
University of Hamburg

Faculty of Mathematics, Informatics and Natural Sciences

Department of Informatics

Technical Aspects of Multimodal Systems (TAMS)

Diploma thesis

A navigation algorithm based on laser scans
and stereo vision for a servicerobot in a

cluttered and dynamic office environment

presented in
October 2006

David Melnychuk

Carl-Petersen-Strasse 36
20535 Hamburg

9dannber@informatik.uni-hamburg.de
Matriculation number: 5201598

Primary supervisor: Prof. Dr. Jianwei Zhang
Secondary supervisor: Prof. Dr. Bernd Neumann

Contents

List of figures III

1. About this work 1

1.1. Overview . 1
1.2. Motivation . 2

1.3. The Robot . 2
1.4. Related work . 5

1.4.1. Planning methods . 5
1.4.2. Methods for three dimensional perception and mapping 6

2. Path planning 9

2.1. Configuration space . 9
2.1.1. Basic notions . 9

2.1.2. Expansion of obstacles . 10
2.1.3. Properties of the employed configuration space 12

2.2. Visibility graph . 14
2.2.1. Description . 14

2.2.2. Comparison with other planning algorithms 15

2.3. The two stage approach . 16
2.3.1. Detection of narrow passages . 18

2.3.2. Planning in narrow passages . 19
2.4. Computation of expansions . 24

2.5. Experiments . 27
2.5.1. Testing different potential functions . 28

2.5.2. Testing different turn costs . 29
2.6. Summary . 32

3. Integrating sensory data 33

3.1. Reacting to a changing environment . 33
3.2. Integrating data from laser range finders . 34

3.3. Obstacle memory . 35

4. Using stereo cameras 41
4.1. Natural stereo vision . 41

4.2. The camera model . 43

4.2.1. The pinhole model . 43

I

Contents

4.2.2. Internal parameters . 44
4.2.3. External parameters . 45
4.2.4. Radial distortion . 46

4.3. Camera calibration . 49
4.4. Geometry of two parallel cameras . 50
4.5. Rectification . 52
4.6. Stereo correspondence analysis . 53
4.7. Line segment extraction and processing . 55

4.7.1. Edge detection . 55
4.7.2. Hough transform . 58
4.7.3. Line segmentation . 59
4.7.4. Line segment matching . 60

4.8. Summary . 61

5. Results and conclusion 63
5.1. Planning and movement . 63
5.2. Obstacle sensing and stereometry . 64

Bibliography 67

A. Experimental planning tasks 73

B. Video recording 75
B.1. Scene 1 - The storage room . 75
B.2. Scene 2 - Passing a small passage . 75
B.3. Scene 3 - Obstacle avoidance . 75
B.4. Scene 4 - Dynamic pathplanning . 76
B.5. Scene 4 - Dynamic obstacle avoidance in a cluttered environment 76

C. Erklärung / Statement 77
C.1. Deutsch . 77
C.2. English . 77

II

List of Figures

1.1. The robot TASER . 3

1.2. Scan areas (Top view) . 4

2.1. Shrinking of a rotationally symmetric robot . 11

2.2. Different shapes of expanded obstacles . 11

2.3. Ground and top plane of the relevant space . 12

2.4. A visibility graph . 14
2.5. A tangent graph . 15

2.6. The shortest path between p and q on the tangent graph 16

2.7. Stretching a path to a wider expansion . 18

2.8. Overlapping expansions . 19

2.9. Possible orientations with different neighbor relations 20

2.10. Cutting from a configuration space graph . 21
2.11. Planning results with different potential functions 23

2.12. Computing the expansion by moving the robot around the obstacle 24

2.13. The expansion of a point obstacle is the point reflected robot outline 25

2.14. Moving the point expansion along a line . 26

2.15. The expansion as a convex hull . 26

2.16. Experimental results for planing with different potential functions 30

2.17. Experimental results for planing with different αs 31

3.1. Robot “trapped” between two obstacles . 37

3.2. Robot oscillates between two doors . 38

3.3. Robot oscillates between two rooms, because static map data is missing 39

4.1. The basic pinhole camera model . 44

4.2. The basic pinhole camera model . 45

4.3. Radial distortion . 47

4.4. Undistortion performed with forward mapping 48
4.5. Calibration scene . 50

4.6. Photographing a scene with two cameras . 51

4.7. Axis parallel stereo setup (top view) . 52

4.8. The Laplacian of a Gaussian . 56

4.9. The original chair scene . 57

4.10. The chair scene after edge detection . 57

4.11. The Hesse normal form . 59

III

List of Figures

4.12. The chair scene after Hough transform . 60

5.1. A stereo image pair . 65

A.1. Planning tasks 1, 2 and 3 . 74
A.2. Planning tasks 4, 5 and 6 . 74
A.3. Planning task 7 . 74

