
Sparse Distributed Memory for
Experience-Based Robot Manipulation∗

Sascha Jockel, Felix Lindner and Jianwei Zhang
CINACS Int. Research Training Group & Technical Aspects of Multimodal Systems

Department of Informatics, University of Hamburg, Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
{jockel,2lindner,zhang}@informatik.uni-hamburg.de

Abstract—Sparse distributed memory (SDM) is a mathematical
technique based on the properties of high-dimensional space for
storing and retrieving large binary patterns. This model has
been proposed for cerebellar functions, and has been used in
simple visual and linguistic applications to date. This paper
presents an SDM for robotic applications, especially for storing
and recognising mobile manipulation actions of a 6-DOF robot
arm. Sequences of events are stored as subjective experiences and
are later used to guide robot arm behaviour based on its memory
content. Several simple manipulation tasks, such as lift and place
a wastebin from and on the floor, push an object aside on a table-
top, and draw shapes in the air are analysed under different oper-
ation modes. The robot system shows good reproduction abilities
of task-dependent arm trajectories based on sparse distributed
memory. Moreover, the content-addressable, associative memory
even predicts the residual arm trajectory of a task if the arm is
placed somewhere close to a learnt trajectory.

Index Terms—Sparse distributed memory, cognition, service
robotics, mobile manipulation, sensorimotor learning, associative
memory, motion prediction.

I. INTRODUCTION

If the human mind stores each item—e.g. abstract concept,
attitude, etc.—in a single memory location, the retrieval of
a past (subjective) experience from memory triggered by
current sensings needs to be identical to those sensings of
the memorised experience. This kind of organisation would
be useless, since the space of all possible experiences is so
vast that no two experiences are ever exactly identical. The
human mind would have to possess more memory locations
than the number of particles in the universe to store all the
permutations of sound, colour, and so forth that the senses are
capable of detecting [1]. The underlying principle of the brain
involved in sensory information processing is that information
is represented by a relatively small number of simultaneously
active neurons out of a large population and is commonly
referred to as sparse coding [2]. Cognitive models accomplish
the above-mentioned principle by distributing the storage of
an item across many memory locations [3]–[6]. Likewise,
each location participates in the storage of many items. By
constraining the memory distribution, the interferences among
memory items that would occur in a fully distributed memory
have been overcome. Content-addressability is another impor-

∗This work is funded by the DFG German Research Foundation (grant
#1247) – International Research Training Group CINACS (Cross-modal
Interactions in Natural and Artificial Cognitive Systems).

tant aspect of memory that would be desirable for computer
systems and robots in particular.

Sparse distributed memory (SDM) [6] is an interesting
form of associative memory, popular in both computer science
and psychology [7]. It represents both an interesting storage
device and plausible mathematical model of human long-term
memory [6], [8], [9] that meets all above-mentioned demands.
Until now, research on SDM for robotics is rare. Since it
shares characteristics with human long-term memory, it should
be of special interest for far more researchers that are in
pursuit of biologically inspired and intelligent robots. These
characteristics are: it is content-addressable, storage locations
are gradually removed, it degrades smoothly, information is
widely distributed, it is massively parallel, it can handle noisy
or corrupt data, it processes high-dimensional data, and each
memory location encodes for a multiple stored data pattern.
The few SDM investigations in the robotics domain mostly
focus on camera-based scene recognition and acquisition for
navigational issues [10]–[13]. At the time of preparing this
paper, to the authors no work is known regarding robot
arm manipulation based on sparse distributed memory. Many
practical problems have to be solved.

In this paper, we propose a system that can predict ma-
nipulation sequences of a 6-DOF robot arm by a content-
addressable memory. During a learning phase, the 6 joint
angles of the robot arm, as well as the tool centre and
orientation, are stored in the SDM along with some additional
parameters. During subsequent autonomous executions, the
robot is supposed to recognise its current joint constellation to
navigate the robot arm driven by its memory of past experi-
ences. This paper is a part of an ongoing investigation into the
feasibility of using SDM for robot control and memory-based
action prediction [14], [15].

