 0.999023

Stereo translation matrix -2.532479 -0.063407 0.018712

Essential matrix
-0.001343 -0.021214 -0.062599
0.067838 0.100428 2.529647
0.048107 -2.530855 0.099654

Fundamental matrix
-0.000000 -0.000002 -0.002361
0.000006 0.000009 0.104717
0.001125 -0.108026 1.000000

Table 8.1: The resulting internal and external calibration parameters of the
robot’s cameras.

118 Robot Landmark Processing System

Figure 8.6: The corresponding features in the left and right images by using
Lucas-Kanade optical flow in pyramids.

8.3 Stereo Vision and Landmark Localization

Stereo vision has the advantage that it is able to obtain an accurate and
detailed 3D representation of the environment around the robot by passive
sensing (i.e. cameras) and at a relatively low sensor cost. It is an important
mechanism in robots, allowing judgments to be made based on the disparity
between the images captured by each camera. We use stereo vision as a
reliable and effective way to extract range information from the environment.
The disparity map resulting from the stereo vision process is integrated
with the landmark classification stage to obtain the position of the nearest
landmarks to the robot. The stereo vision process is divided into four main
steps: corresponding calculation, rectification, disparity map generation,
and triangulation.

In the corresponding point’s calculation stage, the features points in the
left image are retrieved and their equivalent features in the right image are
determined. The left image is scanned to find corners with big eigenvalues
and then the features that are too close to stronger features are removed.
Therefore, we use the Lucas-Kanade optical flow in pyramids [9] to calculate
the coordinates of the feature points in the left captured frame and their
corresponding points in the right captured frame. Figure 8.6 shows the
feature points in the left image and their equivalent points in the right
image.

The rectification stage is used to determine a transformation of each
image plane so that pairs of conjugate epipolar lines become collinear and
parallel to one of the image axes. The rectified images can be thought of
as acquired by a new stereo rig, obtained by rotating the original cameras
around the optical center. The important advantage of rectification is the
computation of correspondences, by which a 2-D search problem is generally

8.3 Stereo Vision and Landmark Localization 119

Figure 8.7: The resulting rectified image of the stereo pair.

reduced to a 1-D search problem, typically along the horizontal raster lines
of the rectified images. Figure 8.7 shows the resulting rectified image for
images illustrated in Figure 8.6. We used Bouguet’s algorithm [9] which
uses the rotation and translation parameters from two calibrated cameras.
It simply attempts to minimize the amount of change reprojection produces
for each of the two images (and thereby minimize the resulting reprojection
distortions) while maximizing the common viewing area. The average error
of epipolar geometry, which is computed by all good matches, is 0.615498
pixel.

Afterwards, the distance between the corresponding points in the left and
right images in pixels is computed. The output of this step is a disparity
map, where the disparities are the differences in x-coordinates on the image
planes of the same feature viewed in the left and right cameras:xl − xr.
We use the feature-based method by Birchfield et al. [4] to construct the
disparity map. This method looks at features in one image and tries to
find the corresponding feature in the other image. The features can be
edges, lines, circles and curves. The main advantage of the feature-based
algorithm is its speed. The process of finding features in both images and
then calculating the disparity is carried out easily in real time. Figure 8.8
shows the disparity and depth map of the stereo images illustrated in Figure
8.6.

Finally, to calculate the object’s position in the 3D environment, the
disparity map should be turned into distances by triangulation. This step is
called reprojection, and the output is a depth map. We use the triangulation
method to compute the world coordinate of all points in the images by using
the disparity map, the focal distance of the two cameras and the geometry
of the stereo setting (relative position and orientation of the cameras). The
triangulation calculates the approximate position of the landmarks in the
real world, which will be used during the path planning stage and also in

120 Robot Landmark Processing System

Figure 8.8: The disparity and depth maps of the stereo images.

executing the navigation task.

8.4 Landmark Detection and Segmentation

In robotic scenarios, the landmark detection stage should be capable of pro-
cessing images extremely rapidly and of achieving high detection rates. The
landmark detection stage is responsible for detecting and segmenting differ-
ent types of landmarks from the captured image during robot navigation.
Its main goal is to retrieve the landmarks from the captured image based on
their shape and rejects false positives. It then segments the detected land-
marks from the image background and stores them into individual images.
These images will be fed to the recognition stage to classify the landmarks
depending on both their features and the processed route.

We used sixteen different landmarks to examine our system as shown in
Figure 8.9. All data of these landmarks are stored in the knowledge base.
These landmarks are classified into three groups as follows:

• Logo landmarks: They have a unique symbol or trademark which is
used to identify them from other landmarks. These symbols are used
to recognize the landmarks in our miniature city (for more details,
see chapter 6) during robot navigation. These landmarks have logos
of supermarkets, department stores, and restaurant; such as the Lidl
supermarket, the C&A store, and the Burger King Restaurant.

• Color landmarks: They have unique shapes and characteristics which
set them apart from the other surroundings, such as their shape and
color features. The railway station and town hall are examples of this
type of landmarks.

8.4 Landmark Detection and Segmentation 121

Figure 8.9: A set of landmarks used in our system.

• Street landmarks: They are simply recognized by their color and posi-
tion in the miniature city. We recognize the crossroads in our miniature
city by using white lines, whereas the street boundaries are identified
as black straight lines.

The landmark detection stage is processed in four basic steps as shown
in Figure 8.10. The first step is the down- and up-scaling process which is
used to filter out the noise. It applies down and up sampling to the captured
image by using Gaussian pyramid decomposition. In the second step, the
canny filter is applied to find the edges in the input image. The canny edge
detector gives a good approximation of the optimal operator. It maximizes
the product of signal-to-noise ratio and localization [137]. The third step
is to dilate the canny filter output to remove potential holes between edge
segments. The last step is to find and approximate the contours. We find
all contours in the image and restrict it to the extreme outer contours, then
approximate the contours by using the Douglas Peucker algorithm [9].

The average time of the landmark detection stage is 105 ms. If the robot
fails to detect any landmark in the captured image, vision planner sends a
signal to the humanoid robot motion planner to pan-tilt the robot’s head
with a predefined angle or to instruct the robot to move closer toward the
landmark.

As an alternative to the computationally expensive windowing strategies,

122 Robot Landmark Processing System

Figure 8.10: The flow diagram of the landmark detection stage.

an image segmentation strategy is proposed. This method could improve re-
sults by reducing background clutter. We crop the detected landmarks from
the image background to reduce the processing time during the recognition
stage. This allows background regions of the image to be quickly discarded
while spending more computation on promising object-like regions. The seg-
mentation technique is based on the outputs of the detection clutter. The
detection stage provides it with the proposed landmark regions, whereas
disparity provides it with the position of the landmarks with respect to the
robot’s position. Once the object is segmented from the background, it has
to be represented in a compact way for future indexing.

8.5 Vision Planner

The vision planner decides which algorithm should be used to recognize land-
marks seen by the robot during navigation. This learning is based on both
simple attributes extracted on-line from the images and data retrieved from
the symbolic and graphical representations of the processed route. There-
fore, the vision planner chooses the suitable appearance-based technique for
the detected landmarks depending on their features. For the appearance-
based approaches, the vision planner can choose between Hough transform,
color detection, or color histogram techniques. For the model-based ap-

8.6 Landmark Classification 123

proaches, it can choose whether or not to use the SIFT approach.
The vision planner concerns the problem of learning from interaction to

achieve a goal. On each interaction step the robot senses the current state of
the environment by using its cameras, and chooses a recognition technique
to process this. The policy of choosing is some function that tells the robot
which recognition approach should be chosen, and is learned based on data
provided by the route description.

Finally, the vision planner stores the recognized landmarks and their
positions. It can use this information to get an idea of where the position
of the new landmarks is with respect to the detected landmarks. The vision
planner provides the vision output to the symbol grounding stage in the
motion planner to connect the symbolic representation of the landmarks
with their equivalent physical data.

8.6 Landmark Classification

Landmark classification is the core stage of RLPS. It is implemented by
using a two-step classification. The major advantages of the proposed two-
step classification based method are its robustness and invariance towards
scaling and translations. Also, it provides a good balance between fast
processing time and high detection accuracy. First, an appearance-based
method is used to classify the landmarks to get an initial estimation of the
processed landmark. Then, a model-based classification is used to refine
the recognition stage and obtain an accurate estimation of the landmark.
This combination of appearance-based and model-based methods leads to
a robust classification of the landmark and also speeds up the recognition
process.

In addition to the proposed two-step classification, we proposed multi-
ple methods integration for landmark recognition to handle many types of
landmarks in the environment. The robot selects an appropriate method
to detect landmarks according to the situation. All selected techniques are
suitable to be adapted to mobile robots, and we evaluate them on a chal-
lenging dataset of landmarks (see Figure 8.9).This yields a flexible higher
performance landmark classifier.

8.6.1 Appearance–Based Stage

We use the color histogram, color detection, and Hough Transform (HT)
as appearance-based methods to get a fast rough classification of the land-
marks. Selecting which algorithm should be used by a mobile robot com-
puter vision system is a decision that is usually made a priori to the process-
ing stage of the captured image. In order to decide which technique should
be used by RLPS, the vision planner should be checked first.

124 Robot Landmark Processing System

For logo landmarks, a color histogram is calculated first to produce ini-
tial hypotheses before supplying the processed landmark to the model-based
stage to get an accurate estimation of this landmark. As the RGB color
space is not very stable with regard to alterations in the illumination, the
representation of a color with the RGB color space contains no separation
between the illumination and the color parts. Therefore, we used the HSV
color space, which is robust against alterations in illumination, because the
color parts and the illumination are represented separately. The color his-
togram returns the hue distribution of the detected landmarks and does not
preserve the geometric structures of these landmarks. The hue color compo-
nent is determined by the dominant wavelength in the spectral distribution
of light wavelengths. This component is ideally independent of the lighting
conditions and the distance between object and observer. Therefore, they
are reliable parameters for object recognition.

On the other hand, color histograms of training images, which are stored
in the database, are computed offline to reduce the consumed time. Only
the histogram of the tested landmark needs to be calculated. Comparison
of these two distributions (detected and stored landmarks) which are rep-
resented in the form of histograms is made on the basis of the correlation
coefficient kc for these distributions, which has the form:

kc =

n∑

i=1

(xi − x)(yi − y)

[n∑

i

(xi − x)2(yi − y)2
]1/2

where xi and yi are histograms for the detected and stored color distri-
butions, respectively. Whereas, x and y are the average values of these
distributions. If the two histograms are identical, the correlation coefficient
is equal to unity. The stronger the correlation coefficient differs from unity,
the stronger is the diversity between the considered distributions. Thus the
correlation method of comparison of histograms is the simplest and strongest
method for the analysis of observed data for a certain meteorological phe-
nomenon. The resulting correlation coefficients of the color histograms with
the information retrieved from the topological map and the route symbolic
representation are used as an initial estimation of the processed landmark.
Figure 8.11 shows the hue color histograms of some landmarks which are
detected by using their logo. The average time of the color histogram in our
system is 3.4 ms.

Shape landmarks are detected by using their colors and shapes. First,
we convert the color space of the processed image from the RGB to the
HSV system which is good for illumination variations. Then, the strength
of the captured colors is increased by increasing the saturation component
of the image by a certain threshold which would make it easier for the robot

8.6 Landmark Classification 125

Figure 8.11: The hue color histograms of logo landmarks.

to realize images nicely. Afterwards, the color space is converted again
to RGB color space to check the landmark color. Finally, we treat the
resulting image by using erosion followed by a dilation operation. These
two operations arise in a wide variety of contexts such as removing noise,
isolating individual elements, and joining disparate elements in an image
[137]. In general, whereas dilation expands the processed region, erosion
reduces this region. Moreover, dilation will tend to smooth concavities and
erosion will tend to smooth away protrusions. Figure 8.12 illustrates the
basic four stages of the color detection stage for a railway station landmark.

Finally, to recognize crossroads and street boundaries, we used the Pro-
gressive Probabilistic Hough Transform (PPHT) [101] to find the straight
lines on the ground. PPHT minimizes the amount of computation needed
to detect lines by exploiting the difference in the fraction of votes needed
to reliably detect lines with different numbers of supporting points. This
algorithm is ideally suited for real-time applications with a fixed amount
of available processing time, since voting and line detection is interleaved.
The most salient features are likely to be detected first. PPHT is robust to
noise and occlusions and it is not computationally expensive as compared
to the normal Hough transform. The average detection time of PPHT in
our system is 1.66951ms.

At the beginning, we applied the Canny edge detector to find edges
in the processed image, then PPHT randomly selects sets of data points
from which the surface parameters can be directly computed and records. If
many data sets yield the same parameters, a high score for these parameters

126 Robot Landmark Processing System

Figure 8.12: The color detection stages of the ”railway station” landmark.

is obtained. Figure 8.13 shows the detected lines by using PPHT during
recognized crossroads and street boundaries.

8.6.2 Model–Based Stage

This stage classifies the detected landmarks according to their geometrical
properties. After applying the appearance-based technique and having some
hypotheses, we used the model-based stage to refine the recognition stage
and obtain an accurate estimation of the landmark.

The SIFT technique is used to classify the landmarks which have unique
logos in the environment, such as the Lidl supermarket, the Saturn store,
and the Burger King Restaurant. Figure 8.14 illustrates the main com-
ponents of the recognition process by using the SIFT approach. Initially,
SIFT descriptors of the detected features in the processed landmark are de-
termined. Then the resulting descriptors are matched to the ones with the
highest hypotheses which are stored in the landmark knowledge base by us-
ing the Euclidean distance. False matches are rejected if the distance of the
first nearest neighbor is not distinctive enough when compared with that
of the second. Figure 8.15 shows SIFT descriptors of the detected features
for some landmarks, whereas the matching process between the examined
images and the stored landmarks is shown in Figure 8.16.

Once a set of matches is found, the Hough Transform is used to clus-
ter each match of every knowledge base image depending on its particular
transformation. Although imprecise, this step generates a number of initial

8.6 Landmark Classification 127

Figure 8.13: The detection of the crossroads and street boundaries by using
PPHT.

Figure 8.14: The block diagram of the SIFT approach.

128 Robot Landmark Processing System

Figure 8.15: The SIFT descriptors of detected features for logo landmarks.

Figure 8.16: The matching between the calculated SIFT descriptors of the
processed images and those of the stored landmarks in the knowledge base.

8.7 Experimental Results 129

coherent object hypotheses and removes a notable portion of the outliers
that could potentially confuse more precise but also more sensitive meth-
ods. All clusters with at least three matches for a particular training object
are accepted, and fed to the next stage: the Least Squares method, used to
improve the estimation of the affine transformation between the model and
the test images.

Finally, the landmark with the highest matching points is chosen as the
recognized landmark (i.e. the more SIFT-matches found in an image, the
more likely it is that that image contains the object). If the number of
matches exceeds an object-dependent threshold, the object is considered
recognized. Some objects have more features than others and are thus eas-
ier to recognize. To minimize the number of false positives, the threshold
depends on the number of features found during training. The average SIFT
recognition time in our system is approximately 550 ms.

After recognizing the landmarks, the topological map is used to specify
which landmarks will be processed by the robot. The robot focuses only
on the landmarks which are already mentioned in the route description and
presented in the topological map. This leads to decreasing the processing
time be ignoring unwanted landmarks. The nearest landmark in the route
description to the robot is chosen by using the disparity map, and then
triangulation is used to calculate the approximate world position of this
landmark. After recognizing landmarks and calculating their locations in
the real world, the robot navigates to the landmark by using the information
supplied by the topological map.

8.7 Experimental Results

In this section, we demonstrate that RLPS is more powerful as it learned to
recognize a wide range of landmarks and to find them in the environment
even when there are landmarks of similar colors in the field of view. It also
handles landmarks with viewpoint variances, occlusions, and illumination
changes. The main purpose of these experiments is to evaluate our proposed
techniques to be used in an indoor mobile robot. As mentioned previously,
we implemented our system on a HOAP-2 humanoid robot. The robot is
equipped with two 0.25” CMOS unsynchronized cameras. The two cameras
are linked via USB connections to an Intel 1.73 GHZ Duo laptop with 3GB
RAM. The operating system is a standard Linux distribution and kernel
with Video for Linux drivers for video capture. In its current form the
system can process 320 x 240 images at 25 fps.

To evaluate the performance of our robot landmark processing system,
the following procedure was carried out: first, we approximately captured
1000 different images from our miniature city with different viewing angles,
distances from the robot, occlusions, and illumination changes. Then, we

130 Robot Landmark Processing System

Figure 8.17: An example of some images used for evaluating RLPS.

tested these images by using our system and other state-of-the-art techniques
to validate the suitability of the RLPS for our purpose. Finally, we analyzed
the resulting data to evaluate RLPS with respect to other techniques.

8.7.1 Evaluation of The Logo Landmarks’ Technique

In this experiment, we used a dataset of images that contains approximately
900 testing images (100 images for each of the logo landmarks: the C&A
store, the Lidl supermarket, the Burger King restaurant, etc.). These images
are captured during the robot’s navigation in the miniature city. Figure 8.17
shows a subset of the tested images for the Saturn store landmark. Each
tested image contains one or more instances of the landmarks, some of them
with illumination changes, partial occlusions, or viewpoint variances. In
addition to our proposed method, we selected three state-of-the-art object
recognition methods, which are suitable to be adapted to the mobile robot’s
applications, to compare them with the performance of our proposed tech-
nique. We used the original SIFT, color histogram, and Speeded Up Robust
Features (SURF) [1] techniques to compare them with the detection rate
of the proposed system. Evaluation is done by comparing the number of
detected objects, false negatives, and false positives resulting by applying
these approaches to the processed dataset.