IV

About this work 1
1.1. Overview

This diploma thesis describes an approach to create a robust navigational algorithm for a wheeled
service robot working in an office environment. The approach taken in this work involves two
major subproblems. The first one is the planning problem: How to create a safe path from the
current position to the robot’s destination efficiently, based on the current representation of the
environment? The second one is the mapping problem: How can the robot’s representation of
the environment be modified, based on sensor data, so that it contains all information which is
relevant for path planning?

Chapter 2 describes the planning algorithm used. It is based on a combination of the tangent
graph method and exhaustive search of the configuration space. The tangent graph is used
to quickly create a preliminary path, while the space search deals with narrow passages which
require exact planning. The results from both approaches are united into one final path. This
two-staged approach results in reliable planning results even in difficult planning situations, and
yet it does not require much planning time.

As for the environment representation, the robot possesses a fixed inchoate map of the envi-
ronment from the start. This circumvents the need for complex map building. In addition,
sensory data from laser range finders and a stereo vision system is used to create an accurate
representation of the robot’s environment. Thus movable or transient obstacles and potential
map inaccuracies can be accounted for. The problem of integrating sensory data into an existing
representation is discussed in chapter 3.

A pair of stereo cameras is used to produce disparity images. From those, depth information
about objects in front of the cameras can be obtained. With this information, additional obsta-
cles like tables which cannot be detected reliably by the laser range finders can be found and
considered in path planning. The process of generating depth information from stereo images is
described in chapter 4.

The last chapter briefly states the results achieved. When using only laser range finder data, the
aim of a reliable navigation algorithm was achieved. It can handle a changing environment, but
there remains the constraint that there must not be any obstacles which appear much smaller
in the scan than they really are. But the stereo vision approach failed to produce useable
measurements. It demands a highly accurate camera calibration process, which was not reached
during this work. Measurements therefore deviated up to 30% from the real values - too much
to be useful for navigation purposes. This chapter will state possible reasons for this failure.

1

1. About this work

Furthermore, suggegtions will be given about what can be done in a future work to resolve this
problem and ideas for a few other enhancements will be put forward.

1.2. Motivation

The TAMS1 research group from the Department of Informatics at the University of Hamburg
possesses a mobile service robot named TASER2. At the time the work for this thesis started,
the path planning algorithm for this robot had some serious limitations, e.g. it could not pass
doorways (except for very wide ones). Obviously a service robot which is not able to leave a
room is of little use, hence the need for a better navigation algorithm.

Another limitation of the old algorithm was that the determined path could not be modified in
the wake of new sensory data. Should there be a previously unknown obstacle in the robot’s
way, the robot would simply stop and wait until its path is clear again.

Thus the aim of this thesis was to create a path planning algorithm which would enable the robot
to move safely from one room to another, even when there is relatively few space to manoeuvre
somewhere along the path, as may happen in a doorway. The robot must not collide with any
obstacles in its way. It should adapt its path to new obstacles which were not known to the
robot at the beginning of the planning process, as well as to moveable obstacles like humans.

Planning on a static representation of the environment is clearly not enough to reach this aim.
The robot must retrieve information from its environment directly via sensors and this informa-
tion must be somehow incorporated into the planning process.

It is not intended that the robot manipulates its environment to achieve its goal. Thus if the
only door to a room is closed, the robot would not try to open the door, but path planning
would simply fail.

1.3. The Robot

The robot TASER (see figure 1.1) is propelled by a two wheel drive, the speed of each wheel can
be set separately. While this would enable to robot the perform any curve on a plane ground,
the control software is currently only able to move the robot forward or backward or to turn its
orientation while not driving.

