
2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 1

Robot Navigation and Manipulation
based on a Predictive Associative Memory
Sascha Jockel, Mateus Mendes, Jianwei Zhang, A. Paulo Coimbra and Manuel Crisóstomo

Abstract—Proposed in the 1980s, the Sparse Distributed
Memory (SDM) is a model of an associative memory based on
the properties of a high dimensional binary space. This model
has received some attention from researchers of different areas
and has been improved over time. However, a few problems have
to be solved when using it in practice, due to the non-randomness
characteristics of the actual data. We tested an SDM using
different forms of encoding the information, and in two different
domains: robot navigation and manipulation. Our results show
that the performance of the SDM in the two domains is affected
by the way the information is actually encoded, and may be
improved by some small changes in the model.

Index Terms—Sparse distributed memory (SDM), EPIROME,
episodic memory, associative memory, navigation, manipulation,
robotics.

I. INTRODUCTION

Since the inception of Artificial Intelligence, an aim of
research has been to build machines able to exhibit human-
like behaviours. Current evidence [1], [2] supports the idea
that intelligence is, to a great extent, more the result of
using a large specialised memory than the result of heavy
computation.

In the 1980s, Pentti Kanerva proposed the model of a
Sparse Distributed Memory [1]. The properties of this model
are derived from the mathematical properties of high dimen-
sional binary spaces and thus provide a solid ground for
the theory. Such a memory must be very tolerant to noisy
data, learn in at the first attempt, forget in a natural way
and exhibit other human long-term memory characteristics.
Kanerva’s original model has received considerable attention
from the research community. The first major implementation
of the SDM was probably the Stanford Prototype, a huge
hardware implementation made at Stanford University in 1989
[3]. But the SDM has also been subject to several suggestions
for improvements. L. Jaeckel [4] and R. Karlsson [5], e.g.,
propose an alternative addressing mechanism that may im-
prove the performance of the model at the cost of reducing
the addressing space. D. Hely et al. [6] propose a signal model
which permits the memory to adjust its structure according

S. Jockel and J. Zhang are with CINACS International Research
Training Group, Technical Aspects of Multimodal Systems (TAMS), De-
partment of Informatics, University of Hamburg, Hamburg, Germany.
Email: {jockel,zhang}@informatik.uni-hamburg.de

M. Mendes is with Escola Superior de Tecnologia e Gesta̋o de Oliveira
do Hospital (ESTGOH), Instituto Politécnico de Coimbra (IPC), Coimbra,
Portugal. Email: mmendes@estgoh.ipc.pt

M. Mendes, A. P. Coimbra and M. Crisóstomo are with ISR - Institute of
Systems and Robotics, Department of Electrical and Computer Engineering,
University of Coimbra, Portugal. Email: {acoimbra,mcris}@isr.uc.pt

to the stored data, thus improving its performance with non-
random data. B. Ratitch et al. [7] propose an alternative
architecture which might perform better with nonrandom data,
at the cost of possibly degrading some characteristics of the
original model.

Related applications of the SDM can be found in the
Learning Intelligent Distribution Agent (LIDA) architecture, a
cognitive architecture that comprises modules for perception,
various types of memory, “consciousness,” action selection,
deliberation, and violation [8]. LIDA employs an SDM as its
major episodic memory [9]–[11]. Also in neuroscience, the
sparse coding strategy is an appropriate theory on the neural
coding of sensory inputs [12]. Several theoretical, computa-
tional and experimental studies suggest that neurons encode
sensory information using a small number of simultaneously
active neurons out of a large population at any given point
in time. For each stimulus to be encoded, there is a different
subset of all available neurons. This is the case in an SDM.

This memory, if applied to robotics, could provide robots
with behaviours which are otherwise difficult to implement,
such as the ability to learn in a natural way, reinforce im-
portant ideas and forget unused ones. And such robots would
also be very tolerant to noisy data with graceful degradation.

Rao and Fuentes [13] were probably the first to use an SDM
in the robotics domain. Their model was a hierarchical system
in which the lower levels were responsible for tasks such as
collision detection and obstacle avoidance. Simulations were
then made on the use of an SDM, implemented as a Neural
Network, to navigate a robot. The SDM was trained by the
user who manually guided it through the desired path. During
learning, the sensorial information from optical sensors was
recorded, and the system was expected to later follow the
same path by using this information. The authors report
simulation results only.