The paper is structured as follows: Section II gives a brief
review on Kanerva’s SDM and related models. In section
III, we outline different operation modes and the memory
organisation of our implementation. We introduce the experi-
mental platform for the SDM-based trajectory prediction, and
present our results in section V. We conclude and discuss
shortcomings of SDM-based robotics in section VI.

II. SPARSE DISTRIBUTED MEMORY

In this section, we review the SDM framework, introduce
notions we will use later, and relate our work to the existing

Proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics
Bangkok, Thailand, February 21 - 26, 2009

978-1-4244-2679-9/08/$25.00 ©2008 IEEE 1298

literature.
Kanerva has shown that widely accepted theoretical models

on the cerebellum by Marr [16] and Albus [17] can both be
represented by slightly modified SDM architectures [18]. The
correspondence of the distance between concepts in human
minds and the distance between points of a high-dimensional
space, e.g. that any given point is relatively far from other
points of interest, led to the principle idea of SDM.

The SDM associates two binary vectors ~x and ~y by pro-
jecting ~x into a very high-dimensional intermediate word-
line vector ~w, and then associating ~x → ~w and ~w → ~y.
Through its analogy with a conventional computer random
access memory, the association of ~x→ ~w is a kind of address
decoder memory, and the association of ~w → ~y depicts the
data memory. According to this, a write process consists of
associating ~x to ~w, and then associating ~w to ~y. A read process
is simply the presentation of a vector ~x, resulting in a word-
line vector ~w, which is then used to read a value ~y out of the
data memory.

The model is based on the crucial observation that if con-
cepts or objects of interest are represented by high-dimensional
vectors, they can benefit from the very favourable matching
properties caused by the inherent tendency toward orthogo-
nality in high-dimensional spaces. For example, consider the
space {0, 1}n for large n (with n > 100). If the Hamming
distance is used as the distance metric between points in this
space, then the number of points that are within a distance of
D bits from an arbitrary point follows a binomial distribution
which, for large n, can be approximated by the normal
distribution with mean n

2 and standard deviation
√

n
2 . In other

words:
N(D) ' Φ

D − n
2

n
2

, (1)

where Φ(z) denotes the standard normal distribution function
with zero mean and unit deviation. The number of different
patterns that can be generated by a binary word of size n,→
2n will form a n dimensional hypercube. Thus, an object of
interest can be represented by a high-dimensional vector that
can be subjected to considerable noise before it is confused
with other objects. The same argument also applies to high-
dimensional vectors whose components are non-binary [10],
[19]. Whereupon other metrics than the Hamming distance
may have to be applied respectively.

Kanerva’s model is a type of neural associative memory
consisting of a standard two-layer neural network design that
could associate data patterns (weight of output units) with
address patterns (weights of hidden units). The n-bit address,
which correspond to a point in the memory space, and the
data pattern together form a so-called hard location (HL). In
contrast to related associative memory models, as the Willshaw
network where the data is stored at all simultaneously active
units, or the Hopfield networks where each data pattern is
stored across the entire memory space, in SDM a data item is
stored in many hard locations within a certain access radius
related to a certain distance metric, e.g the Hamming distance.
Thus, the memory is distributed in nature.

Fig. 1. Write a data-item into SDM: (a) the input address pattern is presented
to the memory, (b) only locations with a Hamming distance D ≤ R are
selected (shaded areas). The activation radius R ≤ 3 was set a priori. (c) The
data pattern is updated at the selected locations by adding 1 to each counter
in the counter array corresponding to each 1, and subtracting 1 from each
counter corresponding to each 0 in the pattern.

During storage of a data item within SDM, all hard locations
will be activated whose Hamming distance is less or equal
than the activation radius to a reference address. Writing to an
SDM is detailed in Fig. 1. Since the address at which a data
item is stored depends on the data itself, SDM is a content-
addressable memory.