8.7 Experimental Results 131

Figure 8.18: The ratio of the correct classifications for the landmarks with
occlusions.

Landmarks with Occlusions

In this experiment, we tested 315 images that contain landmarks with oc-
clusions. Figure 8.18 shows the recognition rate for each tested landmark
by using four different object recognition techniques. It can be noticed that
the color histogram method completely fails to detect and recognize some
landmarks with occlusions, such as Burger King, C&A, and Saturn. The
average detection rate of the color histogram is less than 15%. On the other
hand, our system handles the cropped landmarks efficiently except in a few
cases which result from false positives in the first recognition stage. The
average detection rate for SIFT, SURF, and our system is more than 94%.

Landmarks with Viewpoint Angle Variations

For landmarks with viewpoint variations, we used 360 images to test the per-
formance of our system and compare it with the performance of the other
techniques. As seen in Figure 8.19, it can be observed that the recognition
rate of our system is better than other classification methods. The detection
rate of RLPS is more than 85%, whereas the other techniques are less than
75%. For the color histogram method, the detection rate changes depend-
ing on the landmark. For example, the detection rate of the MacDonald’s
landmark using a color histogram is 100%, whereas the Saturn landmark is
not detected at all.

132 Robot Landmark Processing System

Figure 8.19: The ratio of the correct classifications for the landmarks with
different viewing angles.

Landmarks with Illumination Variations

This experiment is conducted to know the effect of the illumination varia-
tions on the correct classification rate. The tested images are classified into
five groups. The first one (Group N) was captured at the normal room light-
ing condition. The second and third groups (Group D1 & D2) were taken
with darker illuminations. The last two groups (Group L1 & L2) were taken
with brighter illuminations. Figure 8.20 shows an example of each group.
The effect of the illumination variations to the detection rate is illustrated
in Figure 8.21. It can be seen that our technique achieves a much better
recognition rate than the other methods. It can be also noticed that the
detection rate of the color histogram technique is strongly affected when
illumination is increased.

Landmarks with Distance Variations

We tested the effect of the distance between the detected landmarks and the
robot’s position on the detection rate. Figure 8.22 illustrates the effect of the
distance variation on the detection rate for the tested four techniques. The
effect of the distance variations on the resulting number of the corresponding
features in both SIFT and SURF techniques is shown in Figure 8.23.

8.7 Experimental Results 133

Figure 8.20: Images with different illumination conditions.

Figure 8.21: The ratio of the correct classifications for the landmarks with
illumination changes.

134 Robot Landmark Processing System

Figure 8.22: The detection rate vs. the distance from the robot’s position.

Figure 8.23: The number of the resulting corresponding features vs. the
distance from the robot’s position.

8.7 Experimental Results 135

Figure 8.24: The ratio of the correct classifications for all tested images.

Average Classification Rate

To test the average performance of our proposed system, we calculated the
average detection rate of all captured images for all tested classification
techniques under different conditions. The ratio of the correct classifications
for each tested landmark in the dataset is illustrated in Figure 8.24. It can
be observed that the correct recognition rate of our proposed technique is
more that 90% for most of the tested landmarks. It can be also noticed that
the detection rate of the color histogram is the lowest rate among the other
tested techniques. For SIFT and SURF methods, the landmark classification
is based on the fact that the more matches are found in the image, the more
likely it contains the landmark. Table 8.2 illustrates the detection rates
for each technique under different conditions. As seen in this table, our
proposed system was able to achieve 91% classification accuracy on the test
set, yielding only 9% false positives and false negatives.

For each tested classification method, we measured the average time
for detection, average classification time, and average total processing time.
Table 8.3 lists the time consumed in each stage.

8.7.2 Evaluation of The Color Landmarks’ Technique

For color landmarks, we capture 20 different images for each landmark to
test the performance of the proposed technique. The captured images are
processed to calculate both the consumed time in each stage and the detec-

136 Robot Landmark Processing System

Table 8.2: Detection rate of the tested images for the four classification
techniques.

Table 8.3: The average consumed time of each stage for all tested classifica-
tion techniques.

8.8 Discussion 137

Table 8.4: The detection time and rate of the color landmarks.

tion rate for each landmark. Table 8.4 shows the detection time and rate for
all color landmarks. It also lists the average total time and detection rate
for all color landmarks.

8.8 Discussion

In this chapter, we have presented our current effort toward building a ro-
bust and fast robot landmark processing system. We used a more natural
approach in terms of computational efficiency to recognize the landmark
online during robot navigation. The appearance-based techniques of the
detected landmarks are used to provide the rough initial estimate of the
landmark. Then, we processed the resulting hypotheses with a model-based
approach to calculate an accurate estimation of the landmark.

In addition to the proposed two-step classification, we proposed multi-
ple methods integration for landmark recognition to handle many types of
landmarks in the environment. The robot selects an appropriate method to
detect landmark according to the situation. All selected techniques are suit-
able to be adapted to mobile robots, and we evaluate them on a challenging
dataset of landmarks.

Stereo vision is used to calculate the 3D position of the landmarks in the
real world. We used stereo vision as a reliable and effective way to extract
range information from the environment. The disparity map resulting from
the stereo vision process is integrated with the landmark classification stage
to obtain the position of the landmarks nearest to the robot.

On the other hand, we tested the performance of our robot landmark
processing system. We captured approximately 1000 images for landmarks
during robot navigation in the miniature city. We compared our proposed
technique with three different state-of-the-art object recognition techniques.
We measured the ratio of correct classification of the landmarks under differ-
ent conditions, such as occlusions, viewpoint variations, distance variations,
and illumination changes. The different advantages and drawbacks found

138 Robot Landmark Processing System

for each method are highlighted, and some ideas for extending them are pro-
posed. Evaluation is done comparing the number of detected objects and
false positives for the tested approaches.

CHAPTER 9

Humanoid Robot Motion Planner

The autonomous navigation for humanoid robots comprises an increasingly
important research area. The development of practical motion planning al-
gorithms and obstacle avoidance techniques is considered as one of the most
important fields of study in the task of building autonomous or semiau-
tonomous robot systems. This leads to a rising demand for motion plan-
ning algorithms which are suited to the unique characteristics of bipedal
humanoid robots and their typical operating environments. Therefore, mo-
tion planners which are implemented for wheeled mobile robots cannot be
applied to bipedal humanoid robots. The motion planners designed for hu-
manoid robots combine both path planning generation and the ability of
executing the resulting path with respect to the kinodynamic characteris-
tics of the humanoid robot. These planners should consider the specific
dynamical constraints and stability problems which significantly reduce the
motion range of the humanoid robots.

In this chapter, we present a time-efficient hybrid motion planning sys-
tem for a Fujitsu HOAP-2 humanoid robot in indoor and miniature city
environments. The proposed technique is a combination of sampling-based
planner and D* Lite search to generate dynamic footstep placements in
unknown environments. It generates the search space depending on non-
uniform sampling of the free configuration space to direct the computational
resources to troubled and difficult regions, such as turns and narrow pas-
sages. A modified cylinder model is used to approximate the trajectory for
the robot’s body-center during navigation. It calculates the actual distances
required to execute different actions of the robot and compare them to the
distances from the nearest obstacles. D* Lite search is then implemented to
find dynamic and low-cost footstep placements within the resulting config-
uration space. The proposed hybrid algorithm reduces the searching time
and produces a smoother path for the humanoid robot with low cost.

140 Humanoid Robot Motion Planner

9.1 Overview of The Proposed Motion Planner

In general, the motion planning problem is characterized by the ability to
compute a collision-free path for a mobile robot from its initial position to
a final position through its workspace. We developed a motion planning
system for a humanoid robot to execute route-based navigation tasks. The
proposed motion planner allows the humanoid robot to take advantage of
its bipedal capabilities and navigate in its surrounding environment to ac-
complish autonomous biped locomotion. The planner operates at the level
of footsteps and ignores the lower-level details of leg movements and control.

To reach places in unknown environments, there is often a need to re-
plan paths online based on the new findings extracted from the robot’s visual
perception. A natural way of updating plans is to first select a path based
on the initially presented knowledge for the robot, then move along that
path for a short time while collecting new information from the robot’s vi-
sion. Based on the new findings, the path is then re-planned. As discussed
in the last two chapters (Chapters 7 & 8), the motion planner is based on
two main inputs. The first input is the initial path estimation which results
from the symbolic representation of the processed route. It provides the
motion planner with the relationships between locomotion actions, spatial
relationships, and landmarks which are extracted from the processed route.
The second input is the processed vision data from the stereo vision and
landmark detection stage of our humanoid robot navigation system. It con-
tains the information about the detected landmarks and their positions in
the route environment.

The main task of the proposed motion planner is to find a sequence of
actions as close to optimal as possible that causes the robot to reach its
target location while avoiding the obstacles in an unknown environment. In
other words, the motion planner is implemented to plan the motion and the
footstep placements for the humanoid robot while moving in an unknown
environment. It is also used to re-plan the robot’s motion depending on the
new findings sensed by stereo vision sensors during navigation. To accom-
plish this task, the planner should first have a way to connect the high-level
cognitive processes, which perform abstract reasoning and generate plans
for actions, with their corresponding sensorimotor processes that observe
the physical world and execute actions in it. Secondly, the planner has to
handle the uncertainties in the sensors and motors of the robot during nav-
igation. Thirdly, it should plan the head motion of the robot depending on
the processed route to detect the mentioned landmarks in the route descrip-
tion. Fourthly, it should have a suitable technique for the characteristics of
the humanoid robot to avoid obstacles during path planning. Finally, it has
to generate shortest low-cost footstep placements to execute the generated
path. The used technique should be dynamic to handle new findings in the
route environment without planning from scratch.

9.1 Overview of The Proposed Motion Planner 141

Figure 9.1: The architecture of the humanoid robot motion planner.

Our motion planner is based on a decoupled trajectory planning ap-
proach [14, 71] which is implemented to first extract the path for the robot
without considering its dynamic constraints. Then, it applies the kinody-
namic and physical constraints of the robot to the resulting path. The
proposed planner is used to solve the motion-planning problem and handle
the kinodynamic constraints of the HOAP-2 humanoid robot [41]. The plan-
ner is processed as two sequential phases. First, a sampling-based algorithm
computes a collision-free path for the described route by ignoring system
dynamics of the humanoid robot. Then, both the footstep planner and the
motion trajectory generator are used to compute appropriate controls to
implement the desired path and generate feasible motions for the humanoid
robot.

Figure 9.1 shows the architecture of our humanoid robot motion planner.
The motion planner consists of five basic components: symbol grounding,
head-motion planner, collision avoidance, path planner, and footstep plan-
ner. The symbol grounding phase is used to connect the symbolic represen-
tations of landmarks and locomotion actions to their equivalent perceptual
landmarks and motion procedures, respectively. The output of the symbol
grounding stage is provided to the head motion planner to plan the motion
of the robot’s head with respect to the positions of the landmarks. It is
also supplied to the path planner to generate the shortest feasible roadmap
graph of the robot’s path.

The path planner is implemented to extract the minimal feasible Cfree

and generate the shortest path to the target position. We used the Lazy
Probabilistic RoadMap mechanism (Lazy-PRM) with a non-uniform sam-
pling to avoid the computational complexity of generating a denser search
area. The planner directs the computational resources to troubled and diffi-
cult regions, such as narrow passages, leaving the larger open spaces sparsely
populated. A smoothing penalty is also associated to the nodes to encour-
age the generation of gentle paths along the middle of the empty spaces.

142 Humanoid Robot Motion Planner

The sampling is increased in complex areas and leaves out simple areas with
lower resolution density.

For collision detection, a cylinder model is used to approximate the tra-
jectory for the body center of the humanoid robot during navigation. It
calculates the actual areas required to execute different motion actions of
the humanoid robot and compares them with the distances to the nearest
obstacles. Collision detection is carried out off-line during the creation of
C-space to speed up the actual search for the path.

Finally, the footstep planner is implemented to find smooth and low-
cost footstep placements of the humanoid robot within the resulting Cfree.
It uses D* Lite search to reduce searching time and produces a smoother
dynamic path for the humanoid robot at a low cost. In the following sections,
the building blocks of the motion planner will be discussed in detail. The
implementation of the hybrid algorithm for robot motion planning and the
generation of the sequence of footstep location for the humanoid robot will
be elucidated.

9.2 Symbol Grounding

As mentioned in Chapter 7, our humanoid robot navigation system is based
on the route instructions provided by the user to describe the navigation
task for the robot in miniature city or indoor environments. The resulting
route description is processed to generate an initial path estimation for the
robot in both symbolic and graphical representations. These representations
are supplied to the motion planner as guidance during the planning process.
They also provide the planner with the relationships between processed ac-
tions and mentioned landmarks in the route description. The second input
to the motion planner is the processed vision data from the robot’s cameras.
The humanoid robot begins from the start point and moves along the esti-
mated path to collect information about its route environment. As discussed
in Chapter 8, the captured images are processed to detect, recognize, and
localize the landmarks during the robot navigation. The resulting informa-
tion is supplied to the motion planner to re-plan the robot’s path depending
on the new findings. The symbolic and graphical route representations and
the resulting vision data are processed by the symbol grounding stage in
the motion planner to connect each symbol in the route description to its
corresponding perceptual data.

The main function of the symbol grounding stage is to incorporate the
high-level cognitive processes with their corresponding sensorimotor pro-
cesses. The high-level cognitive processes are presented in our system as
a processed route description to perform abstract reasoning and generate
plans for robot actions. They use symbols to denote both landmarks and
robot actions. Otherwise, the sensorimotor processes observe the physical

9.2 Symbol Grounding 143

Figure 9.2: The anchoring process of symbolic and perceptual data for a
landmark.

world and execute actions in the route environment. They operate from the
cameras’ data that originate from observing these landmarks. If the overall
system is to perform its tasks successfully, it needs to make sure that these
processes are successfully connected to indicate the same physical objects.

To solve the symbol grounding problem, a methodology is needed to
resolve situations where the sensors detect several landmarks that are con-
sistent with the symbolic description of a desired landmark. In order for an
autonomous system to function robustly when faced with such ambiguous
situations, it needs to reason and act in a way that allows it to distinguish
between the perceived objects and determine their correct correspondents.
The plan involves finding out relevant information about the landmarks un-
til the correct landmark is identified. We used the perceptual anchoring
via conceptual spaces to connect the symbolic cognitive system (Σ) with its
corresponding sensorimotor perceptual system (Π). Figure 9.2 shows the
anchoring process of the “BurgerKing” landmark that connects its symbolic
representation with its perceptual region in the captured image. The con-
ceptual space is a metric space whose dimensions, called qualities [48], are
related with the quantities processed by the robot sensors. Points in a con-
ceptual space, called knoxels [21], represent the epistemologically primitive
elements at the considered level of analysis. For logo landmarks (such as
BurgerKing), the conceptual space represents three different quantities: the
correlation values to the hue component of the stored color histograms, land-

144 Humanoid Robot Motion Planner

mark shape and size range, and the number of the matched SIFT points.
Table 9.1 shows properties and attributes values of some landmarks from
the stored landmark database.

Property Attribute Value
BKColor Color Histogram {70, 54, 57, 52, 41, 27, 50, 69,

169, 200, 23, 40, 26, 23, 15, 27}
BKShape Rectangle [2000–70000]
BKRecognition SIFT Feature List
CRColor Color White
CRShape Line Dashed
CRRecognition Hough Line
THColor1 Color Green
THColor2 Color Yellow
THShape1 Rectangle Big
THShape2 Rectangle Small

Table 9.1: Database table of the landmark properties.

On the one hand, the symbolic system manipulates individual symbols
for each landmark to denote its physical object. The predicate grounding
function (g) associates each individual symbol with a set of symbolic pred-
icates that assert properties of the corresponding landmark. It associates
unary predicates in Σ to areas in the conceptual space. In other words,
the g function gives semantics to symbolic predicates in terms of observable
quantities in the conceptual space. On the other hand, the perceptual sys-
tem generates percepts from the observation of physical landmarks that are
represented as regions in the captured images. The sensor model function
(h) associates each percept with its observed values of a set of measurable
attributes. It transforms a measurement vector from the sensor system into
a set of knoxels in the conceptual space.

Therefore, the correspondence between symbols and percepts is reified
in a data structure called anchor (α(t)) that contains pointers to the cor-
responding symbols (σi) and percepts (πi). In addition to these pointers,
it has a pointer to an estimate of the current values of some attributes of
the landmark which it refers to. This pointer is called the signature and
denoted by γi which indicates its corresponding knoxels in the conceptual
space. An anchor can be considered as a model of a physical object that
reflects the persistence of the object, and which can be shared across differ-
ent subsystems of the agent. Once an anchor has been created, it should be
continuously updated to account for changes in the landmark’s attributes
and handle the connections of this landmark with its neighbor landmarks in
the route description. This connection is made depending on the relation-
ships that are retrieved from the processed route to handle the uncertainty

9.3 Head-motion Planner 145

during robot navigation.
We extended the anchoring process to handle not only the landmarks

but also robot actions. The anchoring process is used to connect the sym-
bolic representation of the robot locomotion actions to their corresponding
dynamic procedures which are controlled by both path and footstep plan-
ners. Figure 9.3 shows symbolic representations of some robot actions and
their corresponding dynamic procedures.