Two laser range finders3 are attached to the robot some 20 cm above the ground, one at the
front and one at the rear. Each scanner performs a 180◦ scan of the environment in a resolution
of 0.5◦. The space between the scanners exactly to the left and the right of the robot cannot
be scanned, as it is outside of the range of both scanners (see figure 1.2). Apart from this blind
area, the distances to all obstacles surrounding the robot on the plane 20 cm above the ground
are known.

1Technical aspects of multimodal systems
2TAMS Service Robot
3SICK LMS 200

2

1.3. The Robot

Figure 1.1.: The robot TASER
The laser range finder is the blue box at the bottom with “SICK” on it

The cameras can be seen at the top

3

1. About this work

Figure 1.2.: Scan areas (Top view)

Two color cameras4 are attached approximately in parallel to a moveable pan-tilt-unit at the top
of the robot. They provide the optical data for the stereo vision system. Each camera produces
frames with a resolution up to 640×480 pixel and up to 30 frames per second.

The other sensors and the robot’s arms are of no concern to this thesis.

The robot has a PC-class computer on board to control all of its devices. It has a wireless network
interface and uses the Roblet c©-Framework [WSS+04] provided by the genRob-Project as control
software. This software allows for control programs to be executed on remote computers. Time
consuming tasks should be done on a remote computer, as not to overload the on-board computer
and delay time critical tasks. On the other hand, sometimes tasks must be executed locally, since
the network interface may be too slow for some applications. For instance, the stereo cameras
create up to 150 Mbps of data, which would be too much for realtime analysis over current
wireless networks.

A working localization algorithm has already been developed [SW02] for the robot. Therefore,
in this thesis the position of the robot is assumed to be known (with an accuracy of about 3 cm)
and this thesis is not about a SLAM5 problem in the narrow sense of the word. The localization
algorithm uses data from odometry for pose estimation. Odometry errors are corrected by
measuring the distance to laser beacons on fixed known positions. Kalman filters [Kal60] are
used to integrate the data.

4Sony DFW-VL500
5SLAM: Self localization and map building, a problem common to mobile robots with no prior information about

their environment

4

1.4. Related work

1.4. Related work

Autonomous robot navigation has been extensively researched in recent years. Major interrelated
subproblems to this task are processing of sensory data, map building and planning. In absence of
any prior information of the environment an exploration strategy is also necessary. Some have
been presented in [LGB02, OVFT04, OF05]. Furthemore, for robots with more complicated
movement devices like walking or non holonomic robots, the execution of the planned path also
may be a complex task.

In [SW02] a navigation system has been proposed for a similar robot. However, it has some
limitations. The path planning algorithm uses a quite generous approximation of the robot as
a circle, which makes the algorithm simpler but less reliable in narrow passages. Furthermore
newly detected obstacles in the robot’s path cause it simply to halt, instead of planning a new
path around that obstacle. Finally, the only sensor used is a laser range finder scanning in
a plane, with the same problems resulting from this fact as stated in the paragraph above.
This work can be largely seen as a continuation of [SW02], with the focus on overcoming the
limitations of the path planning algorithm proposed therein.

1.4.1. Planning methods

[Lat98] and [CLH+05] provide an overview about established robot planning algorithms. The
field of path planning is still under investigation, and new papers are published regularly. Some
of these recent works will be presented briefly.

In [NN04], a sensor-based planning algorithm is presented for robots which cannot sense an
obstacle at a distance, i.e. it detects obstacles only when it (almost) touches them. This would
be the case if the robot has only haptic sensors. The classic algorithm for this situation is the
Bug-Algorithm (see [Lat98, CLH+05]). The focus of the cited work is the development of an
algorithm which produces shorter paths on the average than algorithms known hitherto. These
algorithms are not very useful if the robot has means to detect obstacles from a distance, e.g.
by optical sensors or sonar scanners.

Path planning problems in general are known to be PSPACE hard [HW86]. Therefore complete
planning algorithms suffer from excessively high computational cost and memory usage. Proba-
bilistic planning methods can alleviate this problem, because they do not search the entire state
space. Instead they probe some random samples of the state space, which probably contain a
valid path.

An approach which combines cell decomposition with probabilistic sampling is presented in
[Lin04]. The author states about his approach:

“PCD [Probabilistic Cell Decomposition] is easily scalable and applicable to many
different kinds of problems. Experimental results show that PCD performs well under
various conditions.”