To summerise, sparse distributed memory shares many fea-
tures with human long-term memory at the conceptual level:
it is content-addressable, storage locations are gradually re-
moved, it degrades smoothly, information is widely distributed,
it is massively parallel, it can handle noisy or corrupt data, it
processes high-dimensional data, and each memory location
participates in multiple data encoding. Kanerva’s idea of sparse
distributed memory mainly focus on four concepts [6]:

1) The space of {0, 1}n, where 100 < n, that corresponds
to above-mentioned intuitive notions between concepts.

2) Neurons with n inputs as ideal address decoders.
3) The unifying principle—Data and address space are the

same (content-addressable memory).
4) Time can be traced in the memory as a function of where

the data is stored.
For further relevant literature on SDM and its improvements
see Kanerva [6], [18], Jaeckel [20], Kristoferson [21], Sjödin
[22], and Anwar [23].

A. World model and its update within SDM

To represent a world model in a sparse distributed memory,
we need to represent the sensory information at a particular
moment as a long vector of features and let a sequence of such
vectors represent the passage of time. The flow of states at a
particular moment is represeted by a sequence of states and
therefore describes the individual’s (subjective) experience.
The simplest way to build such a world model is to store the
report of the senses in memory and to retrieve from there later.
Information supplied by the senses and information supplied
by the memory can produce the same subjective experience.
It is reasonable that some common part of the architecture is

1299

Sparse

Distributed
Memory

n-bit AddressFOCUS

Features

n-bit Datum

Sensors
Physical

Signals

Fig. 2. Senses, memory and focus. Adaptet from [6]

responsible for the system’s subjective experience about the
world, and that both the senses and the memory feed into it.
This is called the system’s focus. A subjective experience is
then represented by a sequence of patterns in the focus. By
storing this sequence in memory, the memory can later recreate
it in the focus [6]. This relation of the senses and the memory
to the focus is shown in Fig. 2. Kanerva [6] further mentioned
that in computer terms, the focus is a combined address-datum
register. The memory is addressed by the focus, the contents
are written into the memory, and the data from the memory
feed into the focus. Through reassemble the past, the sensory
data create a sequence in the focus that resembles a sequence.
When this sensory sequence is used to address the memory,
the memory responds with the same consequences as in the
past.

III. IMPLEMENTATION

The bitwise implementation by Kanerva works with coun-
ters, and this is the reason for its limitations. Arrays of counters
require a lot of unnecessary processing, which leads to an
increase of processing time. Although the nature of the means
(hardware counters and addresses) that have been used by
Kanerva are not biological, SDM does not contradict the
biological principles of brain functions, and at the same time it
supports many properties and functions of the natural memory
such as associativity, generalisation, abstraction, reproduction
of a sequence, and even the ability to make mistakes [24, Ch.
1]. However, to reduce memory size and processing power,
we replaced the bit counters of Kanerva’s original model by a
single bit to store one bit of information according to [8]. This
implementation depicts the bitwise operation mode. Writing to
memory in this model is done by replacing an old datum by
the new one.

In the proposal at hand, we are using an SDM model with
hebbian learning inspired by B. Ratitch and P. Precup [25]. The
authors propose a randomised reallocation algorithm for dy-
namic on-line allocation and adjustment of memory resources
for SDMs, which eliminates the need for choosing the memory
size and structure a priori. Their dynamic allocation algorithm
starts with an empty memory, and locations are added based on
the observed data. New locations are allocated randomly in the
neighbourhood of a location when there is a new datum which
cannot be stored in the existing ones anymore. The authors

assume that the activation radii of the memory locations are
uniform and fixed by the user.

B. Ratitch uses the following strategy to organise the storage
of the locations: each dimension i is partitioned into intervals
Ii
1, ..., I

i
m of length δ. For each interval, the sets tij of locations

with centre in {~y : ~yi ∈ Ii
j} are maintained. On input ~x,

we find the set of intervals {Ii
ji
}n

i = 1 such that for all
dimensions, ~xi ∈ Ii

ji
.