Figure 9.3: The symbolic and dynamic procedures of some robot locomotion
actions.

9.3 Head-motion Planner

In real and unknown environments, usually motion planners only focus on
how to find an optimal path to the destination, but it is also important to
decide on where to explore and look in order to accomplish finding a path to
the goal. Therefore, when the humanoid robot is following a path, its head
should be moved according to the situation presented in the initial path
estimation to detect and localize the landmarks. As a result, the motion
planner should generate walk and head-motion commands and send them
to the motion trajectory generator to execute them.

Accordingly, we implemented the head-motion planner to direct the
robot’s head to a suitable angle with respect to the landmark position in the
processed route. The head-motion planner is used to plan the movement of
the robot’s head depending on the direction of landmarks in the estimated

146 Humanoid Robot Motion Planner

Head Direction Angle Range
UP 0 ◦ – 45 ◦

DOWN −15 ◦ – 0 ◦

LEFT 0 ◦ – 45 ◦

RIGHT −45 ◦ – 0 ◦

Table 9.2: The ranges of head movement for HOAP-2 humanoid robot.

initial path and the movement ranges of the neck motors. Table 9.2 shows
the actual range of the neck motors for the HOAP-2 humanoid robot. The
robot will tilt its head to the right or left to detect the landmarks which are
located at the road sides. It also looks down to the floor to detect landmarks
such as crossroads and street boundaries in the miniature city. The head
orientations of the humanoid robot are divided into four actions: turn right,
turn left, move up, and move down. The humanoid robot can turn its head
by 45 ◦ in both the right and left directions. It can also raise its head by
45 ◦ and lower it by 15 ◦.

Algorithm 3 shows the used technique in the head-motion planner. First,
it checks the direction of the landmark from the estimated path. Then, the
robot changes its head direction depending on the location of the processed
landmark. If the robot fails to detect the landmark, the planner changes its
head direction by 15 ◦. It processes again until it detects the landmark or
terminates if the angle of the robot’s head equals 0 ◦.

9.4 Collision Detection

Collision detection is considered to be one of the crucial factors in motion
planning. For humanoid robots, there is an effective and simple way to
detect collision by choosing an appropriate bounding volume approximating
the shape of the robot. A trajectory for the body-center of a humanoid robot
is computed by approximating its shape by using a cylinder surrounding its
body as shown in Figure 9.4. A cylinder model is useful during humanoid
robot turns and lateral walking to calculate the actual processing space
required to execute robot actions. As the positions of the nearest obstacles
to the robot are calculated by using triangulation, a cylinder model of the
humanoid robot can be checked for obstacle avoidance in a constant time.
Simply, if the distance between the robot and the obstacle is known, then it
will be compared to the radius of the cylinder model.

The cylinder is a tight fit to the shape of the humanoid robot standing
still. When the robot moves, however, additional space is needed for the
transition in C-space as body and legs are swinging while walking. Figure
9.5 shows snapshots of the robot when moving forward, turning right and
stepping sideways. We account for the additional space by enlarging the

9.4 Collision Detection 147

Algorithm 3: Head-motion planner
input : LM ← the processed landmark

DLM ← the direction of the processed landmark
output: θh ← the horizontal angle of the robot’s head

θv ← the vertical angle of the robot’s head

M= 15;
if DLM = Left then

θh ← 45 ;
θv ← 0 ;
repeat

LandmarkDetection(LM);
θh ← θh− M;

until (LandmarkDetection(LM) 6= NIL OR θh = 0) ;
if (LandmarkDetection(LM) = NIL) then return failure;

else if DLM = Right then
θh ← −45 ;
θv ← 0 ;
repeat

LandmarkDetection(LM);
θh ← θh+ M;

until (LandmarkDetection(LM) 6= NIL OR θh = 0) ;
if (LandmarkDetection(LM) = NIL) then return failure;

else
θh ← 0 ;
θv ← −15 ;
if (LandmarkDetection(LM) = NIL) then RobotBowing();
if (LandmarkDetection(LM) = NIL) then return failure;

Figure 9.4: HOAP-2 humanoid robot cylinder model.

148 Humanoid Robot Motion Planner

Figure 9.5: Different motion actions of the humanoid robot by using a cylin-
der model.

cylinder at the start and end configurations depending on the action which
will be processed by the robot. When the robot walks sideways, no addi-
tional space is needed. If the robot walks straightforward, it needs additional
space with respect to the swinging of its legs while walking. Therefore, the
obstacle distance is compared to the enlarged cylinder radius plus the ex-
pected step distance. Otherwise, as humanoid robots are non-holonomic,
they cannot turn in place without requiring additional space. For turns, the
humanoid robot wants extra turning space in a cylinder model, and then
the cylinder model is enlarged by twice the turn radius to let the humanoid
robot turn in a specific direction without collision. Therefore, such an ap-
proximation enables a humanoid robot to find paths in real-time and include
actions such as walking sideways through a narrow space.

9.5 Path Planner

The path planner can be considered as the core stage of our motion planner.
It generates the shortest roadmap graph (G) of the robot’s path. It only
returns the path graph, not the ability to execute that path. In our system,
the path planner only depends on both the processed route description, as
initial path estimation, and the retrieved data from vision. As the robot
navigates in an unknown environment, the path planner processes the path
as segments from the generated topological map (see Chapter 7). Each seg-
ment represents the distance between two adjacent landmarks in the robot’s
estimated path. The planner processes each segment as an independent
path with its own start and end points. It is continuously evaluating the
current Cfree and sends the resulting roadmap graph (G) of the processed
path segment to a footstep planner which computes the next footsteps of
the humanoid robot. The resulting footstep placements and robot actions
are fed to the robot’s motion trajectory generator to execute the motion of

9.5 Path Planner 149

the humanoid robot.
As the sampling-based motion planning algorithms present practical and

efficient solutions for the motion planning problem, they are extensively ap-
plied to many problems in high-dimensional configuration spaces. Therefore,
we implemented our path planner by using a modified version of the Prob-
abilistic RoadMap planner (PRM) [92, 88]. We applied the lazy evaluation
[6, 25] to the PRM planner with non-uniform sampling to handle narrow
passages. The main theme of the planner is to minimize the number of
collision-checks performed during planning. By avoiding local planning and
instead keeping the global view, only the part of C-space that is essential in
answering a query is explored.

The path planner minimizes the running time by reducing the number
of collision checks performed during planning. It initially assumes that all
nodes and edges in the roadmap are collision-free, and searches the roadmap
for the shortest path between the start and goal nodes. The nodes and edges
along the path are then checked for collision. If a collision with an obstacle
occurs, the corresponding nodes and edges are removed from G. It updates
the roadmap with new nodes and edges, and then searches for the shortest
path. The above process is repeated until a collision-free path is returned.
To avoid bad estimations for the path planner, we used limited time for
processing and generating G.

Consequently, the planner is tailored to efficiently answer single planning
queries, but can also be used for multiple queries. Algorithm 4 illustrates
the functionality of the proposed path planner and is explained in the next
subsections.

9.5.1 Grid Generation

At the beginning, a low resolution regular grid is applied to C-space to
generate a search grid. The C-space is divided into small cells of 7.0 cm
(width) x 5.0 cm (height). Each cell has an associated location in the grid
(x, y) and an information value. The grid generation will help in maintaining
the connectivity of the graph by defining a minimum discretization for the
open spaces. The discretization density is adjusted to suit the environment,
selecting as sparse a grid as possible. Up to this stage, the cells hold only
position information.

9.5.2 Sampling Process

A crucial ingredient of the path planner is a sampling algorithm. Its aim
is to minimize the on-line computation by pre-generating a search space to
contain all the information that will be used during the on-line path plan-
ning, while at the same time avoiding the generation of an unnecessarily
complete and complex space. It samples the Cfree by using a non-uniform

150 Humanoid Robot Motion Planner

Algorithm 4: The proposed path planner
input : n← the number of nodes in the roadmap

k← the number of the closest neighbors to c
output: A roadmap G = (V, E)

P ← a path from cinit to cgoal

foreach Si ∈ Initial Path Estimation do
V ← {}, E ← {};
cinit ← the initial configuration of Si;
cgoal ← the goal configuration of Si;
V ← V ∪ {cinit};
GridGeneration();
repeat

c ← a random configuration in C-space;
if c ∈ Cobst then

ć ← a random configuration in C-space;
if ć ∈ Cobst then

cm ← the midpoint of cć line segment ;
if cm ∈ Cfree then V ← V ∪ {cm};

else
V ← V ∪ {c};

until |V | > n ;
V ← V ∪ {cgoal};
forall c ∈ V do

Nc ← the k nodes of c from V ;
forall ć ∈ Nc do

cs ← closest neighbor of c from Nc in cgoal direction;
if (c, cs) /∈ E AND M (c, cs) 6= NIL then

E ← E ∪ {(c, cs)};
break ;

else
Nc ← NcÂ{cs};

P ← shortest path (cinit, cgoal, G);
if P /∈ ∅ AND P ∈ Cfree then

return P ;
else if t < tmax then

PathEnhancement();
else

return failure;

9.6 Footstep Planner 151

approach returning with the minimal free search space to avoid the com-
putational complexity of generating a denser search area. The C-space is
sampled by using the bridge test approach [58] that was introduced to boost
the sampling density inside narrow passages using only a simple test of the
local geometry. The idea is to take two random samples, where the distance
between the samples is chosen according to Gaussian distribution. Only if
both samples lie in Cobst and the middle point between them lies in Cfree,
the free sample is added. Increasing the density of sampling around narrow
passages increases the chances of finding samples in areas that are hard to
reach and are likely to be needed for finding a solution. On the other hand,
the samples in open space are randomly chosen in the medial of C-space
with lower density.

9.5.3 Roadmap Generation

The purpose of the path planner is to build a roadmap graph (G) of a feasible
path. The idea is to lazily evaluate the feasibility of the roadmap as plan-
ning queries are processed. The cinit, cgoal, and a number of non-uniformly
distributed samples are used to form nodes in a roadmap. They are con-
nected by edges in which each pair of nodes is sufficiently close together and
in cgoal direction. In other words, each node in G is connected by edges to a
set of neighbor nodes. An edge represents the straight line path in C-space
between two nodes.

The second step in the algorithm is to find the shortest path in G between
cinit and cgoal. Given a procedure that estimates the length of a path, the
shortest feasible path in the roadmap is found by repeatedly searching for
the shortest path by using D* Lite search. Therefore, the path is checked to
know if it is collision-free or not. If the resulting path lies in Cfree, it will
be supplied with the grid of cells of the C-space to the footstep planner to
retrieve the actual footstep placements for the humanoid robot.

On the other hand, if no path exists in the roadmap, the planner either
reports failure or goes to the path enhancement stage to add more nodes
to the roadmap and start searching again. The choice is determined by
the overall time allowed to solve the problem. If the planner reports an
occurrence of a collision, the corresponding node or edge from the roadmap
is removed. Then, the planner adds new nodes and edges and searches again
for the new shortest path.

9.6 Footstep Planner

As discussed in Chapter 5, many researchers have concentrated on various
approaches to generate reliable and stable gaits with feedback, and also on
developing global navigation autonomy for humanoid robots. Emphasis has
primarily been laid on pre-generating walking trajectories, online trajectory

152 Humanoid Robot Motion Planner

generation, and dynamic balance, without accounting for obstacles. Most
of them use one of the two main approaches of bipedal locomotion: static
or dynamic [122]. The main objective, in any case, is to produce a gait as
natural and stable as possible. Static walkers rely on the static equilibrium
condition: maintain the CoG on the convex hull within the contact area
with the ground. This approach denies inertial forces. Therefore, it can be
applied only if robot movements are very slow. Dynamic walkers achieve fast
and natural walking motion following the principle of dynamic equilibrium:
they use ZMP [155] instead of CoG, so that inertia components and gravity
are considered.

The footstep planner is a high-level planner implemented to calculate
footstep placements under humanoid robot stability and motion constraints.
It ignores as much of the underlying details of leg movement and trajectory
generation as possible, and works instead from a description of the robot’s
capabilities. By using the roadmap graph as a reference path, it returns a
sequence of footholds that the robot can reach carrying it from the initial
to the goal location.

The footstep planner takes the roadmap graph (G) of the current seg-
ment, the initial and goal points, and the grid of feasible cells as inputs. It
returns the solution as an ordered list of the footstep placements that should
be executed to reach the goal position. The D* Lite search [72, 97] is used to
determine repeatedly the shortest paths between the current footstep of the
humanoid robot and the goal location as the edge costs of a graph change
while the robot moves towards the goal position. D* Lite search provides
accurate and fast solutions for humanoid robot motion in dynamic and un-
known environments. It generates the shortest and the lowest-cost sequence
of footstep locations to reach the target point. D* Lite works by exploring
grid nodes (cells) that are provided by the path planner and calculates the
cost function F (n) for each cell in the roadmap graph. The cost function is
calculated as the sum of the following three costs:

Step costs (G(n) & rhs(n)): They are the costs of making the desired
step from the start node to the current node (n) (for more details see
Appendix C). Figure 9.6 shows two examples of the cost grid that is
used in calculating the step costs. The grid is an eight-connected grid
whose edge costs are initially one. The value of the cell is changed to
infinity when the robot discovers that this cell cannot be traversed.

Estimated heuristic cost H(n): It is the estimated cost from the current
node (n) to the goal node. It uses a heuristic search to estimate the
cost of the goal node and it minimizes the cost of the path so far.
D* Lite search is optimal if the estimated cost to the goal is always
underestimated. Since the shortest distance between two points is a
straight line, Euclidean distance serves as a very accurately estimated
cost to the goal, making D* Lite well-suited for fast computations.

9.6 Footstep Planner 153

Figure 9.6: Examples of eight-connected grids.

Clearance cost C(n): It is used to insure that the generated footsteps are
directed to the middle of Cfree and are not adjacent to the obstacles.
It calculates the clearance cost of following the roadmap graph (G)
that is generated from the path planner.

After the cost functions have been calculated, the planner computes the
optimal sequence of footstep locations to reach the desired goal. The robot
actions are modeled by storing a symmetric collection of candidate footstep
transitions for both feet. A sequence of footstep placements to reach a goal
in the route environment is computed from a discrete set of feasible footstep
locations corresponding to stable candidate stepping motion trajectories.
The planner returns the solution as an ordered list of the footsteps which
should be processed to reach the goal. To achieve smooth walking, the
parameters of the next step must be known before the current step of the
robot ends.

D* Lite search can efficiently recalculate the shortest path from the cur-
rent position of the robot to the goal position. It only recalculates those
goal distances that have been changed or have not been calculated before.
It achieves a speed up of one to two orders of magnitude over repeated A*
search by modifying previous search results locally. On the other hand, the
footstep search can fail in one of the following situations:

• These is no roadmap graph applied to the footstep planner.

• No more valid successor nodes can be generated. In this case, no
collision-free footstep sequence exists using the given discrete set of
relative footstep placements.

• The running time of the search exceeds the maximum allowable time.
In this case, the planner fails to reach the goal, but the lowest cost
path computed so far can be returned.

154 Humanoid Robot Motion Planner

Figure 9.7: Footstep placements for HOAP-2.

9.7 Motion Trajectory Generator

After estimating the footstep placements and the head movements for the
humanoid robot, they are submitted to the motion trajectory generator to
execute the desired actions. The motion trajectory generator has three fun-
damental functions: (i) keeping the humanoid robot in balance (static or
dynamic stability), (ii) moving the swing leg, and (iii) controlling visual at-
tention. The motion trajectory generator calculates the walking parameters
and sends them to the robot’s actuators to execute these actions.

We considered the walking process of the humanoid robot as a symmet-
ric, periodic and smooth motion. The motion trajectory generator is used
in order to output a final dynamically-stable trajectory. We use the ZMP
trajectory in order to maintain overall dynamic stability. The ZMP walking
pattern is used to produce humanoid robot gaits as dynamic and stable as
possible. The foot placement actions indicate the motion, turns, and change
of orientation actions. These actions are divided into six footstep placement
actions for the humanoid robot: straightforward, straight backward, turn
right, turn left, sideways right, and sideways left. All of these actions have
two parameters which have real values. Figure 9.7 shows some foot place-
ment actions and their parameters for the HOAP-2 humanoid robot. It is
worth noting that the humanoid robot does not necessarily need to be able
to exactly perform these six actions. For example, the robot could well use
several footsteps for performing the 45 ◦ rotation in turn actions.

On the other hand, the robot’s head is moved depending on the direction
of the processed landmarks and the movement range of the neck’s motors.
The robot will tilt its head to the right and the left to detect the landmarks
which are located at the road sides. It also looks down to the floor to detect
landmarks such as crossroads and street boundaries in the miniature city.
The head orientations of the humanoid robot are divided into four actions:
turn right, turn left, move up, and move down. Table 9.2 shows the actual

9.8 Experimental Results 155

Figure 9.8: The hardware components of the humanoid robot navigation
system.

ranges of head motion actions for the HOAP-2 humanoid robot.