We implemented a versatile version of the SDM, which
was tested in two different tasks: navigation based on a view
sequence, and manipulation based on a sequence of joint
angles of a motion trajectory. The original SDM model was
proposed to deal with random information, but information
in these domains is hardly purely random. Therefore, the
performance of the system might suffer because of the
nature of the information it is dealing with. To overcome
this problem, we studied different forms of encoding the
information: the use of natural binary code; using a different
sorting of the bytes; grouping the bits as integers or floating
point numbers; and using a sum-code. Our results show that
the architecture of the memory and the way information is

978-1-4244-4118-1/09/$25.00 c©2009 IEEE

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 2

Fig. 1. One model of an SDM.

encoded is not irrelevant—they may have a significant impact
on its performance and the use of a sum-code, for example,
might significantly improve the performance of the SDM.

In Section II we give a brief overview of Kanerva’s SDM.
In Section III we depict effects that might be caused by
different methods of encoding the information. Section V
outlines the use of an SDM for vision-based robot navigation
and robot manipulation. Results are presented and discussed
in Section VI, and conclusions in Section VII.

II. SPARSE DISTRIBUTED MEMORIES

The underlying idea behind the SDM is the mapping of a
huge binary memory onto a smaller set of physical locations,
so-called hard locations (HL). As a general guideline, those
hard locations should be uniformly distributed in the virtual
space, to mimic a larger virtual space as accurately as possible.
Every datum is stored in a distributed manner in a set of hard
locations, and retrieved by averaging those locations within a
certain radius. Therefore, recall may not be perfect—accuracy
depends on the saturation of the memory.

SDMs can be used as associative memories. According to
the theory, knowing only 20% of the bits and setting the
remaining 80% at random should be enough to statistically
retrieve the right datum with a 0.6 probability [1]. Other
characteristics of the SDMs are also significant, such as high
tolerance to noise [14], [15], robustness to failure of indi-
vidual locations and graceful degradation, one-shot learning,
suitability to work with sequences [1], [16] and phenomena
typical of human memory, such as knowing that one knows
or tip of the tongue. Detailed descriptions and demonstrations
of the mathematical properties of the memory can be found
in [1] and [17], [18].

Figure 1 shows a model of an SDM. In this model, the main
modules are an array of addresses, an array of bits, another
module that sums and averages the bits, and a fourth module
where the sums are thresholded to produce the output vector.

“Address” is the reference address where the datum is to
be stored at or read from. In conventional memories, this
reference would activate a single location. In an SDM, it will
activate all the addresses within a predefined access radius.
For every read or write operation, the distance between the
input address and every other address in the memory has to
be calculated. Different metrics can be used to compute the
distance. Kanerva proposes that the Hamming distance, which

is the number of bits by which two binary vectors differ, can
be used. However, the most appropriate metric to be used in
distance calculations depends on the codification of the data,
as we will show later.

In this model, data are stored at the arrays of bits. In the
original proposal by Kanerva, those were arrays of bit coun-
ters, and writing was performed by incrementing a bit counter
to store 1, or decrementing to store 0. Unfortunately, that
approach is not practical—it increases the system complexity,
requires a lot of processing and increments the response time
significantly. Furber et al. [19] claim their results show that
the memory’s performance is not significantly affected if a
single bit is used to store one bit, instead of a bit counter,
under normal circumstances. In this case, writing to a hard
location simply means to replace its old contents, greatly
simplifying the system and improving its response time.

Reading is done by summing up the bits (or bit counters, in
the original version) column-wise, averaging and thresholding
at a predefined value. If the value of the sum is below the
threshold, the bit shall be considered zero, otherwise it shall
be considered one. For a memory where arrays of bits are
used, 0.5 is an appropriate threshold value.

Initially, all the bit arrays must be set to zero, so that
the memory stores no data. As for the bits of the address
locations, Kanerva proposes to set them randomly, so that the
addresses are uniformly distributed in the addressing space.
In our implementation, we fill the virtual space according to
Ratitch et al’s Randomised Reallocation algorithm [7], instead
of placing hard locations randomly in the addressing space
during an initialisation phase. The algorithm starts with an
empty memory and allocates new hard locations when there
is a new datum which cannot be stored in enough existing
locations. The new locations are allocated randomly in the
neighbourhood of the new datum address [7], [17].