P :=
n⋂

i=1

(tiji−1 ∪ tiji
∪ tiji+1) ⊇ H~x (2)

The set P of potentially active locations is usually much
smaller than the whole set of hard locations Hα, this yields a
relatively more efficient way of finding H~x than testing all the
elements of Hα [26, p.10]. The work of Ratitch and Precup
[25] provide a mechanism that builds the set of hard locations
in a way that “important” regions of the memory space are
more densely covered by hard locations [26] then others.

The above-mentioned variation by Ratitch is used to imple-
ment an arithmetic operation mode to our SDM. Learning
is achieved using reinforcement learning and addressing is
achieved by using an arithmetic distance instead of a Hamming
distance. The vector values are updated by applying:

∆hk = α(xk − hk), with α ∈ R ∧ 0 ≤ α ≤ 1, (3)

where hk denotes the kth 64 bits of the hard location, xk is
the corresponding value in the input vector x and the learning
rate is denoted with α.

Since the Hamming distance is not proportional to the
arithmetic distance. The Hamming distance sometimes even
decreases when the arithmetic distance increases, e.g. the
binary numbers 0100 and 0011. This is one of the limitations
of SDM. Mendes et al. [13] propose some initial ideas to
improve the encoding problem of memory features. We are
aware of the encoding problem as one of the biggest problems
while using neuron like architectures, but this problem is not
part of this paper.

The third mode consists of an extension of the dimen-
sionality. Due to the above-mentioned problems with the
Hamming distance we express a number y within an interval
[a, b] = {y ∈ Z|a ≤ y ≤ b} with the number of 1-bits
according to sc(y) = y − a. This representation is known
as Sum-Code, a derivate of 1-from-n Code.

IV. EXPERIMENTAL PLATFORM

TASER is a service robot of human height (see Fig. 3).
In this work SDM learning is constrained to the 6-degree-of-
freedom MHI PA10-6C robot arm trajectory for manipulation
tasks. For further specifications of the used robot system,
see [14], [15]. Manipulation is based on a sequence of 3-D
coordinates and roll, pitch, and yaw angles of the manipulation
tool. The inverse kinematics to route from one point to another
is computed by the Robot Control C Library (RCCL). During
a learning phase the 6 joint angles1 of the robot arm as well

1Each joint has a software limited operation range up to ±255◦.

1300

Fig. 3. The robot pushes an object
aside (arrow). At first during this ma-
nipulation sequence, it reaches the hand
closely above a table in front of it,
then pushes a certain object aside by a
lateral cartesian motion on a transversal
plane namely the table and finally move
the arm to a park position. The pic-
ture shows only the lateral transversal
motion part of a much larger action
sequence.

as the tool centre point (TCP) and the tool orientation are
stored to the SDM with a sampling rate of 6-10Hz2. However,
these different parameters that are expressing the same, are
stored for redundancy. During an autonomous execution, the
robot is supposed to recognise its current joint constellation
and follows the learnt trajectory from its memory. The input
and output vector consist of arrays of doubles as shown in Eq.
4.

~xi =< j1, j2, j3, j4, j5, j6, x, y, z, χ, ψ, ω, seq id, i >, (4)

where each jn is the angle of the corresponding arm joint.
The 3D coordinates of the tool centre mounted at the end of
the robot arm in relation to the robot coordinate system are
depicted with x, y, z, and χ, ψ, ω describe the roll, pitch, yaw
tool orientation. Each of the above mentioned parameters are
represented as 8-byte double values. Finally, the seq id is a
unique 4-byte id for each sequence, and i is unique for each
vector.