9.8 Experimental Results

As mentioned previously, our humanoid robot navigation system is run on
the Fujitsu HOAP-2 humanoid robot. The humanoid robot motion planner
is implemented on an Intel 1.73 GHZ Duo laptop with 3 GB RAM running
Linux. This computer is connected to the robot’s command PC which is
a 1.8 GHz Pentium III PC with 256 MB RAM running openSUSE Linux
9.0 with RT-Kernel. Figure 9.8 shows the hardware components of our
humanoid robot navigation system. The command and vision/motion com-
puters exchange data via a 100 MBit/s LAN based on TCP/IP. The robot’s
cameras and control are connected to the vision/motion and command com-
puters via USB 1.0 connections with 12 Mbps, respectively. The command
PC coordinates data transfer to and from the vision/motion computer. It
also sends the calculated footstep placements and head movements to the
robot’s actuators for execution.

We have implemented the humanoid robot motion planner in C/C++
programming language. To test the performance of our proposed algorithm,

156 Humanoid Robot Motion Planner

Table 9.3: Total consumed time in the path planning phase for the tested
routes using OOPSMP.

we used the Object-Oriented Programming System for Motion Planning
(OOPSMP). OOPSMP is developed at the Physical and Biological Com-
puting Group at Rice University [115]. It is an open-source programming
infrastructure that provides implementations of various existing algorithms
in a modular, object-oriented fashion that is easy to extend. We integrated
our proposed motion planning algorithm in OOPSMP to test its perfor-
mance and calculate the consumed time in the sampling, preprocessing, and
solving stages.

To test the performance of the proposed path planner, we chose five dif-
ferent routes in the miniature city to retrieve the shortest roadmap graph for
each one. Figure 9.9 illustrates the resulting roadmap graphs of the feasible
paths for the five tested routes. We applied the proposed path planner with-
out any previous information about the user’s route descriptions. The path
planner calculates the shortest feasible path for the robot from the start
position to the destination by using non-uniform sampling. We substitute
the shape of the robot by a hexagon with 15 cm radius and 50 cm height.
Table 9.3 shows the total consumed time for the sampling, preprocessing,
and solving phases of the path planner for each route. The number of neigh-
bors to sample and the number of neighbors to query are chosen to be 15
and 50, respectively.

To test the proposed motion planner, the experiments were performed on
an evenly flat surface in the miniature city with static obstacles. We made
some simplifying assumptions while conducting the experiments. First, the
environment floor is flat and contains non-moving obstacles. Second, a dis-
crete set of feasible footstep placement positions and head movements are
computed for the current processing path segment during the robot naviga-
tion.

In our system, the time required for finding a path on the resulting Cfree

depends on both the route description supplied by the user and the path
length. As mentioned previously, the path is processed as segments. Each

9.8 Experimental Results 157

Figure 9.9: The resulting roadmap graphs of the tested routes using
OOPSMP.

158 Humanoid Robot Motion Planner

segment has its own start and goal points. The number of neighbors to
sample and the number of neighbors to query are chosen to be 5 and 10,
respectively. The average time for planning a path for a segment in the route
with 1.0-1.5 m is approximately 1.4 sec. The footstep planner is supplied
by the retrieved roadmap graph of the current path segment and the data
of all feasible grid cells from the path planner. The average consumed time
to calculate one footstep placement is approximately 50 msec.

Figure 9.10 shows some snapshots of the HOAP-2 humanoid robot while
executing the “Saturn–Lidl” route in the miniature city. First, the robot
turns its head to the right to detect the Saturn store, and then it tilts its
head down to detect the crossroads. It calculates the path for this segment
and the feasible footstep placement to execute. After reaching crossroads,
the robot turns to the left and then detects the crossroads, the C&A store,
and the Burger King Restaurant. It walks to the next crossroads and turns
to the right. Finally, HOAP-2 detects the crossroads and walks until it
reaches the Lidl supermarket.

9.9 Discussion

In this chapter, we presented the anatomy of our proposed motion planning
system for a Fujitsu HOAP-2 humanoid robot. The proposed technique is a
combination of a sampling-based planner and a D* Lite search to generate
fast and dynamic footstep placements for the humanoid robot in unknown
environments. The robot navigation is based on the route described by
the user to generate initial path estimation to the navigation task. The
humanoid robot begins from the start point and moves along that path to
collect information and recognize the landmarks by using its stereo vision
and implemented techniques of landmark recognition. Based on the new
findings and the processed route, the path is then re-planned to adjust the
robot’s position during navigation. The planner operates at the level of
footsteps and it ignores the lower-level details of leg movements and control.

The main task of the proposed motion planner is to find a sequence of
actions as close to optimal as possible that causes the robot to reach its
goal location while avoiding the obstacles in an unknown environment. The
symbol grounding phase is used to connect the symbolic representations of
landmarks and locomotion actions to their equivalent perceptual landmarks
and motion procedures, respectively. The output of the symbol grounding
stage is provided to the head motion planner to plan the motion of the
robot’s head with respect to the positions of the landmarks. It also supplied
to the path planner to generate the shortest feasible roadmap graph of the
robot’s path.

The path planner is implemented to extract the minimal feasible Cfree

and generate the shortest path to the target position. We used a modified

9.9 Discussion 159

Figure 9.10: HOAP-2 executing a route from the Saturn store to the Lidl
supermarket in the miniature city.

160 Humanoid Robot Motion Planner

version of the Lazy-PRM technique with a non-uniform sampling to avoid
the computational complexity of generating a denser search area. The plan-
ner directs the computational resources to troubled and difficult regions,
such as narrow passages, leaving out the larger sparsely populated open
spaces. A smoothing penalty is also associated to the nodes to encourage
the generation of gentle paths along the middle of the empty spaces. The
sampling is increased in complex areas and leaves out simple areas with
lower resolution density.

For collision detection, a cylinder model is used to approximate the tra-
jectory for the body center of the humanoid robot during navigation. It
calculates the actual areas required to execute different motion actions of
the humanoid robot and compares them with the distances to the nearest
obstacles. Collision detection is carried out off-line during the creation of
C-space to speed up the actual search for the path.

The footstep planner is implemented to find smooth and low-cost foot-
step placements of the humanoid robot within the resulting Cfree. It uses
D* Lite search to reduce searching time and produces a smoother dynamic
path for the humanoid robot at a low cost.

Finally, we tested our proposed path planner algorithm by using the
Object-Oriented Programming System for Motion Planning (OOPSMP).
We tested five different routes in the 3D model of the miniature city and we
measured the consumed time in each processing stage. We also measured
the processing time for the footstep planner.

CHAPTER 10

Conclusion

In mobile robotics, natural language interaction is considered as a challeng-
ing problem, not only because it requires sophisticated speech recognition
and language understanding, but also because it inevitably includes issues
of mixed-initiative interaction, multimodal interaction, and cognitive mod-
eling. Natural language can express rules and sequences of commands in
a very concise way. It uses symbols and syntactic rules to interact with
robots that have knowledge represented at the symbolic level. Such sym-
bolic communication can help robots to learn faster when they learn at the
sensory–motor association level. Spatial reasoning gives robots the ability
to use human-like spatial language and provides the human user with an
intuitive interface that is consistent with his innate spatial cognition. It can
also accelerate learning by using symbolic communication. A robot capa-
ble of understanding spatial language could be controlled by a novice user
naturally to perform complex tasks using succinct, intuitive commands.

On the other hand, the problem of autonomous robot navigation is one
of the most challenging tasks in robotics. The applications of mobile robot
navigation to unknown and dynamic indoor environments are receiving more
and more attention. The set of navigational strategies found in mobile robots
mirrors the complexity of navigational strategies employed by biological or-
ganisms. Autonomous navigation has always been an interdisciplinary topic
of research. It combines many fields of research to produce a feasible navi-
gation system for a mobile robot in its surrounding environment.

In general, robot navigation can be processed in four basic steps. First,
the robot should perceive its environment by using its sensors, such as a laser
range finder, IR, and stereo cameras. Second, it builds a digital represen-
tation of the environment and represents the navigation task in an abstract
form with starting and ending positions. Third, it extracts the landmarks
from the environment in real-time. Finally, the robot specifies motion paths

162 Conclusion

and locations of landmarks during navigation.
Therefore, we can summarize the major sources of difficulties in au-

tonomous humanoid robot navigation in the following points. First, how can
the user describe a navigation task for the robot in a simple and easy way
without any ambiguities and misunderstandings during the description pro-
cess? Second, a light-weight, robust object classification technique should be
chosen to recognize different types of landmarks during robot navigation in
real-time. The chosen technique should handle the object recognition prob-
lems in real scenes, such as viewpoint variation, occlusions, and illumination
changes. Third, the high-level cognitive processes and their equivalent sen-
sorimotor processes should be integrated at different levels of abstraction.
Forth, how can the shortest, feasible path for the robot be calculated, under
consideration of robot dynamic and control constraints? Finally, we have
to determine the footstep placements for the humanoid robot in a dynamic
way to handle different situations in unknown environments.

The work reported in this thesis is meant to advance the state of the art
in the field of autonomous humanoid robot navigation. This dissertation has
focused on the problem of autonomous robot navigation in unknown indoor
environments. It concentrates on investigating a framework which could
combine and extend the existing technology by accommodating new algo-
rithms and techniques to achieve autonomous navigation for mobile robots
in indoor environments. Therefore, the research work in this thesis aims to
address the autonomous navigation problem and contribute to the develop-
ment of practical humanoid robot navigation systems. The major contribu-
tion of this dissertation is to develop a complete humanoid robot navigation
system in unknown environments based on a cognitive multimodal interface
which can handle many problems efficiently. We can summarize our contri-
butions into four points: building a multimodal cognitive interface for robot
navigation; implementing an instruction interpreter to create abstract repre-
sentations for the route; developing a robot landmark processing system to
detect, localize, and classify different types of landmarks; and implementing
a dynamic motion planning technique for humanoid robots.

For route description, we proposed a multimodal interface which can be
used easily by inexpert users to describe navigation tasks for mobile robots.
The routes can be described to the robot verbally or graphically. Our pro-
posed route instruction language (RIL) is intended as a semi-formal language
for instructing the robot to execute a route which is used via a structured
graphical user interface. We conducted some experiments to evaluate the
routes which are written by using the RIL instructions. The results of the
experiments confirmed that RIL is simple to learn and it is well-suited to
describe the route in indoor environments. The GUI facilitates the route
description and lets the novice user describe the routes easily without ambi-
guities and misunderstandings. On the other hand, we have found that most
of the commands that participants choose can be classified or decomposed

163

into the RIL categories, and by considering only such commands, we can
replicate the paths with reasonable accuracy.

For route analysis, we implemented an instruction interpreter to process
the route description and generate its equivalent symbolic and topological
map representations. A topological map is generated to describe relation-
ships among features of the environment in a more abstract form without
any absolute reference system. It is mainly used to treat the ambiguity
which can occur when the robot cannot recognize the current landmark.
It handles these situations by considering the relations between the land-
marks. Therefore, the topological map is used to comprehend the route
instructions by building up a mental representation of the processed route.
These high-level cognitive representations – i.e., symbolic and topological
map representations – are supplied to other system components as an initial
path estimation to guide the robot while it plans its navigation task.

For object recognition, we developed an online robot landmark process-
ing system (RLPS) to detect, classify, and localize different types of land-
marks during robot navigation. The RLPS is based on a two-step classifi-
cation stage which is robust and invariant towards scaling and translations.
It provides a good balance between fast processing time and high detection
accuracy by combining the strengths of appearance-based and model-based
object classification techniques. The experimental results showed that the
RLPS is more powerful as it recognizes a wide range of landmarks and finds
them even when there are landmarks of similar colors in the field of view.
It efficiently handles landmarks with occlusions, viewpoint variances, and
illumination changes.

For motion planning, we proposed a hybrid motion planner for a hu-
manoid robot which is a combination of sampling-based planner and D*
Lite search to generate dynamic footstep placements in unknown environ-
ments. The proposed planner calculates the shortest path in a reasonable
time and it handles the re-planning process for the footstep time efficiently.
A modified cylinder model is used to approximate the trajectory for the
robot’s body-center during navigation. It calculates the actual distances
required to execute different actions of the robot and compare them to the
distances from the nearest obstacles.

As can be seen, the navigation system presented in this research provides
a feasible framework for a humanoid robot navigation system. However, this
framework has some limitations. First, the floor of the environment is flat
and contains static obstacles. We did not deal with uneven surfaces or mov-
ing obstacles. Second, the humanoid robot can avoid obstacles, but cannot
step over or onto the objects. Third, we ran our system on a miniature city
and we did not test it in any other indoor environment.

Although the framework that we have developed in this thesis has pro-
vided satisfactory theoretical and experimental results, our analysis has un-
covered several issues that need further investigation. Future research could

164 Conclusion

focus on the following points. First, building a memory model for the mobile
robot to store the successfully executed routes and the retrieved parameters.
These stored data can be used to handle future robot tasks more efficiently
and reduce the processing time. Second, the question of how to achieve accu-
rate object detection and classification of various types of objects in human
environments with complex backgrounds, cluttered environments, and un-
der different illuminations conditions. Third, dealing with different types
of dynamic obstacles which can be found in human environments. Fourth,
designing the footstep placements of the humanoid robot to handle step-
ping over and onto obstacles and designing special placements to deal with
the narrow passage problem. Finally, operating the humanoid robot in the
wireless mode and replacing the robot’s cameras with other high-resolution
cameras that can operate in the wireless mode.

166 Symbols and Acronyms

APPENDIX A

Symbols and Acronyms

Symbol Description

f The focal length of the camera
fx The product of the physical focal length of the lens and the

size of the individual imager elements in the x direction
fy The product of the physical focal length of the lens and the

size of the individual imager elements in the y direction
Px, Py The pixel dimension
k The radial lens distortion coefficient
Cx, Cy The center of radial lens distortion
Sx The scale factor to account for any uncertainty due to im-

perfections in hardware timing for scanning and digitization
Ox, Oy The center of the image
αx The scale factor
T The translation vector
Tx, Ty, Tz The translation components for the transformation between

the world and camera coordinates
R The rotation matrix
Rx, Ry, Rz The rotation angles for the transformation between the

world and camera coordinates
P The projection matrix
kc The correlation coefficient
Σ The symbolic cognitive system
Π The sensorimotor perceptual system
g The predicate grounding function
h The sensor model function
α(t) The anchor
γi The anchor’s signature

167

Symbol Description

c A configuration
cgoal The goal configuration
cinit The initial configuration
Cfree The free configuration space
Cobst The obstacle configuration space
C-space The configuration space
W The workspace
G = (V,E) A roadmap graph
k The number of the closest neighbors
n The current node
F (n) The cost function
C(n) The Clearance cost
G(n) The step cost function
H(n) The estimated cost function
rhs(n) The one-step look ahead values based on the g-values

168 Symbols and Acronyms

Acronyms Description

ANNs The Artificial Neural Networks
BoF The Bag of Features Approach
CCHs The Color Cooccurrence Histograms
CoG Center of Gravity
CRIL Conceptual Route Instruction Language
DOF Degree of Freedom
DRRT Dynamic RRT
DSP Double Support Phase
ERRT Execution-extended RRT
EST Expensive-Spaces Tree
FSM Finite-State Machine
FSRs Force Sensing Registers
GA A cognitive-oriented Geometric Agent
GUI Graphical User Interface
HCI Human–Computer Interaction
HOAP-2 The second generation of Fujitsu’s Humanoid for Open Ar-

chitecture Platform
HRI Human–Robot Interaction
HRNS Humanoid Robot Navigation System
HT The Hough Transform
IBL Instruction-Based Learning
ICS Inevitable Collision State
LOA Levels of Autonomy
LPA* The Lifelong Planning A* Search Algorithm
OOPSMP The Object-Oriented Programming System for Motion Plan-

ning
PPHT The Progressive Probabilistic Hough Transform
PRM Probabilistic Roadmap Planners
PSF Performance Shaping Factors
RFCH The Receptive Field Cooccurrence Histograms
RIL Route Instruction Language
RL Reinforcement Learning
RLPS Robot Landmark Processing System
ROPs Reactive-Odometric Plans
RPP Randomized Path Planner
RRF Reconfigurable Random Forest
RRTs Rapidly-exploring Random Trees
SA Situation Awareness
SIFT The Scale Invariant Features Transform
SSP Single Support Phase
SURF Speeded Up Robust Features
UAVs Unmanned/Uninhabited Air Vehicles
ZMP Zero-Moment Point

APPENDIX B

Symbol Grounding in Autonomous Robotics

In HRI, many of the resulting errors can be explained as failures of the
grounding process, in which users and robots lack enough evidence to coor-
dinate their distinct knowledge states. Understanding the grounding process
provides not only a systematic framework to understand and improve HRI,
but also a testbed to model the effects of different contexts and media upon
language use.

For robotic systems embedded in the physical world, high-level cognitive
processes and sensorimotor processes are typically incorporated to let the
robot navigate autonomously. High-level cognitive processes perform ab-
stract reasoning and generate plans for actions, whereas sensorimotor pro-
cesses observe the physical world and execute actions in it. These processes
have different ways to refer to physical objects in the environment. Cogni-
tive processes typically use symbols to denote objects and actions. On the
other hand, sensorimotor processes typically operate from sensor data that
result from observing these objects. If the overall system has to successfully
perform its tasks, it needs to make sure that these processes are successfully
connected to indicate the same physical objects.