III. PRACTICAL PROBLEMS

According to its theory, the properties of the SDM should
hold if the information is purely random. In robotics and
many other domains, though, the information is hardly purely
random. Sensorial data is more likely to be represented using
the Natural Binary Code (NBC), and the values hardly use
all the available representation range uniformly.

In NBC, the value of each bit depends on its position. 01
is different from 10, although the number of ones and zeros
in each number is exactly the same. Additionally, the number
of ones can increase and decrease as the represented value of
the number grows. 0100 contains less ones than 0011, but
its binary value is larger than 0011.

Table I shows the Hamming distances between all the 3-
digit binary numbers. As can be seen, this distance is not
proportional to the arithmetic distance. The Hamming dis-
tance sometimes even decreases when the arithmetic distance
increases. One example is the case of 001 to 010, where
the arithmetic distance is 1 and the Hamming distance is 2.
If we compare 001 to 011, the arithmetic distance increases
to 2 and the Hamming distance decreases to 1. In total, there
are 9 undesirable transitions for the 3-bit sequence, where

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 3

TABLE I
HAMMING DISTANCES BETWEEN 3-BIT NUMBERS.

000 001 010 011 100 101 110 111

000 0 1 1 2 1 2 2 3

001 0 2 1 2 1 3 2

010 0 1 2 3 1 2

011 0 3 2 2 1

100 0 1 1 2

101 0 2 1

110 0 1

111 0

the Hamming distance decreases while it should increase or,
at least, maintain its previous value. Therefore, if NBC code
with Hamming distances is used, the performance of the SDM
is affected. The Hamming distance is not appropriate for
use with positional codes, as in the NBC code. It would be
appropriate for bit-sized or random data.

IV. SDM IMPLEMENTATIONS

In order to find a better solution to the problem of non-
random data encoding and its distance calculation, four differ-
ent solutions have been investigated: 1) NBC code and Ham-
ming distance (bitwise mode); 2) Optimised binary coding
and Hamming distance; 3) Sum-code and Hamming distance;
and 4) NBC code and arithmetic distance. NBC and the
Hamming distance were described above; the other alternative
solutions are described in the following subsections.

A. Optimised binary coding for the Hamming distance

One possible solution to the problem of using the Hamming
distance with non-random NBC data is to use a coding so that
the Hamming distance becomes proportional to the arithmetic
distance—or, at least, does not exhibit so many undesirable
transitions.

This coding can be accomplished by simply trying different
permutations of the numbers and computing the matrix of
Hamming distances. For 3-bit numbers, there are 8 different
numbers and 8! = 40320 permutations, which can be easily
computed in a reasonable time. Unfortunately, for large
numbers of bits the processing time increases exponentially.

Despite the possibly long computation time, for a finite
domain the numbers can simply be sorted one time and then
the input and output vectors can be translated using a simple
look-up table. Anyway, despite this approach of reordering
the bytes being straightforward if NBC is used to represent
integers, it does not hold if the information to store in the
SDM is composed of floating point numbers. Floating point
numbers are manipulated in scientific notation, which means
they are described by an exponent and a mantissa. This
exponent and mantissa are stored as two different sets of bits,
making the sorting impractical, if not completely impossible.
Therefore, this solution was dropped in our work.

TABLE II
SUM-CODE TO REPRESENT 5 DIFFERENT VALUES.

0 0000

1 0001

2 0011

3 0111

4 1111

B. Use of a Sum-code and Hamming Distance

With the hamming distance calculation, one way to com-
pletely avoid undesirable transitions is to reduce the number
of values represented to the number of bits + 1. Therefore,
when using 4 bits we can only use 5 different numbers, as
shown in Table II. Using 8 bits, we can use 9 values and so on.
This is the only way to work with a Hamming distance that
is proportional to the arithmetic distance. This approach is
similar in many aspects to Vanhala’s [20] idea of considering
only the most significant bit. However, while Vanhala was
more concerned about reducing noise, we are considering the
similarity measure of items in the SDM—and in this aspect
Vanhala’s approach is very inadequate.

Our proposal is to use a sum-code, which consists of
expressing a number y within an interval [a, b] = {y ∈ Z|a ≤
y ≤ b} with the number of 1-bits according to Equation 1.
This representation is known as the sum-code, a derivate of
1-from-n code.

sc(y) = y − a (1)

The sum-code may lead to a significant extension of
the dimensionality of the input vector. Since an SDM is
particularly designed to cope with high-dimensional input
vectors, it should not be a problem.