Another probabilistic approach was made in [KM04]. Here probabilistic roadmaps (PRM) are
combined with a harmonic potential field. This approach is named “Harmonic Function Prob-
abilistic Roadmap” (HFPRM). The author stresses, that whereas usual PRM methods perform

5

1. About this work

poorly in the presence of narrow passages, HFPRM overcomes this weakness. This property
perhaps would make HFPRM also a suitable method for the planning task for this thesis. How-
ever, the thorough investigation into alternative planning methods would be out of the scope of
this thesis. Besides, the results of the planning algorithm used for this thesis are satisfactional.

An interesting approach using genetic algorithms for path planning was proposed in [HY04].

For this work, however, such sophisticated planning algorithms are not needed, because no high
dimensional configuration spaces are involved and computation times resulting from traditional
algorithms are acceptable.

1.4.2. Methods for three dimensional perception and mapping

To achieve a reliable navigation system in cluttered environments it is indispensable for the
robot to percept obstacles in its environment in all three dimensions and not only in one plane,
as many simple robots do. The reason for this is that there are certain obstacles which may
have quite different appearances, depending of the plane the scan is conducted in. Overhanging
obstacles and tables fall into this category. Such objects could block a much wider region than
what can be seen in the plane scan.

This section will present a selection of recent publications that describe approaches to three
dimensional environment perception and mapping. Many more approaches can be found in
journals and conference reports on robotics, and the publications mentioned below also reference
various further approaches.

In [BWW03] a tiltable laser range finder is used for SLAM on an autonomous outdoor vehicle.
3D perception is used to retrieve data from the environment, but the localization and planning
algorithm work in a two dimensional space. This makes it possible to get a detailed view of
the environment and still make use of the rich pool of established fast-performing 2D planning
algorithms. Another work [WACW04] with partly the same authors deals with indoor mapping
also using a tiltable laser range finder. In an approach similar to this work, 3D sensory data is
projected into a plane before being passed to the planning stage.

Yet another work with many similarities to this one is [MJ97]. A robot named “Spinoza” uses
depth images from a trinocular stereo vision system to explore and map its environment. The
planning algorithm used is also very similar to the one used in this work (see section 2.3.2). It
is a variant of the occupancy grid method, in which the robot’s environment is represented as a
regular grid. By using a potential field, the search for the a path tends to avoid grid nodes close
to obstacles.

The navigation system for the humanoid robot “QRIO” [SFG+04] also works in a similar way.
A stereo vision system is used to gain information about its environment. The path planning
system uses an occupancy grid with a potential field generating a repulsive force away from
obstacles. This field is incorporated into an A∗-search on the grid.

A paper which addresses the need for mobile robots to detect specifically tables is [VVB05].
It spends a lot of effort to estimate the position and orientation of the ground plane (i.e. the
plane the robot moves on). This is not necessary for this thesis, because the stereo cameras are

6

1.4. Related work

at a fixed known height and angle above the ground, therefore the ground plane’s position and
orientation can be easily computed.

A stereo vision approach to the SLAM problem is presented in [SE04]. The approach tries to
estimate the current robot movement by extracting features from 3D-point clouds and matching
these features against features taken at a different pose. A matching score is calculated to filter
out bad possible matches. From the remaining matches a movement esimation is generated.
This is done by caluclating the 3D-point cloud that would be expected to be seen as a result
of a particular movement. Various possible movements are considered and the movement that
produces the cloud that matches the actual observed cloud best is selected as the movement
estimate. The approach also generates a map of the environment using the point clouds and the
pose estimates. Local mapping errors are eliminated by observing a consistency criterion and
employing a map update strategy.

7

1. About this work

8

Path planning 2
This chapter addresses the central task of planning a path through the robot’s environment. It
will give a general overview of the concepts and methods for path planning which were employed
in this work. There will be a detailed description of how these methods were used to solve
this particular planning task. The chapter will explain the two stage approach, which is a
combination of the tangent graph method and occupancy grid planning. By combining both
methods it is possible to generate desireable paths in a short time.