B.1 Symbol Grounding Problem

In everyday life, humans constantly use words to refer to objects in their
physical world. These words are used as symbols to reflect specific references
to other humans or agents. This procedure combines two different types of
processes: one that reasons about abstract representations of objects, and
one that has access to perceptual data. One of the prerequisites for the
successful cooperation between these processes is that they agree about the
objects they talk about, i.e., that there is a correspondence between the
abstract representations and the perceptual data which refer to the same

170 Symbol Grounding in Autonomous Robotics

physical objects. In other words, there must be a correspondence between
the names of things and their perceptual image. The problem of connecting
linguistic descriptions of objects to their physical referents is known as the
symbol grounding problem [50, 51].

On the other hand, the symbolic system can be defined as a set of sym-
bols and rules for manipulating objects on the basis of their shapes (not
their meanings). The symbols are systematically interpretable as having
meanings, but their shape is arbitrary in relation to their meaning. The
Symbol Grounding Problem is related to the problem of how symbols get
their meanings, and of what the meanings are. The problem of meaning is
in turn related to the problem of consciousness, or how it is that mental
states are meaningful [51].

To ground symbols in their corresponding physical objects, the symbolic
system should have the capacity to interact autonomously with non-symbolic
sensorimotor capacities and handle the objects, events, properties and states
of systematically interpretable symbols. It would have to be able to pick out
the referents of its symbols, and its sensorimotor interactions with the world
would have to fit coherently with the symbols’ interpretations. Connection-
ism [50, 139] is one natural candidate for the mechanism that learns the
invariant features underlying categorical representations, thereby connect-
ing symbols to the proximal projections of the distal objects they stand for.
In this way, connectionism can be seen as a complementary component in
a hybrid non-symbolic/symbolic model of the mind, rather than a rival to
purely symbolic modeling.

As a result, the symbol grounding problem is a major issue for com-
putational models of language. Without the grounding of meanings in the
world, symbols refer only to other symbols with no association between the
symbols and the world. One way to address the symbol grounding prob-
lem in computational models of language is to conduct language research
with real or simulated robots. For example, Schulz et al. [127] used symbol
grounding to connect language statements to the vision in RatChat system.
Their system aimed to evolve a shared lexicon between robots grounded in
perceptions, local views, and behaviors using a language game framework.
They tried to categorize and label the robot’s internal representations with
appropriate generalization and variability.

B.2 Symbol Grounding in Robotics

One way to extend robot language research is to use mobile robots that
interact with a real world environment, using navigation systems to build
up internal maps of the world. The use of mobile autonomous agents that
move in a real environment enables the evolution of spatial languages using
both relative and absolute frames of reference. The visual input of the robot

B.2 Symbol Grounding in Robotics 171

would be used in a relative frame of reference, where the scenes can be cate-
gorized with respect to what the world looks like from the perspective of the
robot. The internal maps would be used in an absolute frame of reference
to indicate the physical objects. Consequently, autonomous robotic systems
embedded in the physical world should typically incorporate two different
types of processes. The first is high-level cognitive processes that perform
abstract reasoning and generate plans for actions. The second is sensorimo-
tor processes that observe the physical world and execute actions in it. The
crucial observation here is that these processes have different ways of refer-
ring to the same physical objects in the environment. Cognitive processes
typically use symbols to denote objects, while sensorimotor processes typi-
cally operate from sensor data that originate from observing these objects.
If the overall system has to successfully perform its task, it needs to make
sure that these processes point to the same physical objects, i.e., it has to
perform anchoring between the symbolic representation and its correspond-
ing physical objects [29, 66]. In other words, the autonomous robot that
uses symbolic reasoning, sensing and acting in a real environment needs the
ability to create and maintain the connection between symbols represent-
ing objects in the world and the corresponding perceptual representations
given by its sensors. This connection has been named perceptual anchoring.
Figure B.1 shows a graphical representation of the anchoring problem.

Figure B.1: Graphical illustration of the anchoring problem.

On the other hand, symbol grounding can be defined as the problem of
finding a semantics for a symbolic system that is not in its turn a symbolic
system [84]. Symbol grounding is a more general problem than anchoring.
It concerns the philosophical issues related to the meaning of symbols in
general. Anchoring is concerned with the practical problem of connecting

172 Symbol Grounding in Autonomous Robotics

symbols referring to physical objects to the sensor data originating from
those physical objects in an implemented robotic system. In particular,
anchoring focuses on perceivable physical objects, while symbol grounding
needs to consider all kind of symbols. For some kinds of symbols it would
be difficult to find appropriate sensor measurements, while the presence of
sensor measurements is essential in anchoring [29].

From a more practical point of view, there are two research problems in
the fields of robotics and AI which are related to the anchoring problem:
pattern recognition and symbol grounding. Pattern recognition can be de-
fined as the problem of interpreting data provided by sensors by assigning
them to predefined categories [39, 137]. Taking pattern recognition in its
most general sense, anchoring can be considered a sub-problem of pattern
recognition. However, the anchoring problem emphasizes several peculiar
aspects, which are not usually the focus of pattern recognition. First, the
presence of symbols is an essential aspect of anchoring, while this is not
the case in pattern recognition. Second, a goal of anchoring is the dynamic
maintenance of the anchor in time, while pattern recognition is mostly used
in applications where this dynamic aspect is not relevant. Finally, anchoring
focuses on the creation and maintenance of the anchor as a shared repre-
sentation to link several subsystems of the agent, such as motor control,
sensor processing, and reasoning. Figure B.2 shows a simplified view of
the relation among anchoring, symbol grounding and pattern recognition.
Anchoring is included in the intersection between the other two problems
and can be represented as a bridge between them. One can in fact find nu-
merous cases of pattern recognition where no symbols are present, and one
can study the symbol grounding problem without taking measurements in
consideration. Anchoring by contrast implies the presence of both symbols
and measurements and the possibility of establishing a connection between
the two [29].

Figure B.2: Relations among anchoring, symbol grounding, and pattern
recognition [29].

B.3 Perceptual Anchoring 173

B.3 Perceptual Anchoring

Perceptual anchoring is one of the facets of the general problem of integrating
symbolic and non-symbolic processes in an intelligent system. It is the
problem of how to create and maintain in time the right correspondence
between symbols and sensor data that refer to the same physical objects
[21, 28]. It is considered as an important aspect of the connection between
symbolic and sensory based processes in an autonomous robot. An example
is the problem of connecting the symbol used by a planner to refer to an
object needed for an action to the data that correspond to that object in
the sensorimotor system. This connection must be dynamic since the same
symbol must be associated to new entities in the perceptual stream in order
to track the object over time or to re-acquire it at a later moment. Anchoring
can be seen as an important special case of symbol grounding where the
symbols denote individual physical objects. In perceptual anchoring, the
symbol data correspondence for a specific object is represented by a data
structure called an anchor [66]. The anchor includes pointers to the symbol
and sensor data being connected together with a set of properties useful to
re-identify the object, e.g., its color and position. These properties can also
be used as input to the control routines.

From another perspective, if the anchoring module is considered as part
of a larger cognitive system, it can be interpreted as part of the short term
memory where perception and prior information, including the one used for
prediction, are integrated over time. It also provides the necessary infor-
mation for action and immediate decision. It interacts with the long term
memory by accessing the prior information contained there [21].

When manipulating the anchoring process, some important aspects of
anchors that should be considered. First, anchors can be shared across
different subsystems of the agent in order to provide them with a common
handle referring to a specific physical object [66]. Second, physical objects
persist in time and space, and some of their properties are preserved across
time or evolve in predictable ways. Therefore, the anchoring process must
take this temporal dimension into account. Consequently, anchoring cannot
be modeled as a one-shot process, but it must take into account the flow
of continuously changing sensor input [29]. Finally, the matching between
the symbolic description given by the planner and the attributes of precepts
generated by the sensor system is needed to decide which precepts to use
to create or update the anchor for a given symbol. Matching can be done
partially or completely depending on the nature of processed object [84].

B.3.1 Mechanisms of Anchoring

Anchoring can be created using three main mechanisms: top-down, bottom-
up, or in both directions simultaneously [21, 29]. The first mechanism is

174 Symbol Grounding in Autonomous Robotics

Top-down, or goal-driven. This happens, for instance, when the symbolic
system needs to anchor a symbol to perceptual data, e.g., in order to make
an action executable. In other words, the symbolic system identifies the right
object to be used for a given task, and allows the sensorimotor subsystem in
the robot to operate on that specific object. For example, suppose that the
symbol system decides to execute the action to grasp “RedBall”. The symbol
“RedBall” needs to be connected to the perceptual knowledge about the red
ball in order to successfully do the grasping. The anchor can be created
either when the connection with the perceptual knowledge is acquired or
previously using the prior knowledge about the object. In the case of the
ball, the anchor is first created when the planner decides to catch that ball.
The prior knowledge stored in the knowledge base about the red ball is put
in the anchor and is used by the controller to grasp the ball. When the
ball is perceived and recognized as “RedBall”, the actual perceptual data of
the ball are put in the anchor and used by the controller for executing the
catching ball behavior.

The second mechanism to create an anchor is bottom-up, or event-driven.
When the perceptual system perceives an object that is or could be of in-
terest, it creates an anchor for it. The aim is to keep in memory perceptual
information about objects that can be used later on in the anchoring process.
An example of this can be found in [140], which focuses on the interpretation
of scenes using linguistic terms.

Finally, the third mechanism is the combination between the last two
techniques. In this type of systems, the symbolic system is trying to connect
the symbol to its corresponding perceptual data. If the detected object
cannot be matched to any symbol in the knowledge base, the system creates
a new symbol for it to keep it in memory for future use.

B.3.2 The Challenges of Anchoring

Anchoring is a problem that can be studied from a number of different per-
spectives and within several disciplines. A study of the anchoring problem
can raise a number of very challenging issues from each of these perspectives.
Therefore, some challenges for the anchoring process in the robotic system
will be addressed in the following paragraphs.

A first challenge is represented by the presence of uncertainty and am-
biguity [66]. Uncertainty and ambiguity obviously arise when anchoring is
performed using real sensors, which have intrinsic limitations, and in an en-
vironment which cannot be optimized in order to reduce these limitations.
The anchoring process might incorporate provisions to deal with these limi-
tations, for instance by managing multiple hypotheses. Alternatively, it can
rely on the perceptual system to filter out the uncertainty, or it can delegate
the resolution of ambiguities to the symbolic level.

Another challenge of anchoring is that, at the symbolic level, there are

B.3 Perceptual Anchoring 175

several ways to refer to objects. An important distinction is that between
definite and indefinite symbolic descriptions [29]. A definite description
implies the existence of a unique object satisfying the description in the cur-
rent context. An indefinite description denotes an object having a number of
properties, without any assumption about its uniqueness. The importance
of this distinction appears mainly when more than one object satisfies the
description: this can be a problem in the case of definite descriptions, but
not in the case of indefinite ones.

Difficult issues of communication and negotiation may arise if several
robots need to not only anchor symbols internally but also exchange infor-
mation among them and agree on a shared language [128, 140]. Common
agreement about the meaning of the symbols used to refer to objects in the
environment is also needed for efficient human-robot cooperation.

Finally, a fundamental challenge of the anchoring problem is to inves-
tigate the formal properties of the anchoring process [29]. Intuitively one
may feel that some correspondences between the symbols and the sensor
data are correct while some are not. How to express this formally and prove
the correctness of a specific system are unresolved problems. Engaging in
this study would probably require the ability to model both the anchoring
system and physical environment in the same formal system, in which formal
properties can be defined and proved.

In the last ten years, numerous research groups worldwide have been
concentrating on dealing with the anchoring problem in autonomous robot
navigation. For example, Coradeschi and Saffiotti [28] proposed a domain-
independent definition of the anchoring problem, and identified its three
basic functionalities: find, reacquire, and track. They illustrated their pro-
posed anchoring definition on two systems operating in two different do-
mains: an unmanned airborne vehicle for traffic surveillance and a mobile
robot for office navigation.

Shapiro and Ismail [128] considered how the anchoring problem is ad-
dressed in grounded layered architecture with integrated reasoning (GLAIR),
a three-level architecture for cognitive robots. The robot used in the experi-
ments interacts with humans using natural language, and in order to answer
the user’s queries it needs to connect its visual input to the linguistics terms
used by the human. The robot uses abstract knowledge of objects and per-
sons to make this connection.

Lang et al. [84] dealt with the problem of anchoring a composite object
from the data provided by several sensors, each one of which can only observe
part of the object. The authors consider the case of anchoring a human by
aggregating the two anchors separately created for the face and for the legs.
Face recognition is based on image data, while leg recognition relies on
data from a laser range finder. Their system can be seen as a special case
of cooperative anchoring, in which a common anchor must be established
between two perceptual systems.

176 Symbol Grounding in Autonomous Robotics

Steels and Baillie [140] considered the anchoring not only of objects but
also of events. Their system anchors objects seen in the images bottom-up,
and keeps track of them over time. On the basis of this information, events
are recognized. This work is affected in the context of a language game
between two robotic systems with the aim of learning a shared language.
One of the systems sees an event, like a ball rolling, through a static camera
in an otherwise static environment. It then formulates a sentence describing
the event. The other system hears the sentence and interprets it. If the
interpretation is considered appropriate with respect to one of the events
recently seen, the game succeeds.

B.4 Conceptual Spaces

Conceptual spaces have been recently introduced as a way to bridge the gap
between symbolic and sub-symbolic AI by providing a geometric treatment
of concepts and knowledge representation [48]. A conceptual space has di-
mensions that are related with the concepts managed at the symbol level
as well as with the quantities processed by the sensors. On the one hand,
conceptual spaces can be used to represent discrete concepts which are the
main entities manipulated at the symbol level. On the other hand, con-
tinuous observable quantities, which are the main entities provided by the
perceptual system, can be placed inside a structure. Therefore, conceptual
spaces provide an intermediate representation in which both symbolic and
sensor-based information can be integrated.

In addition, conceptual spaces are endowed with a geometric structure
that permits the performing of topology- and similarity-based reasoning in-
side the space itself. They are therefore well suited to formalize the types
of reasoning needed for perception. Because of these reasons, it was pointed
out in [22] that conceptual spaces could offer a fruitful setting for the study,
formalization and implementation of perceptual anchoring.

Gärdenfors [48] has introduced a conceptual space as a metric space
whose dimensions, called qualities, are related with the quantities processed
by the robot sensors. Examples of dimensions are color coordinates (HSV)
and spatial coordinates. Concepts are represented by regions in a conceptual
space: a concept corresponds to the region of the space in which the points
that are considered instances of that concept are located. A special role is
played by so-called natural concepts, which correspond to convex regions in a
conceptual space. For a natural concept, points in a conceptual space, called
knoxels, represent the epistemologically primitive elements at the considered
level of analysis. For instance, a knoxel can represent an individual object,
which is characterized by a given value for each dimension of the conceptual
space. The distance between two knoxels, according to the given metric, is
interpreted as a measure of similarity between the entities represented by

B.4 Conceptual Spaces 177

the robot’s sensors.
Chella et al. [21] proposed a computational framework for anchoring

based on conceptual spaces. Their framework exploits the geometric struc-
ture of conceptual spaces for many of the crucial tasks of anchoring, like
matching precepts to symbolic descriptions or tracking the evolution of ob-
jects over time. This framework builds on the one proposed in [28], refor-
mulated in a conceptual space setting. As it turns out, the new framework
has a number of advantages over the original one. First, it clarifies the in-
tegration between perceptual and symbolic information since both types of
information are represented in the same formal structure. Second, it clari-
fies the dynamic aspect of anchoring by modeling objects as trajectories in
the conceptual space. Finally, it uses generic functions that exploit the ge-
ometric structure of the conceptual space. They represented the individual
objects by knoxels in the conceptual space. However, in a dynamic perspec-
tive, objects can be more profitably seen as trajectories in the conceptual
space indexed by time. The properties of objects usually change with time:
objects may move, an object can alter its shape or color, and so on. As the
properties of an object are modified, the point representing it in a concep-
tual space moves and describes a certain trajectory. Several assumptions
can be made on this trajectory, e.g., smoothness and obedience to physical
laws.

The interest of conceptual spaces in [21] is that they constitute an in-
termediate level between the symbolic system and the perceptual system.
From the perceptual side, knoxels in a conceptual space can represent the
entities coming from the perceptual system, together with their measured
attributes. These knoxels are abstractions of the sensor data, since they
represent a summary of the information regarding a certain object coming
from different sensors. For instance, a knoxel can represent the information
about the position, size and color of a given door as measured by a laser
system plus a vision system. From the symbolic side, the conceptual space
can be seen as an internal semantics for the symbol system. Predicates in
the symbol system are mapped to regions of the conceptual space, and in-
dividual constants are mapped to knoxels. This semantics is perceptually
grounded, since the elements of the conceptual space are directly related to
perception.

Figure B.3, adopted from [21], shows the connection between a symbol
and its corresponding percept by using conceptual space. The conceptual
space in this example only has the two qualities Hue and Size. The h
function transforms a measurement vector from the sensor system into a
set of knoxels in the conceptual space. The g function gives semantics to
symbolic predicates in terms of observable qualities in the conceptual space.
The anchor, denoted by α(t), connects the symbol “cup-22” to a knoxel
derived by the observation of a given cup. The concepts Blue and Small
constrain the region in the conceptual space where this knoxel can be found.