Addressing the memory is done only by presenting a single
arm position by its corresponding 6-joint angles. During an
autonomous execution phase, the SDM will predict the jn from
corresponding jn−1. The 6-joint-angles at a particular moment
correspond to the arrow denoted “Sensory features” within Fig.
2. They are transmitted through the focus as an n-bit address
to a datum within the sparse distributed memory—please note
that content is used for addressing. Then ~xi as in Eq. 4 is
returned under consideration of further hard locations within
the predefined activation radius to the focus as denoted by the
arrow “n-bit datum” in Fig. 2. This process goes round and
round and guides the prediction. More formally a prediction
is a sequence of sub-predictions predi such that:

predk
0 = ~x k, (5)

NB = {
−−→
data(hl) | dist(hl, predi−1) ≤ r}, (6)

predk
i =

1
|NB|

|NB|∑
j

~yj
k, ~yj ∈ NB, (7)

with the neighbourhood NB and activation radius r.

2Due to problems in timing at sampling phase, the rate ranges from 6-10Hz.

V. RESULTS

The biological inspired SDM model works fine for mobile
manipulation prediction and is supported by some results.
To verify the different approaches mentioned in section III,
namely binary, arithmetic and bitwise Sum-Code mode, we
performed several tests on the SDM with the robot platform
mentioned in section IV. Two stages have to be passed by the
memory module. First the memory learns an action sequence
carried out with the robot arm. For details on how data was
acquired, see section IV. The three investigated sequences—
described in some more detail below—differ in their length.
Secondly, during an autonomous stage the arm is placed at an
initial position and the memory predicts the next position that
has to be reach by the arm. Since the data was memorised at
a rate of 6-10Hz during learning, each predicted movement
is quite small. The results are summerise in Tab. I. Also we
examined the systems behaviour on how changes in activation
radius, and sampling rate influence learning. The particular
values we invastigated and present in Tab. I are:
Operation mode We made experiments with three different
representational modes:

• Arithmetic mode Values are represented in Rn. The
Euclidian distance is used to define a metric in order to
calculate distances between hard locations.

• Binary mode The data is represented in natural binary
manner. We employed the Hamming distance as a dis-
tance metric for this mode.

• Sum-Code mode We chose a binary representation in
this mode as well, in a way described in section III.

Task The robot learnt three different tasks: A) reaching the
robot hand closely above a table in front of the robot, and
push a certain object aside by a lateral cartesian motion on a
transversal plane, B) lifting and placing a wastebin from and
on the floor, and C) drawing a U-like shape in the air.
Distance to closest hard location Describes the distance to
the closest hard location to a given n-bit address (cf. Fig. 2).
Distance to 2nd closest hard location Describes the distance
to the second closest hard location.
Average distance to all hard locations The average distance
is defined as follows:

avgDist(~x) =
1

|HL|

|HL|∑
j=0

H(~x,
−−−−−→
address(hlj)) (8)

Increment The increments in the distance between the closest
and the 2nd closest hard location are shown as well as from
the closest hard location to the average distance of all hard
locations.
Errors An error is defined as a non-intended prediction, e.g. a
prediction of a state that is before or equal to the current state
within the sequence. This would result in a flawed trajectory—
the action sequence gets stuck or moves backwards.
Processing Time Average number of milliseconds needed to
predict the next state within the sequence (e.g. next point of
the trajectory in the 12-dimensional space).

1301

TABLE I
THE DISTANCES TO THE CLOSEST AND 2nd-CLOSEST HARD LOCATIONS (HL) ACCORDING TO THE OPERATION MODE AFTER 30 PREDICTIONS OF A

LEARNT SEQUENCE. ALSO THE AVERAGE DISTANCE TO ALL REMAINING HARD LOCATIONS, THE USED ACTIVATION RADIUS AND THE SEQUENCE
ERRORS ARE SHOWN. THE PERFORMED ACTIONS WERE A) REACHING THE ROBOT HAND CLOSELY ABOVE A TABLE IN FRONT OF THE ROBOT, AND PUSH
A CERTAIN OBJECT ASIDE BY A LATERAL CARTESIAN MOTION ON A TRANSVERSAL PLANE, B) LIFTING AND PLACING A WASTEBIN FROM AND ON THE

FLOOR, AND C) DRAWING A U-LIKE SHAPE IN THE AIR.