Note that in an unsorted sum-code there may be many
different possibilities to represent the same number by shifting
the bits. For example, the number 3 in a 4-bit code may have
four different representations: 0111;1011;1101;1110.
Thus, similar distances to hard locations may occur.

C. Arithmetic Mode

Inspired by Ratitch et al’s work [7], we also tested the
SDM with arithmetic distance calculations and NBC coding
(arithmetic mode). In this variation of the model, the bits are
grouped as numbers, either integers or reals, as shown in Fig-
ure 2. Addressing is done using an arithmetic distance, instead
of the Hamming distance. When writing to the memory, the
following equation is applied to update every byte value:

hk
t = hk

t−1 + α · (xk − hk
t−1), α ∈ R ∧ 0 ≤ α ≤ 1 (2)

hk
t is the kth number of the hard location, at time t. xk

is the corresponding number in the input vector x and α the
learning rate. α = 0 will keep the previous values unchanged.
α = 1 implies that the previous value of the hard location is
overwritten (one-shot learning). In practice, α = 0.5 might
be a good compromise, and that is the value that we use.
However, this means the memory may loose its one-shot
learning ability.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 4

Fig. 2. Arithmetic SDM, which works with byte integers and arithmetic
distances.

Fig. 3. Platforms used in the experiments: TASER’s robotic arm is grasping
small robot Lizard.

V. TEST PLATFORMS

Our tests were performed on two different platforms,
designed for different purposes: one for navigation (Lizard),
the other for manipulation (TASER), as shown in Figure 3. In
both cases the memory was used to store sequences of events
which were later to be repeated.

A. Lizard and SDM for Navigation

Lizard is a small robot as described in [15]. It is equipped
with a camera, and navigation is based on a sequence of
images. During a supervised learning stage, images and
additional information (such as the motion that leads the robot
to the next image position) are stored in the SDM. During the
autonomous run, the robot uses its camera view as an address
to retrieve the learnt path from its memory.

Input and output vectors consist of arrays of bytes, meaning
that each individual value must fit in the range [0, 255]. Every
individual value is, therefore, suitable to store the gray level
value of an image pixel or an 8-bit integer. The composition of

TABLE III
SUMMARY OF THE TOTAL DIMENSIONS OF THE INPUT VECTOR.

Image Resolution Image bytes Overhead Total bytes Total bits

80x64 5120 13 5133 41064

the input vectors is as summarised in Table III and Equation
3:

~xi =< imi, seq id, i, timestamp,motion > (3)

where imi is the last image. seq id is an auto-incremented,
4-byte integer, unique for each sequence. It is used to iden-
tify which sequence the vector belongs to. i is an auto-
incremented 4-byte integer, unique for every vector in the
sequence. It is used to quickly identify every image in
the sequence. timestamp is a 4-byte integer, storing Unix
timestamp. It is read from the operating system but is so far
not used for navigation purposes. motion is a single character,
identifying the movement the robot was performing when the
image was grabbed.

The memory is used to store vectors as explained, but
addressing is done using just one image. During the au-
tonomous run, the robot grabs an image, identifies its position
by recognising the closest image of the learnt sequence (imi)
and performs the motion associated with that image. Then
it grabs a new image and so on. If the robot detects a
horizontal shift between the grabbed image and the stored
one, it tries to correct it iteratively by turning left or right
until the displacement is below 5 pixels.

Addressing is done using only imi−1, not the whole vector.
The remaining bits could be set at random, as Kanerva
suggests, but it was considered preferable to set up the
software so that it is able to calculate similarity between
just part of two vectors, ignoring the remaining bits. This
saves computational power and reduces the probability of
false positives being detected. As for the activation radius,
it is automatically adjusted based on the noise value detected
in the images, as described in [17].

B. TASER and SDM for Manipulation

TASER is a service robot of human height (see Fig.
3). The robot system consists of a mobile platform with a
differential drive and wheel encoders, two laser range finders,
a Pentium IV 2.4 GHz industrial computer as central control
unit, a PA10-6C manipulator, a three-finger robotic hand
and several IEEE1394-cameras (stereo head with a pan-tilt-
unit and omnidirectional vision system). In this work SDM
learning is constrained to the 6-degree-of-freedom robot arm
trajectory for manipulation tasks.