178 Symbol Grounding in Autonomous Robotics

Once an anchor is found, it should be updated in order to keep the symbol
aligned to the corresponding perceptual data as those data change with time.
The anchor should therefore account for the object persistence in face of a
flow of different knoxels from the perceptual system that all originate from
the same object, and in face of changes in the properties of the object, e.g.,
its position.

Figure B.3: Anchoring a symbol by using conceptual space [21].

APPENDIX C

Heuristic Search Algorithms

To compute footstep placements for biped humanoid robots, a search method
is needed to calculate the shortest feasible footstep sequence from the initial
position to the target position. Heuristic search methods can be used to
follow the roadmap graph and retrieve a shortest low-cost footstep sequence
for the humanoid robots. They are fast enough to sense uncertainty, mod-
eling errors, and handle obstacles for real-time re-planning in dynamic and
unknown environments.

Heuristic algorithms use task-specific information in the form of approx-
imations of goal distances to focus the search and typically solve search
problems much faster than uninformed search methods [24]. They involve
an iterated discrete search over a set of valid footstep placements. The re-
sult of the computation is a sequence of footstep placements that reach a
goal region while minimizing encoded heuristics for effort, risk, or the num-
ber and complexity of the steps taken. As with other large search domains,
computing true optimal solutions for biped navigation is computationally in-
tractable. The challenge then becomes to exploit the problem structure and
design efficient cost metrics and heuristics that improve search performance.

C.1 A* Algorithm

The A* search algorithm [52] is a well-known technique, well-regarded for
its accuracy and calculation speed in searching for an optimal solution. It
works by exploring nodes based on a cost function f(n) which is the sum
of the step cost g(n), the cost from the start node to the current node n,
and the estimated cost h(n) from node n to the goal. It uses a heuristic
search to estimates the cost to the goal node and minimizes the cost of
the path so far. A* is optimal if the estimated cost to the goal is always
underestimated. Since the shortest distance between two points is a straight

180 Heuristic Search Algorithms

line, Euclidean distance serves as an excellent estimated cost to the goal,
making A* well-suited for fast computations.

Many researchers [46, 23, 143] used the A* search algorithm in planning
the footstep placements for their humanoid robots. For example, Michel
et al. [103] performed an A* search on the possible sequences of the foot-
step placements. Their ASIMO robot can be commanded to affect these
footsteps, until an obstacle-avoiding path to the goal is found or a specified
computation time limit is exceeded. Their planner computes the cost of each
candidate footstep location using three cost metrics. First, the location cost
determining whether the candidate location is safe or a part of an obstacle
in the environment. Second, the step cost which prefers easy stepping ac-
tions. Finally, the estimated cost-to-go providing an approximation of the
candidate’s proximity to the goal using a standard mobile robot planner.
They combine the set of humanoid robot actions into a sequence of footstep
placements by mapping both the knowledge of the current environment and
the commanded actions to the resulting states.

C.2 D* Algorithm

Incremental search methods reuse information from previous searches to find
solutions to a series of similar tasks which will be much faster than solving
each search task from scratch. Focused Dynamic A* (D*) [141] is a heuristic
search method that repeatedly determines a shortest path from the current
robot coordinates to the goal coordinates while the robot moves along the
path. It combines the efficiency of heuristic and incremental searches, yet
still finds shortest paths. D* uses a clever heuristic to speed up re-planning
by one or two orders of magnitude over repeated A* searches by modifying
previous search results locally. Consequently, it has been extensively used
in mobile robotics.

On the other hand, D* search is an established algorithm but few people
understand how it works. It is very complex and thus hard to understand,
analyze, and extend (with the exception of different implementations by the
author Antony Stenz himself) [73]. Consequently, while D* has been widely
used as a black-box method, it has not been extended by other researchers
since it was first published.

C.3 LPA* Algorithm

The Lifelong Planning A* (LPA*) [74] is an incremental version of the A*
algorithm and shares many similarities with it. LPA* is an incremental
heuristic search method that repeatedly determines shortest paths between
two given vertices as the edge costs of a graph change. It uses heuristics to
focus the search and reduce re-planning times. An incremental search tends

C.4 D* Lite Algorithm 181

to only recalculate those start distances (that is, distance from the start
vertex to a vertex) that have changed (or have not been calculated before)
and a heuristic search tends to only recalculate those start distances that
are relevant for recalculating a shortest path from the start vertex to the
goal vertex. Thus, LPA* recalculates only very few start distances.

LPA* search maintains an estimate g(n) of the start distance of each
vertex n. It also maintains rhs-values, a second kind of estimates of the
start distances. The rhs-values are one-step look ahead values based on the
g-values and thus potentially better informed than the g-values. A vertex is
called consistent if and only if its g-value equals its rhs-value, otherwise it
is called inconsistent. This concept is important because the g-values of all
vertices equal their start distances if and only if all vertices are consistent.
However, LPA* does not make every vertex consistent after some of the
edge costs have changed. First, it does not re-compute the start distances
that has been computed before and has not changed. Second, LPA* uses
heuristic knowledge, in the form of approximations of the goal distances,
to focus the search and determine that some start distances need not be
computed at all (heuristic search), similar to A*.

The priorities are compared according to a lexicographic ordering. LPA*
recalculates the g-values of vertices in the priority queue in the order of
increasing first priority components, which correspond to the f-values of an
A* search, and vertices with equal first priority components in the order of
increasing second priority components, which correspond to the g-values of
an A* search. Thus, it expands vertices in a similar order as an A* search,
that expands vertices in the order of increasing f-values (since the heuristics
are consistent) and vertices with equal f-values that are on the same branch
of its search tree in the order of increasing g-values.

C.4 D* Lite Algorithm

The D* Lite algorithm [72, 97] is an application of a modified LPA* for
the goal-directed robot navigation task in unknown terrain. It determines
repeatedly the shortest paths between the current vertex of the robot and
the goal vertex as the edge costs of a graph change while the robot moves
towards the goal vertex. Consequently, it can be introduced as an alternative
to D* that implements the same navigation strategy but is algorithmically
different. Since D* Lite is based on LPA*, it is simple, easy to understand,
easy to analyze and easy to extend. It also inherits all of the properties of
LPA* and can be extended in the same way as LPA*. In addition, it has
more than thirty percent fewer lines of code than D* [73].

D* Lite searches from the goal vertex to the start vertex and thus its
g-values are estimates of the goal distances. It is derived from LPA* by
exchanging the start and goal vertex and reversing all edges in the pseudo

182 Heuristic Search Algorithms

code. On the other hand, D* Lite borrowed the priority handling method
from the D* algorithm to avoid repeatedly reordering the priority queue.
One can efficiently recalculate a shortest path from the current vertex of
the robot to the goal vertex by recalculating only those goal distances that
have been changed (or have not been calculated before) and are relevant for
recalculating the shortest path. This is what D* Lite does. The challenge is
to identify these vertices efficiently. D* Lite does not make any assumptions
about how the edge costs change, whether they go up or down, whether
they change close to the current vertex of the robot or far away from it,
or whether they change in the world or only because the robot revised its
initial estimates. The goal-directed navigation problem in unknown terrain
then is a special case of this problem, where the graph is an eight-connected
grid whose edge costs are initially one and change to infinity when the robot
discovers that they cannot be traversed.

The complete list of D* Lite is illustrated in Algorithm 5. The finite
set of vertices of the graph is denoted by S. Succ(s) ⊆ S denotes the set
of successors of vertex s ∈ S. Similarly, Pred(s) ⊆ S denotes the set of
predecessors of vertex s ∈ S. 0 < c(s, s

′
) ≤ ∞ denotes the cost of moving

from vertex s to vertex s
′ ∈ Succ(s). The priority of a vertex in the priority

queue (U) is denoted by k(s) = [k1(s); k2(s)]. On the other hand, D* Lite
uses heuristics h(s, s

′
) that approximate the goal distance of the vertex s.

The heuristics need to be nonnegative and satisfy h(s, s
′
) ≤ c∗(s, s′) and

h(s, s
′′
) ≤ h(s, s

′
) + h(s

′
, s
′′
) for all vertices s, s

′
, s
′′ ∈ S, where c∗(s, s′)

denotes the cost of a shortest path from vertex s ∈ S to vertex s
′ ∈ S.

C.4 D* Lite Algorithm 183

Algorithm 5: D* Lite Search
Procedure CalculateKey(s)

return [min(g(s), rhs(s)) + h(sinit, s) + km; min(g(s), rhs(s))];
Procedure Initialize()

U = ∅;
km = 0;
forall s ∈ S do rhs(s) = g(s) = ∞;
rhs(sgoal) = 0;
U.Insert(sgoal, CalculateKey(sgoal));

Procedure UpdateVertex(u)
if (u 6= sgoal) then rhs(u) = minś∈Succ(u)(c(u, ś + g(ś));
if (u ∈ U) then U.Remove(u);
if (g(u) 6= rhs(u)) then U.Insert(u,CalculateKey(u));

Procedure ComputeShortestPath()
while (U.TopKey() < CalculateKey(sinit) OR rhs(sinit) 6= g(sstart))
do

kold = U.TopKey();
u = U.Pop();
if (kold < CalculateKey(u)) then

U.Insert(u,CalculateKey(u));
else if (g(u) > rhs(u)) then

g(u) = rhs(u);
forall s ∈ Pred(u) do UpdateV ertex(s);

else
g(u) = ∞;
forall s ∈ Pred(u) ∪ {u} do UpdateV ertex(s);

Procedure Main()
slast = sinit;
Initialize();
ComputeShortestPath();
while sinit 6= sgoal do

sinit = arg minś∈Succ(sinit)(c(sinit, ś) + g(ś));
Move to sinit;
scan graph for changed edge costs;
if any edge costs changed then

km = km + h(slast, sinit);
slast = sinit;
forall directed edges (u, v) with changed edge costs do

Update the edge cost c(u, v);
UpdateV ertex(u);

ComputeShortestPath();

184 Heuristic Search Algorithms

APPENDIX D

Publications

The chapters of this thesis are based on the following papers:

1. Elmogy, M., Habel, C., and Zhang, J. Robot topological map gen-
eration from formal route instructions. In proceedings of the 6th Inter-
national Cognitive Robotics Workshop at 18th European Conference on
Artificial Intelligence (ECAI) (Patras, Greece, July 2008), IOS Press,
pp. 60–67. July 21-22.

2. Elmogy, M., and Zhang, J. Robust real-time landmark recognition
for humanoid robot navigation. In proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics (ROBIO’08)
(Bangkok, Thailand, December 2008), IEEE, pp. 572–577. December
14-17.

3. Elmogy, M., Habel, C., and Zhang, J. Spatial language for route-
based humanoid robot navigation. Cognitive Processing 10, 2 (Septem-
ber 2009), 208–211.

4. Elmogy, M., Habel, C., and Zhang, J. Cognitive instruction in-
terface for mobile robot navigation. In proceedings of the Interna-
tional Conference on Computer Engineering and Systems (ICCES’09)
(2009), pp. 115–120.

5. Elmogy, M., Habel, C., and Zhang, J. Online motion planning for
hoap-2 humanoid robot navigation. In proceedings of the 2009 IEEE
International Conference on Intelligent Robots and Systems (IROS’09)
(St. Louis, Missouri, USA, October 2009), pp. 3531–3536.

6. Elmogy, M., Habel, C., and Zhang, J. A Cognitively Motivated
Route-Interface for Mobile Robot Navigation, vol. 6 of Cognitive Sys-
tems Monographs. Springer Berlin/Heidelberg, 2009, pp. 73–82.

186 Publications

7. Elmogy, M., Habel, C., and Zhang, J. Time efficient hybrid mo-
tion planning algorithm for hoap-2 humanoid robot. In proceedings of
the 2010 ISR/ROBOTIK Conference (Munich, Germany, 2010), pp.
1046–1053.

8. Elmogy, M., Habel, C., and Zhang, J. Multimodal Cognitive In-
terface for Robot Navigation. (Submitted).

9. Elmogy, M., Habel, C., and Zhang, J. Landmark Processing Sys-
tem for Mobile Robot Navigation. (Submitted).

10. Elmogy, M., Habel, C., and Zhang, J. A Dynamic Sampling-based
Motion Planner for Humanoid Robot. (Submitted).

BIBLIOGRAPHY

[1] Bay, H., Ess, A., Tuytelaars, T., and Van Goo, L. Speeded-
up robust features (surf). Computer Vision and Image Understanding
(CVIU) 110, 3 (2008), 346–359.

[2] Belur, R. Investigation of the use of humanoids for industrial robot
safety standards. Tech. rep., Intelligent Systems Division, National
Institute of standards and technology, August 2007.

[3] Bianchi, R., Ramisa, A., and Lopez de Mantaras, R. Learning
to select object recognition methods for autonomous mobile robots. In
proceedings of the 18th European Conference on Artificial Intelligence
(Patras, Greece, July 2008), pp. 927–928.

[4] Birchfield, S., and Tomasi, C. Depth discontinuities by pixel-to-
pixel stereo. International Journal of Computer Vision 35, 3 (1999),
269–293.

[5] Bischoff, R., and Jain, T. Natural communication and interac-
tion with humanoid robots. In proceedings of the 2nd International
Symposium on Humanoid Robots (Tokyo, October 1999).

[6] Bohlin, R., and Kavraki, L. E. Path planning using lazy prm.
In proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’00) (San Francisco, CA, USA, April 2000), vol. 1,
pp. 521–528.

[7] Bouilly, B., and Simeon, T. A Sensor-based motion planner
for mobile robot navigation with uncertainty, vol. 1093/1996 of Lec-
ture Notes in Computer Science. Springer Berlin/Heidelberg, 1996,
pp. 235–247.

188 BIBLIOGRAPHY

[8] Bourgeot, J.-M., Cislo, N., and Espiau, B. Path-planning and
tracking in a 3d complex environment for an anthropomorphic biped
robot. In proceedings of the IEEE/RSJ International Conference on
ntelligent Robots and Systems. (2002), vol. 3, pp. 2509–2514.

[9] Bradski, G., and Kaebler, A. Learning OpenCV, 1 ed. O’Reilly,
2008.

[10] Brennan, S. E. The Grounding Problem in Conversations With and
Through Computers. 1991, pp. 201–225.

[11] Brown, D. C. Close-range camera calibration. Photogrammetric
Engineering 37, 8 (1971), 855–866.

[12] Browning, B., and Veloso, M. Real-time adaptive color-based
robot vision. In proceedings of the 2005 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems(IROS’05). (Augest 2005),
pp. 3871–3876.

[13] Bruce, J., Balch, T., and Veloso, M. Fast and inexpensive
color image segmentation for interactive robots. In proceedings of the
2000 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’00) (Octobar 2000), vol. 3, pp. 2061–2066.

[14] Bruce, J., and Veloso, M. Real-time multi-robot motion planning
with safe dynamics. Multi-Robot Systems: From Swarms to Intelligent
Automata III (2005).

[15] Bugmann, G., Klein, E., Lauria, S., and Kyriacou, T. Corpus-
based robotics: A route instruction example. In proceedings of the con-
ference on Intelligent Autonomous System (Amsterdam, March 2004),
pp. 96–103.

[16] Burns, B., and Brock, O. Sampling-based motion planning us-
ing predictive models. In proceedings of the 2005 IEEE International
Conference on Robotics and Automation (ICRA’05) (April 2005),
pp. 3120–3125.

[17] Calinon, S., and Billard, A. Teaching a humanoid robot to rec-
ognize and reproduce social cues. In proceedings of the IEEE interna-
tional Symposium on Robot and Human Interactive Communication
(ROMAN’06) (2006), pp. 346–351.

[18] Carpin, S. Randomized motion planning - a tutorial. International
Journal of Robotics and Automation 21, 3 (2006), 184–196.

BIBLIOGRAPHY 189

[19] Censi, A., Calisi, D., De Luca, A., and Oriolo, G. A bayesian
framework for optimal motion planning with uncertanity. In proceed-
ings of the IEEE International Conference on Robotics and Automa-
tion (ICRA’08) (Pasadena, CA, May 2008).

[20] Chalodhorn, R., Grimes, D. B., Maganis, G., and Rao, R.
P. N. Learning dynamic humanoid motion using predictive control
in low dimensional subspaces. In proceedings of the 5th IEEE-RAS
International Conference on Humanoid Robots (2005), IEEE Xplore,
pp. 214–219.

[21] Chella, A., Coradeschi, S., Frixione, M., and Saffiotti, A.
Perceptual anchoring via conceptual spaces. In proceedings of the
AAAI-04 Workshop on Anchoring Symbols to Sensor Data (2004),
AAAI Press, Menlo Park, California.

[22] Chella, A., Frixione, M., and Garlio, S. Conceptual spaces for
anchoring. Robotics and Autonomous Systems 43, 2-3 (2003), 193–195.

[23] Chestnutt, J., Kuffner, J., Nishiwaki, K., and Kagami, S.
Planning biped navigation strategies in complex environments. In
processdings of the IEEE International Conference on Robotics and
Automation (ICRA’03) (2003).

[24] Chestnutt, J., Lau, M., Cheung, G., Kuffner, J., Hodgins,
J., and Kanade, T. Footstep planning for the honda asimo hu-
manoid. In processing of the 2005 IEEE International Conference on
Robotics and Automation (Barcelona, Spain, 2005), pp. 629–633.

[25] Choset, H., Lynch, K. M., Hutchinson, S., Kantor, G., Bur-
gard, W., Kavraki, L. E., and Thrun, S. Principles of Robot
Motion-Theory, Algorithms, and Implementations. The MIT Press,
June 2005.