Task Operation Dist. to Dist. to 2nd
Inc. % Aver. dist. Inc. % Errors Processing

mode closest HL closest HL to all HLs time (ms)
Activation radius: r = 10

A Arithmetic 11.50 17.60 53.04 1142.67 9836.26 1 < 1
Bitwise 1.23 4.67 278.38 58.89 4674.68 0 1
Sum Code 8.37 8.37 0.00 1100.44 13052.69 0 41

B Arithmetic 9.93 21.87 120.13 1293.37 12920.49 0 < 1
Bitwise 2.90 7.77 167.82 62.65 2060.33 0 2
Sum Code 7.87 7.87 0.00 1170.62 14780.74 0 50

C Arithmetic 6.50 14.23 118.97 851.38 12998.15 0 < 1
Bitwise 1.43 4.90 241.86 56.93 3871.58 0 2
Sum Code 10.10 10.10 0.00 845.30 8269.32 0 21

Activation radius: r = 30

A Arithmetic 24.97 32.30 29.37 1094.74 4282.80 11 < 1
Bitwise 20.33 22.33 9.83 58.25 186.50 28 2
Sum Code 16.77 16.77 0.00 1090.53 6404.14 0 34

B Arithmetic 141.00 149.00 5.67 1841.13 1205.77 9 < 1
Bitwise 18.53 24.10 30.04 60.47 226.26 22 2
Sum Code 20.90 20.90 0.00 1144.38 5375.48 0 40

C Arithmetic 13.97 21.13 51.31 898.46 6332.89 0 < 1
Bitwise 21.87 24.30 11.13 53.65 145.36 9 2
Sum Code 19.07 19.07 0.00 819.42 4197.64 0 19

Before any conclusions can be drawn from the results, one
should note that due to the random characteristics of the SDM
model, results cannot be reproduced absolutely exact. A deeper
analysis of SDM behaviour is a non-trivial task. We found
tendencies, however, that are worth to be discussed.

Activation radius—heavily influencing the degree of
generalisation—turns out to be a crucial parameter when con-
cerning the reliability of an SDM prediction. Since currently
our SDM learns only one sequence at time, we are interested
in the associative behaviour rather than the generalisation. As
shown in Tab. I, a smaller activation radius leads to less error-
prone predictions. Whereas prediction in both arithmetic mode
and natural binary mode tend to get flawed when activation
radius value is increased above 25, Sum-Code mode turns out
to be very robust up to a value of 11000. This can be explained
by the huge and redundant representation of the features.

Furthermore, the natural binary representation turns out to
be the most error-prone among the tested ones. We explain
this observation by the fact, that flipping bits (e.g. randomly
during distribution while learning) can have vast impact on the
values denoted by the representation. Also, the position of 1-
bits within the bit-string—contrarily to the case of Sum-Code
representation—carries important information. This might lead
to wrong results during prediction phase where many hard
locations are cumulated to a single result (cf. section II).

Variations on the learning rate did not have any remarkable
impact on the prediction results. In our scenario this can,
again, be explained by the fact that our SDM learnt only a
single trajectory. We expect the learning rate to play a more
important role in generalisation and forgetting when learning

diverse tasks in one memory. The learning rate was set to 0.02
throughout all tests presented in this paper.

Another important parameter not listed in Tab. I is the
memory size (e.g. the maximum number of HL the memory
may contain). We chose a value of 10000, so that the trajec-
tories learnt could entirely be represented by hard locations
in the memory. Reducing the maximum number of hard
locations results in worse associative ability and leads to faster
forgetting. Future work will concentrate on how to deal with
the tradeoff between association and generalisation.

Prediction time is mainly determined by search effort and
metrical calculation. In the current implementation there is no
search-space optimisation. For every prediction the algorithm
has to check every hard location whether it is in the neigh-
bourhood of the current sensory input in order to consider
it in prediction output calculation or not. What can be seen
from Tab. I, arithmetic mode and bitwise mode both have fast
prediction times which is due to their compact representational
form and the built-in operators for distance calculation (e.g.
addition, potentiation and XOR, respectively). In Sum-Code
mode, the address vector of a hard location is represented
by 22200 bits. Concerning runtime, all our scenario modes
produced results in an admissible time. It will be part of
future work to investigate how SDM scales with an increasing
amount of stored hard locations.