Manipulation is based on a sequence of 3-D coordinates
and roll, pitch, and yaw angles of the manipulation tool.
The inverse kinematics to route from one point to another is
computed by the Robot Control C Library (RCCL). During a
learning phase, the 6 joint angles1 of the robot arm as well as
the tool centre point (TCP) and the tool orientation are stored

1Each joint has a software limited operation range up to ±255◦.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 5

0 50 100 150 200

−100

0

100

200

Progress [samples]

A
ng

le
[d
eg

]
Shoulder Rotation

Shoulder Pivot

Ellbow

Arm Rotation

Hand Pivot

Hand Rotation

Fig. 4. A single sample trajectory of the 6-DoF robot arm stored to the
SDM. The line graph only represents the joint angles that correspond to
j1, . . . , j6 of ~xi (see Equation 4). Further information of ~xi, also stored to
SDM, is omitted for the sake of clarity.

to the SDM with a sampling rate of 6-10Hz2. Although we
can operate our robot arm either by joint angles or TCP and
tool orientation, we only use the latter parameters during the
learning phase for robot arm control but store joint angles in
our memory, too. During an autonomous task execution, the
robot is supposed to recognise its current joint constellation
and follows the learnt trajectory from its memory.

The input and output vectors consist of arrays of doubles.
The contents of a vector in our SDM implementation is shown
in Equation 4.

~xi =< j1, j2, j3, j4, j5, j6, x, y, z, χ, ψ, ω, seq id, i >, (4)

where each jn is the angle of the corresponding arm joint.
The 3D coordinates of the tool centre mounted at the end of
the robot arm in relation to the robot coordinate system are
depicted with x, y, z, and χ, ψ, ω describe the roll, pitch, and
yaw tool orientation. Each of the above-mentioned variables
is an 8-byte double precision value. Finally, the seq id is a
unique 4-byte id for each sequence, and i is unique for each
vector.

Addressing the memory is done only by presenting a single
arm position by its corresponding 6-joint angles. During an
autonomous execution phase, the SDM will predict jn from
the corresponding jn−1.

VI. MAIN RESULTS, COMPARISON AND DISCUSSION

Different tests were performed in order to assess the
behaviour of the two systems using the approaches described
in Section IV. The results are summarised in Table IV. The
upper half of the table shows results obtained while the
memory contained only one copy of each datum (i.e., there
is no distribution of the data). The bottom half contains the
results of the same tests, but this time obtained with 5 copies

2Due to problems in coordinated timing at sampling phase, the rate ranges
from 6-10Hz.

Fig. 5. Lizard in the testbed.

of each datum stored, i.e., distribution of the data is enforced.
The values shown are: the distance from the input address to
the closest hard location HL (the most similar image); the
distance from the input address to the second closest hard
location; and the average distance from the input address to
all the hard locations in the memory. There is also a measure
of the increases, in percentage, which somehow expresses
how successful the system is in separating the desired datum
from the pool of information in the SDM (columns 6 and 8).

The table also shows the number of prediction errors. We
propose that a prediction error occurs every time there is a
step back in the sequence. For instance, if at time t and t+
1 the predictions are, respectively, x and x − 1, that is a
prediction error, as the robots are not expected to get back in
a sequence.

A. Navigation

The testbed used for navigation is shown in Fig. 5. It
consists of a large white sheet of paper, circumvented by an
artificial scenario. The black lines are examples of paths that
the robot learnt.

The results described here were obtained using a sequence
of 55 images, which were equalised before processing. The
table shows the average result of 30 tests, except for the
navigation errors, which are the average of six. The tests were
performed using the arithmetic mode and the bitwise mode
(8 bits per pixel, 256 gray levels represented using the natural
binary code and the Hamming distance); and the sum-code
mode using 16 bits per pixel3 (17 gray levels). In each case,
the access radius was computed dynamically (“Dyn.” in Table
IV) in the beginning of the sequence, and set to 20 % above
the noise level [15].

B. Manipulation

The results for SDM-based manipulation were obtained
using a sequence consisting of 256 arm configurations. The
memory was just triggered by a single initial arm position
that was presented to the memory. Figure 4 shows at least the

3Note that in this mode, the dimensionality of the vector almost doubles.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 6

TABLE IV
COMPARISON OF THE PERFORMANCE OF THE SDM IN TWO DIFFERENT DOMAINS: NAVIGATION AND MANIPULATION.