[26] Clark, H. H. Arenas of language use. University of Chicago Press,
1992.

[27] Clark, H. H., and Brennan, S. E. Grounding in Communica-
tion. American Psychological Association, Washington, DC, USA,
1991, ch. 7, pp. 127–149.

[28] Coradeschi, S., and Saffiotti, A. Anchoring symbols to sensor
data: Preliminary report. In proceedings of the 17th National Confer-
ence on Artificial Intelligence (AAAI’00) (Austin, 2000), pp. 129–135.

[29] Coradeschi, S., and Saffiotti, A. An introduction to the anchor-
ing problem. Robotics and Autonomous Systems 43 (2003), 85–96.

190 BIBLIOGRAPHY

[30] Drysdale, J. D., and Lyons, D. Learning image-based landmarks
for wayfinding using neural network. In Artificial Neural Networks in
Engineering (St. Louis, MO., 2004).

[31] Ekvall, S., Hoffmann, F., and Kragic, D. Object recognition
and pose estimation for robotic manipulation using color cooccurrence
histograms. In proceedings of the 2003 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS’03) (2003), vol. 2,
pp. 1284–1289.

[32] Ekvall, S., Jensfelt, P., and Kragic, D. Integrating active
mobile robot object recognition and slam in natural environments.
In proceedings of the 2006 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’06) (2006), pp. 5792–5797.

[33] Ekvall, S., Kragic, D., and Jensfelt, P. Object detection and
mapping for service robot tasks. Robotica 25, 2 (March 2007), 175–187.

[34] Ekvalla, S., Kragicb, D., and Hoffmannc, F. Object recog-
nition and pose estimation using color cooccurrence histograms and
geometric modeling. Image and Vision Computing 23, 11 (2005), 943–
955.

[35] Ersson, T., and Hu, X. Path planning and navigation of mobile
robots in unknown environments. In proceedings of the IEEE Interna-
tional Conference of Intelligent Robots and Systems (2001).

[36] Eschenbach, C., Tschander, L., Habel, C., and Kulik, L. Lex-
ical Specifications of Paths, vol. 1849/2000 of Lecture Notes in Com-
puter Science. Springer Berlin/Heidelberg, 2000, pp. 127–144.

[37] Fasola, J., and Veloso, M. Real-time object detection using seg-
mented and grayscale images. In proceedings of the 2006 IEEE In-
ternational Conference on Robotics and Automation (ICRA’06) (May
2006), pp. 4088–4093.

[38] Ferguson, D., Kalra, N., and Stentz, A. Replanning with rrts.
In proceedings of the IEEE International Conference on Robotics and
Automation (ICRA’06) (May 2006), pp. 1243–1248.

[39] Florczyk, S. Robot Vision: Video-based Indoor Exploration with
Autonomous and Mobile Robots, 1st ed. WILEY-VCH Verlag GmbH
and Co. KGaA, Weinheim, 2005.

[40] Fong, T., Thorpe, C., and Baur, C. Collaboration, Dialogue,
and Human-Robot Interaction, vol. 6 of Springer Tracts in Advanced
Robotics. Springer Berlin/Heidelberg, 2003, pp. 255–266.

BIBLIOGRAPHY 191

[41] Fujitsu Automation Company Ltd., . HOAP-2 Instruction Man-
ual, 3rd ed., 2004.

[42] Fusiello, A., Trucco, E., and Verri, A. A compact algorithm
for rectification of stereo pairs. Machine Vision and Applications 12,
1 (2000), 16–22.

[43] Geraerts, R., and Overmars, M. H. Sampling techniques for
probabilistic roadmap planners. In proceedings of the Conference on
Intelligent Autonomous Systems (IAS-8) (2004), pp. 600–609.

[44] Goodrich, M. A., and Schultz, A. C. Humanrobot interaction:
A survey. Foundation and Trends in Human-Computer Interaction 1,
3 (2007), 203–275.

[45] Gopalakrishnan, A., Greene, S., and Sekmen, A. Vision-based
mobile robot learning and navigation. In proceedings of the IEEE
International Workshop on Robot and Human Interactive Communi-
cation (ROMAN’05) (2005).

[46] Gutmann, J.-S., Fukuchi, M., and Fujita, M. Real-time path
planning for humanoid robot navigation. In proceedings of the Inter-
national joint conference on artificial intelligence (IJCAI-05) (2005),
pp. 1232–1237.

[47] Guzel, M. S. Mobile robot navigation using a vision based approach.
In processdings of the Newcastle University Postgraduate Conference
(2009).

[48] Grdenfors, P. Conceptual Spaces: The Geometry of Thought. MIT
Press, 2000.

[49] Habel, C. Incremental generation of multimodal route instructions.
In proceedings of the AAAI Spring Symposium on Natural language
generation in spoken and written dialogue (Palo Alto, CA, March
2003), pp. 44–51.

[50] Harnad, S. The symbol grounding problem. Physica D 42, 1-3 (June
1990), 335 – 346.

[51] Harnad, S. The Symbol Grounding Problem. Nature Publishing
Group/Macmillan, 2003.

[52] Hart, P. E., Nilsson, N. J., and Raphael, B. A formal basis for
the heuristic determination of minimum cost paths. IEEE Transac-
tions on Systems Science and Cybernetics 4, 2 (July 1968), 100–107.

[53] Hartley, R. I., and Sturm, P. Triangulation. Computer Vision
and image understanding 68, 2 (1997), 146–157.

192 BIBLIOGRAPHY

[54] Hillman, P. White paper: Camera calibration and stereo vision.
Tech. rep., Square Eyes Software, UK, 2005.

[55] Hirai, K., Hirose, M., Haikawa, Y., and Takenaka, T. The
development of honda humanoid robot. In proceedings of the Interna-
tional Conference on Robotics and Automation (1998), pp. 1321–1326.

[56] Hirose, M., and Ogawa, K. Honda humanoid robots develop-
ment. Philosophical Transactions of The Royal Society A Mathemat-
ical Physical and Engineering Sciences 365, 1850 (January 2007), 11–
19.

[57] Honda ASIMO Web Site, . http://world.honda.com/ASIMO/.

[58] Hsu, D., Jiang, T., Reif, J., and Sun, Z. The bridge test for
sampling narrow passages with probabilistic roadmap planners. In
proceedings of the IEEE International Conference on Robotics and Au-
tomation (2003), pp. 4420–4426.

[59] Hussein, A. M., and Elnagar, A. A fast path planning algo-
rithm for robot navigation with limited visibilty. In proceedings of
the IEEE International Conference on Systems, Man and Cybernetics
(Oct 2003), vol. 1, pp. 373–377.

[60] INourbakhsh, l. R., Bobenage, J., Grange, S., Lutz, R.,
Meyer, R., and Soto, A. An affective mobile robot educator with
a full-time job. Artificial Intelligence 114, 1-2 (October 1999), 95–124.

[61] Iocchi, L., and Konolige, K. Multiresolution stereo vision system
for mobile robots. In processding of the AI&IA Workshop on New
Trends in Robotics (1998).

[62] Jan, G. E., Chang, K. Y., and Parberry, I. Optimal path
planning for mobile robot navigation. IEEE/ASME Transactions on
Mechatronics 13, 4 (Aug 2008), 451–460.

[63] Jeanne, J. M. Developing adjustable walking patterns for natural
walking in humanoid robots. Jet Propulsion Laboratory, Princeton
University (19 August 2004).

[64] Kanda, T., Ishiguro, H., Ono, T., Imai, M., and Nakatsu,
R. Development and evaluation of an interactive humanoid robot
robovie. In proceeding the IEEE International Conference Robotics
and Automation (ICRA’02) (2002), vol. 2, pp. 1848–1855.

[65] Kaneko, K., Kanehiro, F., Kajita, S., Hirukawa, H.,
Kawasaki, T., Hirata, M., Akachi, K., and Isozumi, T. Hu-
manoid robot hrp-2. In proceedings of the 2004 IEEE International

BIBLIOGRAPHY 193

Conference on Robotics & Automation (New Orleans, LA, April 2004),
pp. 1083–1090.

[66] Karlsson, L., Bouguerra, A., Broxvall, M., Coradeschi, S.,
and Saffiotti, A. To secure an anchor - a recovery planning ap-
proach to ambiguity in perceptual anchoring. AI Communications 21,
1 (2008), 1–14.

[67] Khosla, P., and Volpe, R. Superquadratic artificial potentials for
obstacle avoidance and approach. In proceedings of the IEEE Confer-
ence on Robotics and Automation (ICRA’88) (April 1988).

[68] Kidd, P. T. Design of human-centred robotic systems. Taylor and
Francis: London, 1992, ch. 12, pp. 225–241.

[69] Kiesler, S. Fostering common ground in human-robot interaction.
In processdings of the IEEE International Workshop on Robot and Hu-
man Interactive Communication (ROMAN’05) (2005), pp. 729–734.

[70] Kim, S., Lee, S., Kim, S., and Lee, J. Object tracking of mobile
robot using moving color and shape information for the aged walking.
International Journal of Advanced Science and Technology 3 (2009),
59–68.

[71] Kobilarov, M., and Sukhatme, G. S. Near time-optimal con-
strained trajectory planning on outdoor terrain. In proceedings of
the 2005 IEEE International Conference on Robotics and Automation
(ICRA’05) (Barcelona,Spain, April 2005), pp. 1821–1828.

[72] Koenig, S., and Likhachev, M. D* lite. In proceedings of the AAAI
Conference of Artificial Intelligence (AAAI’02) (2002), pp. 476–483.

[73] Koenig, S., and Likhachev, M. Improved fast replanning for robot
navigation in unknown terrain. In proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA’02) (2002),
vol. 1, pp. 968– 975.

[74] Koenig, S., and Likhachev, M. Incremental a*. Advances in
Neural Information Processing Systems (NIPS) (2002), 1539–1546.

[75] Kollar, T., Tellex, S., Roy, D., and Roy, N. Toward
understanding natural language directions. In proceeding of the
5th ACM/IEEE international conference on Human-robot interaction
(HRI’10) (Osaka, Japan, 2010), pp. 259–266.

[76] Kuffner, J., Kagami, S., Nishiwaki, K., Inaba, M., and Inoue,
H. Online footstep planning for humanoid robots. In proceedings
of the IEEE International Conference on Robotics and Automation
(ICRA’03) (September 2003), IEEE.

194 BIBLIOGRAPHY

[77] Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., and
Inoue, H. Motion planning for humanoid robots under obstacle and
dynamic balance constraints. In proceedings of the IEEE International
Conference on Robotics and Automation (ICRA’01) (Seoul, Korea,
May 2001), pp. 692–698.

[78] Kuffner, J. J., Nishiwaki, K., Kagami, S., Inaba, M., and
Inoue, H. Motion planning for humanoid robots. In proceedings of
the 20th International Symposium Robotics Research (ISRR’03) (Italy,
October 2003).

[79] Kuipers, B. J., and Levit, T. S. Navigation and mapping in large
scale space. AI Magazine 9 (1988), 25–43.

[80] Kuipers, B. J., Tecuci, D. G., and Stankiewicz, B. J. The
skeleton in the cognitive map : A computational and empirical explo-
ration. Environment & Behavior 35 (2003), 80–106.

[81] Kwon, E., and Kim, G. J. Humanoid robot vs. projector robot:
exploring an indirect approach to human robot interaction. In proceed-
ings of the 5th ACM/IEEE international conference on Human-robot
interaction (HRI’10) (Osaka, Japan, 2010), pp. 157–158.

[82] Kyriacou, T., Bugmann, G., and Lauria, S. Vision-based urban
navigation procedures for verbally instructed robots. Robotics and
Autonomous Systems 51 (2002), 1326–1331.

[83] Landau, B., and Jackendoff, R. what and where in spatial lan-
guage and spatial cognition. Behavioral and Brain Sciences 16 (1993),
217–265.

[84] Lang, S., Kleinehagenbrock, M., Hohenner, S., Fritsch, J.,
Fink, G. A., and Sagerer, G. Providing the basis for human-robot-
interaction: A multi-modal attraction system for a mobile robot. In
proceedings of the International Conference on Multimodal Interfaces
(Vancouver, Canada, November 2003), pp. 28–35.

[85] Latombe, J.-C. Robot Motion Planning, 1st ed. Kluwer Academic,
1991.

[86] Lau, M., and Kuffner, J. Behavior planning for character ani-
mation. In proceedings of the 2005 ACM SIGGRAPH / Eurographics
Symposium on Computer Animation (Los Angeles, CA, August 2005),
pp. 271–280.

[87] Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., and Klein,
E. Training personal robots using natural language instruction. IEEE
Intelligent Systems 16 (2001), 38–45.

BIBLIOGRAPHY 195

[88] LaValle, S. M. Planning Algorithms. Cambridge University Press,
May 2006.

[89] Lazebnik, S., Schmid, C., and Ponce, J. Beyond bag-of-features:
Spatial pyramid matching for recognizing natural scene categories. In
proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR’06) (2006), vol. 2, pp. 2169–
2178.

[90] Lenz, R. K., and Tsai, R. Y. Techniques for calibration of the scale
factor and image center for high accuracy 3-d machine vision metrol-
ogy. IEEE Transactions on Pattern Analysis and Machine Intelligence
10, 5 (1988), 713–720.

[91] Levit, M., and Roy, D. Interpretation of spatial language in a map
navigation task. IEEE Transactions on Systems, Man, and Cybernet-
ics Part B 37, 3 (2007), 667–679.

[92] Lindemann, S. R., and LaValle, S. M. Current Issues in
Sampling-Based Motion Planning, vol. 15 of Springer Tracts in Ad-
vanced Robotics. Springer Berlin/Heidelberg, 2005, pp. 36–54.

[93] Litvintseva, L., Tanaka, T., Yamafuji, K., and Ulyanov, V.
Intelligence computing for direct human-robot communication using
natural language and cognitive graphics. In proceedings of the IEEE
International Symposium on Computational Intelligence in Robotics
and Automation (CIRA ’97) (Jul 1997), pp. 332–337.

[94] Lorch, O., Albert, A., Denk, J., Gerecke, M., Cupec, R.,
Seara, J. F., Gerth, W., and Schmidt, G. Experiments in vision
guided biped walking. In proceedings of the 2002 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and System (IROS’02) (2002),
vol. 3, pp. 2484–2490.

[95] Lowe, D. G. Distinctive image features from scale-invariant key-
points. International Journal of Computer Vision 60, 2 (2004), 91–
110.

[96] Lozano-Perez, T. Spatial planning: A configuration space ap-
proach. IEEE Transactions on Computers C-32 (1983), 108–120.

[97] Mackay, D. Path planning with d* lite: Implementation and adap-
tation of the d* lite algorithm. DRDC Suffield TM 2005-242: Defence
RD Canada Suffield (2005).

[98] MacMahon, M. Marco: A modular architecture for following route
instructions. In proceedings of the AAAI Workshop on Modular Con-

196 BIBLIOGRAPHY

struction of Human-Like Intelligence (Pittsburgh, PA, July 2005),
pp. 48–55.

[99] MacMahon, M., and Stankiewicz, B. Human and automated in-
door route instruction following. In proceedings of the 28th Annual
Conference of the Cognitive Science Society (Vancouver, BC, July
2006), pp. 1759–1764.

[100] Macmahon, M., Stankiewicz, B., and Kuipers, B. Walk the
talk: Connecting language, knowledge, and action in route instruc-
tions. In proceedings of the 21st National Conference on Artificial
Intelligence (AAAI-2006) (Boston, USA, 2006), pp. 1475–1482.

[101] Matas, J., Galambos, C., and Kittler, J. Progressive probabilis-
tic hough transform. In British Machine Vision Conference (1998),
pp. 256–265.

[102] Michel, P., Chestnutt, J., Kagami, S., Nishiwaki, K.,
Kuffner, J. J., and Kanade, T. Online environment reconstruc-
tion for biped navigation. In proceedings of the 2006 IEEE Interna-
tional Conference on Robotics and Automation (ICRA’06) (Orlando,
Florida, May 2006), pp. 3089–3094.

[103] Michel, P., Chestnutt, J., Kuffner, J. J., and Kanade, T.
Vision-guided humanoid footstep planning for dynamic environments.
In proceedings of the 2005 5th IEEE-RAS International Conference on
Humanoid Robots (2005), pp. 13–18.

[104] Mizuuchi, I. A Musculoskeletal Flexible-Spine Humanoid Kotaro
Aiming at the Future in 15 years’ time. Pro literatur Verlag, 2007,
ch. 3, pp. 45–56.

[105] Montello, D. R. Navigation. In The Cambridge handbook of vi-
suospatial thinking., P. Shah & A. Miyake, Ed. Cambridge University
Press, 2005, pp. 257–294.

[106] Murdock, K. L. Google SketchUp and SketchUp Pro 7 Bible. Wiley,
2009.

[107] Nielsen, C. W., Bruemmer, D. J., Few, D. A., and Gert-
man, D. I. Framing and evaluating human-robot interactions. In
proceedings of the Workshop on Metrics for Human-Robot Interaction
(Amsterdam, March 2008), pp. 29–36.

[108] Nieuwenhuisen, M., Stuckler, J., and Behnke, S. Intu-
itive multimodal interaction for service robots. In proceedings of the
5th ACM/IEEE international conference on Human-robot interaction
(HRI’10) (Osaka, Japan, 2010), pp. 177–178.