VI. CONCLUSION

An SDM that is capable of storing and retrieving robot
arm trajectories for manipulation tasks has been presented.
The analogy to the fact that the brain seems to retrieve

1302

similar solutions to previous problems from memory rather
than to compute new ones led to invastigations on mobile
manipulation based on a plausible biological SDM model.
The SDM model depends on subtle, nonintuitive properties
of high-dimensional metric space and random distributed
representations. The architecture was tested with three differ-
ent manipulation actions executed with a 6-DOF robot arm
mounted on the TAMS service robot TASER. The following
action sequences were used: to push an object aside in a
lateral-transversal manner on a table-top, to lift and place a
wastebin from and on the floor, and to draw a U-like shape
in the air. Three operation modes have been investigated,
namely a bitwise mode based on a modification of Kanerva’s
original model according to [8] with Hamming distances, a
memory-efficient arithmetic mode with a dynamic allocation
algorithm of new hard locations according to [25], and a
bitwise Sum-Code mode where a number i ∈ N is represented
by n = N−1 bits set to one, where N denotes the total amount
of possible numbers within a certain interval.

The robot is able to learn and follow an arm motion
trajectory. During learning, the associative memory stores joint
angles and further parameters of a new and unknown manip-
ulation task. In the retrieval phase, it compares joint angles
from its current arm configuration to the closest matching one
in its memory of past experiences. Since SDM is a content-
addressable memory which corresponds to one of the most
important human memory characteristics, the robot arm can
be placed elsewhere in the manipulation sequence and will
predict the next steps from its memory instead of getting lost.

The main limitations of SDM-based manipulation are re-
curring motion patterns and cross-sequences, e.g. beckoning to
someone or drawing an “8”. Especially as long as it only stores
first-order (one-folded) transitions. To solve the problems of
one-folded memory, we will extend our system to a k-folded
memory which consists of a set of j-step memories with
j ∈ {1, . . . , k}. We will also use windowing functions to
predict an item, e.g. E from ABCDE, based on composite
sequences as ABCD or CD. A proper criterion for the length
of a window has to develop, e.g. vigorous motion changes in
specific joints or meta information. Moreover, we are going to
extend our system—i.e. our vector—with further perceptions
from laser range finders for improved mobility and depth
images from stereo cameras for object and respective position
detection, all for the purpose of biologically inspired memory
prediction of robot actions.

The main contributions of this paper are as follows: This pa-
per proposes the first implementation of a biologically inspired
LTM model as an SDM in mobile robot manipulation. We have
developed an experimental platform to investigate different
SDM representation types in detail, and to test their usability
in real-world service robotics domains. Finally, this paper
exposes some challenges that arise when transferring theory to
application, such as cross-sequences and, notably, the encoding
problem. As we have outlined, our implementation constitutes
significant first steps in SDM-based robot action learning and
prediction. We see potential to extend our framework for

application in more complex robot motion prediction.

REFERENCES

[1] L. Gabora. Cognitive mechanisms underlying the creative process. 4th
Conf. on Creativity & Cognition, pp. 126–133, NY, USA, 2002.

[2] B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs.
Current Opinion in Neurobiology, 14:481–487, 2004.

[3] G. Palm. On associative memory. Biological Cybernetics, 36(1):19–31,
1980.

[4] D. J. Willshaw. Parallel Models of Associative Memory, ch. Holography,
associative memory, and inductive generalization, pp. 83–104. Lawrence
Earlbaum Associates, 1981.

[5] G. E. Hinton, J. L. McClelland, and D. E. Rumelhart. Distributed
representations. In D. E. Rumelhart, J. L. McClelland, et al. (ed.),
Parallel Distributed Processing: Vol. 1: Foundations, pp. 77–109. MIT
Press, Cambridge, 1987.