Domain Operation Distr. Dist. to Dist. to 2nd Inc. % Aver. dist. Inc. % Errors Access Vector
mode Copies closest HL closest HL to all HLs Radius Bits

Manipulation
Arithmetic

1
86.40 103.97 20.33 1797.54 1980.49 0 832

Bitwise 14.17 33.07 133.41 63.52 348.37 7 10 832
Sum-code 13.10 82.40 529.01 1274.55 9629.36 0 22384

Navigation
Arithmetic

1
18282 118892 550.32 166406.53 810.22 13.2 41064

Bitwise 6653 9186 38.07 9724.80 46.17 15.3 Dyn. 41064
Sum-Code 569 3791 566.26 5257.01 823.90 13.8 82024

Manipulation
Arithmetic 12.35 14.4 17.32 1275.30 10227.33 0 832

Bitwise 5 2.87 6.03 110.47 62.83 2091.90 0 15 832
Sum-code 12.67 12.67 0.0 1271.31 9936.67 0 22384

Navigation
Arithmetic 33349 33503 0.46 145765.32 337.09 15.3 41064

Bitwise 5 7167 7298 1.83 9359.14 30.59 16.9 Dyn. 41064
Sum-code 2214 2346 5.97 9184.19 314.84 15.2 82024

joint angles j1, . . . , j6 of ~xi (cf. Equation 4) of an example
trajectory stored to the memory.

Table IV shows the average of 30 predictions. The tests
were performed using the arithmetic mode, the bitwise mode
and the sum-code mode. The latter uses as many bits as for
the range for the particular values in our input vector, in our
case 22384 in total (cf. Equation 1). An access radius was
chosen experimentally by the users.

C. Discussion
The randomness characteristic of the SDM means that the

results obtained with it may be different even in very close
circumstances. However, we can emphasise the robustness of
the models we implemented, in face of the consistent results
we obtained in two completely different domains: the domain
of vision-based navigation, in which the data is of very high
dimensionality and contains a high amount of noise, and in
the domain of robot manipulation, in which the data contains
small amounts of noise and the dimensionality is relatively
small. In both cases, the models proved adequate and behaved
as the SDM theory predicts.

In the case of vision-based navigation, the results show
a higher number of sequence prediction errors, which is
probably due to the presence of noise in the images, but in
no way seemed to compromise the ability of the robot to
successfully follow the sequences in which the images were
rich enough.

In the case of manipulation, the high precision of the robot
arm shows—if at all—only a very small level of noise. Robot
arm trajectories are successfully learnt and followed. One
interesting characteristic of this approach is that regardless of
the initial position, the robot is able to converge to the closest
point in the sequence, thus always executing the assigned task
with success. This happens in manipulation, because we are
using absolute positioning of the joints, but not in navigation,
where the robot has no information on absolute positioning.

VII. CONCLUSIONS AND FUTURE WORK

Recent evidence shows that what we recognise as intel-
ligent behaviour is often the result of using a sophisticated

memory, rather than the result of heavy computation. The
SDM is one model of associative memory that is able to
mimic many characteristics of the human long-term memory,
such as the ability to learn in a single pass, work with high-
dimensional features and the ability to work with incomplete
or noisy data.

We described and compared different models of the SDM,
applied to two distinct subfields of robotics: vision-based
navigation and robot manipulation. Despite those being two
very different problems, the approach was the same: use
supervised learning to teach the robot sequences of steps
to follow a path (navigation), or to interact with an object
(manipulation), and later retrieve those sequences from the
memory. During learning, the robots store sensorial readings
into their memories, and those readings shall guide them later
to repeat the tasks during the autonomous runs.

One of the most difficult problems one faces is that the
SDM theory uses random data, and real-world sensorial
inputs are hardly random. Therefore, the performance of the
memory is significantly affected. To overcome this problem,
we studied four different forms of encoding the information:
using the natural binary code and the Hamming distance;
using an optimised sorting of the numbers; using an arithmetic
distance; and using a sum-code and the Hamming distance.

Our results show that the same model of SDM can
successfully accomplish the tasks of navigating the robot
and manipulating objects. The arithmetic distance and the
sum-code exhibit a better performance in both domains of
application.

As drawbacks of this approach we can point out that the
arithmetic mode may reduce some of the original character-
istics of the model, while the natural binary code exhibits the
worst performance and the other methods require additional
processing.