BIBLIOGRAPHY 197

[109] Nishiwaki, K., Kuffner, J., Kagami, S., Inaba, M., and In-
oue, H. The experimental humanoid robot h7: a research platform
for autonomous behaviour. Philosophical Transactions of The Royal
Society A 365 (2007), 79–107.

[110] Nister, D., and Stewenius, H. Scalable recognition with a vocab-
ulary tree. In proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) (June 2006), vol. 2, pp. 2161–2168.

[111] Okada, K., Inaba, M., and Inoue, H. Walking navigation system
of humanoid robot using stereo vision based floor recognition and path
planning with multi-layered body image. In proceedings of the 2003
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS’03) (Las Vegas, Nevada, October 2003), pp. 2155–2160.

[112] PAL Robotics Web Site, . http://www.pal-robotics.com/.

[113] Perzanowski, D., Schultz, A. C., Adams, W., Marsh, E., and
Bugajska, M. Building a multimodal human-robot interface. Intel-
ligent Systems 16, 1 (2001), 16–21.

[114] Pires, G., and Nunes, U. A wheelchair steered through voice com-
mands and assisted by a reactive fuzzy-logic controller. Journal of
Intelligent and Robotic Systems 34 (2002), 301–314.

[115] Plaku, E., Bekris, K., and Kavraki, L. E. Oops for motion plan-
ning: An online open-source programming system. In proceedings of
the International Conference on Robotics and Automation (ICRA’07)
(Rome, Italy, 2007), p. 37113716.

[116] Pradel, G., and Hoppenot, P. Symbolic trajectory description
in mobile robotics. Journal of Intelligent and Robotic Systems 45, 2
(February 2006), 157–180.

[117] Ramisa, A., Vasudevan, S., Aldavert, D., Toledo, R., and
Lopez de Mantaras, R. Evaluation of the sift object recognition
method in mobile robots. In proceedings of the 12th International
Conference of Artificial Intelligence and Applications (2009), vol. 202,
pp. 9–18.

[118] Ribes, A., Ramisa, A., Lopez De Mantaras, R., and Toledo,
R. Object-based place recognition for mobile robots using panoramas.
In proceeding of the 2008 conference on Artificial Intelligence Research
and Development (Amsterdam, The Netherlands, 2008), pp. 388–397.

[119] Roth, P. M., and Winter, M. Survey of appearance-based meth-
ods for object recognition. Tech. rep., Institute for Computer Graphics
and Vision, Graz University of Technology, Austria, 2008.

198 BIBLIOGRAPHY

[120] Rouanet, P., Oudeyer, P.-Y., and Filliat, D. A study of three
interfaces allowing non-expert users to teach new visual objects to a
robot and their impact on learning efficiency. In proceedings of the
5th ACM/IEEE international conference on Human-robot interaction
(HRI’10) (Osaka, Japan, 2010), pp. 185–186.

[121] Roy, D. Semiotic schemas: A framework for grounding language in
action and perception. Artificial Intelligence 167 (2005), 170–205.

[122] Rubio, J. P. B., Zhou, C., and Hernndez, F. S. Vision-
Based Walking Parameter Estimation for Biped Locomotion Imitation,
vol. 3512/2005 of Perception and Robotics-Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, 2005, pp. 677–684.

[123] Sabe, K., Fukuchi, M., Gutmann, J., Ohashi, T., Kawamoto,
K., and Yoshigahara, T. Obstacle avoidance and path planning for
humanoid robots using stereo vision. In proceedings of the IEEE Inter-
national Conference on Robotics and Automation (ICRA’04) (2004),
vol. 1, pp. 592–597.

[124] Salter, T., Dautenhahn, K., and Boekhorst, R. Learning
about natural human-robot interaction styles. Journal of Robotics
and Autonomous Systems 52, 2 (2006), 127–134.

[125] Sanchez L, A., Zapata, R., , and Osorio L, M. A. Sampling-
based motion planning: A survey. Computacion y Sistemas 12, 1
(2008), 5–24.

[126] Scholtz, J. Theory and evaluation of human robot interactions. In
proceedings of the 36th Annual Hawaii International Conference on
System Sciences (HICSS’03) (Washington, DC, USA, 2003), vol. 5,
pp. 125–134.

[127] Schulz, R., Stockwell, P., Wakabayashi, M., and Wiles, J.
Towards a spatial language for mobile robots. In proceedings of the
6th International Conference on the Evolution of Language (2006),
pp. 291–298.

[128] Shapiro, S. C., and Ismail, H. O. Anchoring in a grounded lay-
ered architecture with integrated reasoning. Robotics and Autonomous
Systems 43 (2003), 97–108.

[129] Shiller, Z., Yamane, K., and Nakamura, Y. Planning motion
patterns of human figures using a multi-layered grid and the dynamics
filter. In proceedings of the 2001 IEEE International Conference on
Robotics and Automation (ICRA’01) (2001), pp. 1–8.

BIBLIOGRAPHY 199

[130] Shinozaki, K., Iwatani, A., and Nakatsu, R. Study of Dance En-
tertainment Using Robots. Pro literatur Verlag, 2007, ch. 27, pp. 535–
544.

[131] Sian, N. E., Yokoi, K., Kajita, S., Kanehiro, F., and Tanie,
K. Whole body teleoperation of a humanoid robot: development of
a simple master device using joysticks. In processings of the 2002
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (Lausanne, Switzerland, October 2002), pp. 2569–2574.

[132] Siegwart, R., and Nourbakhsh, I. R. Introduction to Autonomous
Mobile Robots, 1st ed. Massachusetts Institute of Technology, 2004.

[133] Simpson, R. C., and Levine, S. P. Adaptive shared control of
a smart wheelchair operated by voice control. In proceedings of the
1997 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS’97) (September 1997), vol. 2, pp. 622–626.

[134] Sjo, K., Galvez Lopez, D., Paul, C., Jensfelt, P., and
Kragic, D. Object search and localization for an indoor mobile robot.
Journal of Computing and Information Technology 17, 1 (2009), 67–
80.

[135] Skubic, M., Perzanowski, D., Blisard, S., Schultz, A.,
Adams, W., Bugajska, M., and Brock, D. Spatial language for
human-robot dialogs. Systems, Man, and Cybernetics, Part C: Appli-
cations and Reviews, IEEE Transactions 34, 2 (May 2004), 154–167.

[136] Solutions, A. K. Robotics, 1st ed. Jones & Bartlett Publishers,
April 2007.

[137] Sonka, M., Halvac, V., and Boyle, R. Image Processing Analysis
and computer vision, 3rd ed. Thomson, 2007.

[138] Sony QRIO Web Site, . http://www.sonyaibo.net/aboutqrio.htm.

[139] Steels, L. The Symbol Grounding Problem has been Solved. So
What’s Next? Academic Press, New Haven, 2007.

[140] Steels, L., and Baillie, J.-C. Shared grounding of event descrip-
tions by autonomous robots. Robotics and Autonomous Systems 43
(2003), 163–173.

[141] Stentz, A. The focussed d* algorithm for real-time replanning. In
proceedings of the International Joint Conference on Articial Intelli-
gence (1995), pp. 1652–1659.

200 BIBLIOGRAPHY

[142] Stoica, A. Humanoids for lunar and planetary surface operations.
In proceedings for the 5th IEEE-RAS International Conference on Hu-
manoid Robots (2005), pp. 345–350.

[143] Taha, T., Valls Miro, J., and Dissanayake, G. Sampling based
time efficient path planning algorithm for mobile platforms. In pro-
ceeding of the 2006 IEE International Conference on Man-Machine
Systems (ICoMMS 2006) (Langkawi, Malaysia, Sep 2006).

[144] Takeda, H., Facchinetti, C., and Latombe, J.-C. Planning the
motions of a mobile robot in a sensory uncertainty field. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 16, 10 (October
1994), 1002–1017.

[145] Tanie, K. Humanoid robot and its application possibility. In proceed-
ings of the IEEE Conference on Multisensor Fusion and Integration
for Intelligent Systems (2003), pp. 213–214.

[146] Tedder, M., and Hall, E. L. Symbolic processing methods for 3d
visual processing. Intelligent Robots and computer vision: Algorithms,
techniques, and active vision 4572 (2001), 93–104.

[147] Tellex, S., and Roy, D. Spatial routines for a simulated speech-
controlled vehicle. In proceedings of the 1st ACM SIGCHI/SIGART
Conference on Human-Robot Interaction (Salt Lake City, Utah, USA,
2006), pp. 156–163.

[148] Tellex, S., and Roy, D. Grounding language in spatial routines.
In processings of the AAAI Spring Symposium on Control Mecha-
nisms for Spatial Knowledge Processing in Cognitive/Intelligent Sys-
tems (2007).

[149] Thrun, S. Toward a framework for human-robot interaction. Human-
Computer Interaction 19, 1 (June 2004), 9–24.

[150] Torrance, M. C. Natural Communication with Mobile Robots. PhD
thesis, MIT Department of Electrical Engineering and Computer Sci-
ence, Junuary 1994.

[151] Trullier, O., Wiener, S. I., Berthoz, A., and Meyer, J.-A.
Biologically based artificial navigation systems: review and prospects.
Progress in Neurobiology 51, 5 (April 1997), 483–544.

[152] Tsai, R. Y. A versatile camera calibration technique for high-
accuracy 3-d machine vision metrology using off-the-self ty cameras
and lenses. IEEE Journal of Robotics and Automation 3, 4 (1987),
323–344.

BIBLIOGRAPHY 201

[153] Tschander, L. B., Schmidtke, H., Habel, C., Eschenbach,
C., and Kulik, L. A Geometric Agent Following Route Instruc-
tions, vol. 2685/2003 of Lecture Notes in Computer Science. Springer
Berlin/Heidelberg, 2003, pp. 89–111.

[154] Tsianos, K. I., Sucan, I. A., and Kavraki, L. E. Sampling-based
robot motion planning: Towards realistic applications. Computer Sci-
ence Review 1, 1 (2007), 2–11.

[155] Vukobratovic, M., and Borovac, B. Zero-moment point -thirty
five years of its life. International Journal of Humanoid Robotics 1, 1
(2004), 154–173.

[156] Vukobratovic, M., Borovac, B., and Babkovic, K. Contribu-
tion to the study of anthropomorphism of humanoid robots. Journal
Humanoids Robotics 2, 3 (2005), 361–387.

[157] Weiss, A., Buchner, R., Scherndl, T., and Tscheligi, M. I
would choose the other card: humanoid robot gives an advice. In
proceedings of the 4th ACM/IEEE international conference on Human
robot interaction (HRI’09) (La Jolla, California, USA, 2009), pp. 259–
260.

[158] Werner, S., Krieg-Brckner, B., and Herrmann, T. Modelling
navigational knowledge by route graphs. Lecture Notes in Computer
Science. Springer Berlin/Heidelberg, January 2000, pp. 295–316.

[159] Yussof, H., Yamano, M., Nasu, Y., and Ohka, M. Humanoid
Robot Navigation Based on Groping Locomotion Algorithm to Avoid
an Obstacle. Pro literatur Verlag, 2007, ch. 1, pp. 01–26.

[160] Zavlangas, P. G., and Tzafestas, S. G. Integration of Topological
and Metric Maps for Indoor Mobile Robot Path Planning and Naviga-
tion. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2002, pp. 121–130.

[161] Zhang, J., Baier, T., and Hueser, M. Instructing an assembly
robot in situated natural language and gestures. In proceedings of
the 10th International Conference on Human-Computer Interaction
(Heraklion, Kreta, 2003).

[162] Zhang, J., Baier, T., and Hueser, M. A multimodal interface
to situated assembly robot systems. In proceedings of the IEEE In-
ternational Conference on Robotics, Intelligent Systems and Signal
Processing (Changsha, China, 2003).

202 BIBLIOGRAPHY

[163] Zhang, J., and Knoll, A. A General Learning Approach to Visually
Guided 3D Positioning and Pose Control of Robot Arms. Springer
Verlag, 2003, ch. 15, pp. 417–438.

[164] Zhang, J., and Quoy, M. Advances in robot skill learning. Robotics
and Autonomous Systems 38, 3-4 (2002), 135–136.

[165] Zhang, J., and Roessler, B. Self-valuing learning and generaliza-
tion with application in visually guided grasping of complex objects.
Robotics and Autonomous Systems 47 (2004), 117–127.

[166] Zhang, Z. A flexiable new technique for camera calibration. IEEE
Transactionson Pattern Analysis and Machine Intelligence 22, 11
(2000), 1330–1334.

INDEX

anchor, 173, 174, 177
ANNs-based recognition, 58
ASIMO, 9, 12
autonomous navigation, 36, 44, 52,

111
autonomy, 23

biped locomotion, 12, 62
bipedal humanoid robots, 11, 36
BoF, 56

CCHs, 57
cell decomposition, 70
center of gravity (CoG), 13
cognition, 10
cognitive models, 30
cognitive processes, 169, 171
collision avoidance, 141, 146
color histogram, 112, 124, 130
color-based recognition, 57
common grounding, 25
communication media, 24
conceptual space, 176, 177
configuration space, 64

Cfree, 65
Cobst, 65

connectionism, 170
correlation coefficient, 124
CRIL, 31, 99
cylinder model, 66, 84, 146

decoupled trajectory planning, 67

decoupled trajectory planning approach,
141

degrees of freedom (DOFs), 14
double-support phase (DSP), 13

environment representation, 41
metric maps, 41
topological maps, 41

footstep placements, 82, 84
footstep planner, 141, 151
FSM, 63
FSRs, 85

Geometric Agent (GA), 30
gesture recognitions, 10
graphical representation, 83, 91, 95
GUI, 82

head-motion planner, 141, 145
heuristic search, 179

A*, 179
D*, 180
D* Lite, 84, 151, 152, 181
LPA*, 180

HOAP, 9
HOAP-2, 84, 112, 129, 139
Hough transform, 112, 125, 126
human–computer interaction, 16
human–robot interaction, 15, 169
human–robot intervention, 19
Humanoid Robot Navigation System

(HRNS), 81

204 INDEX

motion processing module, 84, 139
route processing module, 83, 91
vision processing module, 84, 112

humanoid robots, 8, 10, 62, 66, 179

initial path estimation, 84, 91, 140
instruction interpreter, 83, 91, 97
Instruction-Based Learning, 32

kinodynamic, 67
knoxel, 176, 177

landmarks, 100, 120
language technologies, 10
levels of autonomy, 23, 24
lexicon, 97, 99
locomotion, 33

MARCO, 31
miniature city, 87
motion planner, 82, 84, 140
motion planning, 61, 65
motion trajectory generator, 154
multimodal interface, 25, 89, 91

narrow passages, 66, 71, 72
natural language, 82
natural language interaction, 29
navigation, 9, 33, 34
navigation strategies

guidance, 35
metrical navigation, 35
place recognition, 35
topological navigation, 35

non-uniform sampling, 84, 141

object detection, 53, 120, 121
object processing, 53
object recognition, 44, 54, 123

appearance-based techniques, 54,
123

model-based techniques, 54, 126
object segmentation, 53
obstacle avoidance , 65

parser, 97, 98

passive DOF, 12, 13
path planner, 141, 148
path planning, 65
peer-to-peer collaboration, 24
perceptual anchoring, 112, 171–173,

176
piano mover’s problem, 63
potential-field motion planning, 70

QRIO, 9

radial distortion, 47, 114
reactive-odometric plans, 32
real-time planning, 69
REEM, 9
reference systems, 39
RFCH, 55
roadmap graph, 148
Robot Landmark Processing System

(RLPS), 111, 112
robot navigation, 36
robot sensing, 10
Route Instruction Language (RIL),

92
route instructions, 36, 38, 39, 82

graphical, 38
multimodal, 38
verbal, 38, 39

sampling, 72, 149
sampling-based motion planning, 69,

84, 141
Lazy PRM, 76, 141, 149
PRM, 71, 72
roadmap-based planners, 71
RRTs, 64, 71, 77
tree-based planners, 77

segmentation, 120, 122
sensorimotor processes, 169, 171
SIFT, 55, 112, 126, 130
single-support phase (SSP), 13
social interaction, 15
spatial language, 33, 83, 91
spatial reasoning, 19, 30
stereo vision, 45, 46

INDEX 205

calibration, 46
camera calibration, 113
corresponding features, 46, 50, 118
depth information, 46
disparity map, 46, 112, 118, 119
epipolar geometry, 46, 49, 118
triangulation, 46, 52, 119

SURF, 130
symbol grounding, 141, 142, 169, 171
symbolic representation, 40, 83, 91,

98, 99, 101, 112
syntactical analysis, 97, 98
system dynamics, 67

tangential distortion, 47, 114
task-shaping, 27
Telerobotics, 18
time-changing workspaces, 68
topological map, 83, 91, 101, 112

UAVs, 26
uncertainty, 69

vision planner, 121, 122
vision-based navigation, 40, 43, 52

map-based, 44
map-building, 44
mapless, 44

way-finding, 33

ZMP, 13, 85, 154

206 INDEX

Eidesstattliche Erklärung

Hiertmit erkläre ich an Eides statt, dass ich die vorliegende Dissertation
selbst verfasst und keine anderen als die angegebenen Hilfsmittel verwendet
habe.

Hamburg, den 18.08.2010

Mohammed Elmogy