[6] P. Kanerva. Sparse Distributed Memory. MIT Press, Cambridge, MA,
USA, 1988.

[7] P. Suppes. Representations and models in psychology. Annual Review
of Psychology, 45:517–544, 1994.

[8] S. B. Furber, G. Brown, J. Bose, J. M. Cumpstey, P. Marshall, and J. L.
Shapiro. Sparse distributed memory using rank-order neural codes. IEEE
Trans. on Neural Networks, 18(3):648–659, 2007.

[9] P. J. Denning. Sparse distributed memory. American Scientist, 77:333–
335, 1989.

[10] R. P. N. Rao and O. Fuentes. Hierarchical learning of navigational
behaviors in an autonomous robot using a predictive sparse distributed
memory. Machine Learning, 31(1-3):87–113, 1998.

[11] M. Watanabe, M. Furukawa, and Y. Kakazu. Intelligent agv driving
toward an autonomous decentralized manufacturing system. Robotics
and Computer-Integrated Manufacturing, 17(1-2):57–64, 2001.

[12] M. Mendes, A. P. Coimbra, and M. Crisóstomo. AI and memory: Studies
towards equipping a robot with a sparse distributed memory. IEEE Int.
Conf. on Robotics and Biomimetics (ROBIO), pp. 1743–1750, Sanya,
China, 2007.

[13] M. Mendes, M. Crisóstomo, and A. P. Coimbra. Robot navigation
using a sparse distributed memory. IEEE Int. Conf. on Robotics and
Automation (ICRA), Pasadene, CA, USA, 2008.

[14] S. Jockel, D. Westhoff, and J. Zhang. EPIROME—A novel framework
to investigate high-level episodic robot memory. IEEE Int. Conf. on
Robotics and Biomimetics (ROBIO), pp. 1075–1080, Sanya, China,
2007.

[15] S. Jockel, M. Weser, D. Westhoff, and J. Zhang. Towards an episodic
memory for cognitive robots. 6th Cognitive Robotics Workshop at 18th

Euro. Conf. on Artificial Intelligence (ECAI), 2008.
[16] D. Marr. A theory of cerebellar cortex. Journal of Physiology, 202:437–

470, 1969.
[17] J. Albus. A theory of cerebellar function. Mathematical Biosciences,

10(1/2):25–61, 1971.
[18] P. Kanerva. Sparse distributed memory and related models. Associative

Neural Memories: Theory and Implementation, pp. 50–76, New York,
1993. Oxford University Press.

[19] T. A. Hely. Sparse distributed memory. Encyclopedia of Cognitive
Science, pp. 101–108, 2006. University of Edinburgh, Edinburgh, UK.

[20] L. A. Jaeckel. A class of designs for a sparse distributed memory.
Technical Report RIACS TR 89.30, Research Institute for Advanced
Computer Science, NASA Ames Research Center, 1989.

[21] J. Kristoferson. Some results on activation and scaling of sparse
distributed memory. Technical Report R97-04, 22, 1997.

[22] G. Sjödin. The Sparchunk code: a method to build higher-level structures
in a sparsely encoded SDM. IEEE Int. Joint Conf. on Neural Networks,
2:1410–1415, 1998.

[23] A. Anwar, D. Dasgupta, and S. Franklin. Using genetic algorithms for
sparse distributed memory initialization. 1999 Cong. on Evolutionary
Computation (CEC), Vol. 2, pp. 1043–1050, Washington, DC, 1999.

[24] V. G. Tul’chinskii, I. N. Pshonkovskaya, and S. V. Zaytseva. Fast
retraining of SDM. Cybernetics and Systems Analisys, 35(4):543–552,
1999.

[25] B. Ratitch and D. Precup. Sparse distributed memories for on-line value-
based reinforcement learning. LNCS, 3201:347–358, 2004.

[26] A. Bouchard-Côté. Sparse distributed memories in a bounded metric
state space: Some theoretical and empirical results. Technical Report,
McGill University, 2004.

1303