Future work may include the study of the impact of each
different encoding method on the natural characteristics of
the SDM, as well as refining the navigation and manipulation
algorithms used.

2009 IEEE 8TH INTERNATIONAL CONFERENCE ON DEVELOPMENT AND LEARNING 7

REFERENCES

[1] P. Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, MA,
USA, 1988.

[2] J. Hawkins. On Intelligence. Times Books, New York, 2004.
[3] M. J. Flynn, P. Kanerva and N. Bhadkamkar. Sparse Distributed

Memory: Principles and Operation. Tech. Report, Computer Systems
Laboratory, Departments of Electrical Engineering and Computer Sci-
ence, Stanford University, California, USA, 1989.

[4] L. A. Jaeckel. An Alternative Design for a Sparse Distributed Memory.
Tech. Report, Research Institute for Advanced Computer Science,
NASA Ames Research Center, USA, 1989.

[5] R. Karlsson. A Fast Activation Mechanism for the Kanerva SDM
Memory. In Proc. of the 95 RWC Symp., Tokyo, Japan, 1995.

[6] T. A. Hely, D. J. Willshaw and G. M. Hayes. A New approach to
kanerva’s sparse distributed memories. In IEEE Trans. on Neural
Networks, pp. 101–106, 1999.

[7] B. Ratitch and D. Precup. Sparse Distributed Memories for On-Line
Value-Based Reinforcement Learning. In ECML, 2004.

[8] S. Franklin and M. Ferkin. An ontology for comparative cognition: A
functional approach. In Comparative Cognition & Behavior Reviews,
1:36–52, 2006.

[9] S. Franklin. Perceptual memory and learning: Recognizing, catego-
rizing, and relating. In Symp. on Developmental Robotics, American
Association for Artifical Intelligence (AAAI), Stanford University, Palo
Alto CA, USA, 2005.

[10] A. Anwar and S. Franklin. Sparse distributed memory for conscious
software agents. In Cognitive Systems Research, 4(4):339–354, 2003.

[11] S. Jockel, M. Weser, D. Westhoff and J. Zhang. Towards an Episodic
Memory for Cognitive Robots. In Proc. of 6th Cognitive Robotics
workshop at 18th European Conf. on Artificial Intelligence (ECAI),
pp. 68–74, Patras, Greece, 2008, IOS Press.

[12] B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs.
Current Opinion in Neurobiology, 14:481–487, 2004.

[13] R. P. N. Rao and O. Fuentes. Hierarchical Learning of Navigational
Behavious in an Autonomous Robot Using a Predictive Sparse Dis-
tributed Memory. In Machine Learning, pp. 87–113, Kluwer Academic
Publishers, Boston, USA, 1998.

[14] R. P. N. Rao and D. H. Ballard. Object Indexing using an Iconic Sparse
Distributed Memory. The University of Rochester, Computer Science
Department, Rochester, New York, USA, 1988.

[15] M. Mendes, M. Crisóstomo, and A. Paulo Coimbra. Robot navigation
using a sparse distributed memory. In IEEE Intl. Conf. on Robotics
and Automation (ICRA), Pasadene, CA, USA, 2008.

[16] J. Bose, S. B. Furber and J. L. Shapiro. A spiking neural sparse dis-
tributed memory implementation for learning and predicting temporal
sequences. Intl. Conf. on Artificial Neural Networks (ICANN), Warsaw,
Poland, 2005.

[17] M. Mendes, A. Paulo Coimbra, and M. Crisóstomo. AI and memory:
Studies towards equipping a robot with a sparse distributed memory.
In IEEE Intl. Conf. on Robotics and Biomimetics (ROBIO), pp. 1743–
1750, Sanya, China, 2007.

[18] S. Jockel, F. Lindner and J. Zhang. Sparse Distributed Memory
for Experience-Based Robot Manipulation. In Proc. of 2008 IEEE
Intl. Conf. on Robotics and Biomimetics (ROBIO), pp. 1298-1303,
Bangkok, Thailand, 2008.

[19] S. B. Furber, J. Bainbridge, J. Mike Cumpstey and S. Temple.
Sparse distributed memory using N-of-M codes. In Neural Networks,
17(10):1437-1451, 2004.

[20] J. Vanhala, J. Saarinen and K. Kaski. Sparse distributed memory for
multivalued patterns. In IEEE Intl. Conf. on Neural Networks, 1993.