One important aspect of planning is choosing the right representation of the robot and the
obstacles. Because the planning algorithm should work in cluttered environments where narrow
passages are commonplace, an exact representation is crucial. This topic explains in detail, how
the representation of the environment is constructed.

Finally, experimental results for off-line planning1 will be presented. The experiments show how
the generated paths react to changes to adjustable parameters of the planning algorithm.

2.1. Configuration space

2.1.1. Basic notions

Most path planning algorithms operate on a configuration space. A good explanation of the
concept of configuration space is given in [CLH+05]:

“The configuration of a robot is a complete specification of every point of that
system. The configuration space [. . .] of the robot system is the space of all possible
configurations of the system. Thus a configuration is simply point in this abstract
configuration space. [. . .] The number of degrees of freedom of a robot system is the
dimension of the configuration space, or the minimum number of parameters needed
to specify the configuration.”

The degrees of freedom indicate in how many directions the robot can be moved or oriented.
In a typical service robot scenario the robot can move freely in a plane (two directions) and
can turn along the axis orthogonal to the plane. Thus there are three degrees of freedom and
the configuration space is three dimensional. If the robot can be approximated as rotationally

1i.e. planning on a static map without sensor input

9

2. Path planning

symmetric the orientation of the robot does not matter and its configuration space can be
reduced to two dimensions.

Usually the robot’s environment contains obstacles, i.e. objects which the robot must not collide
with. Obstacles in the environment can be mapped onto configuration space obstacles. These
are sets of points in the configuration space which correspondent with a configuration of the
robot that would result in a collision.

Let C denote the configuration space and COi the configuration space obstacles. Consider the
following definitions, which are made according to [CLH+05]:

Definition 2.1.1 The set Cocc of all points that are occupied by configuration space obstacles is
Cocc =

S

iCOi

Definition 2.1.2 A path p in C is a continuous mapping p : [0,1]→C

Given these definitions the problem of path planning between the starting configuration qstart ∈C
and the desired final configuration qend ∈C can be described as finding a path p with p(0) = qstart ,
p(1) = qend , and ∀x ∈ [0,1] : p(x) /∈Cocc. Such a path is collision free. Obviously there is not such
path if either qstart ∈Cocc or qend ∈Cocc.

A path planning algorithm is an algorithm that produces a path given C, Cocc, qstart and qend .
It is called correct, if the path produced is always collision free. Alternatively the algorithm
may terminate with an error indicating no path exists. The algorithm is called complete if it
always returns a path if a path exists and always returns an error otherwise. The algorithm is
called optimal, if the returned path fulfills some optimality criterion, for example that the path
returned has the shortest length of all existing paths.

For the service robot scenario the most important property of the algorithm is correctness,
because collisions simply must not occur, since collisions could damage or even destroy the
robot or something valuable in its environment. The properties of completeness and optimality
do not have to be met strictly. In practice it is acceptable for the algorithms to fail in some
awkward situations that occur rarely. Likewise it is acceptable that the path found is less than
optimal, as long as it does not get too bad in respect of the optimality criterion.

2.1.2. Expansion of obstacles

Path planning algorithms can be made simpler if the robot is represented as only one point
in the configuration space. This point will be called reduction point. To still create collision
free paths, the configuration space obstacles must be expanded by the same amount of space
the robot has been shrunk. The simple case of a two dimensional configuration space and a
rotationally symmetric robot shrunk to a point is shown in figure 2.1. Section 2.4 will cover in
detail how the expansion is computed.

If the robot is not rotationally symmetric, the configuration space requires one more dimension
for the orientation of the robot. The expanded obstacles have a different shape for each possible
orientation of the robot (see figure 2.2).

10

2.1. Configuration space

Figure 2.1.: Shrinking of a rotationally symmetric robot
to a point in the configuration space

Figure 2.2.: Different shapes of expanded obstacles
depending on the robot’s orientation

11

2. Path planning

Figure 2.3.: Ground and top plane of the relevant space

Thus there are as many different planar configuration spaces as there are possible robot orienta-
tions. If the robot is able to perform arbitrarily small changes of orientation, this would result in
an infinite number of planar configuration spaces. All these planar configuration spaces can be
assumed as stacked one on another and thus composing a single three dimensional configuration
space.

2.1.3. Properties of the employed configuration space

The robot has three degrees of freedom (movement in the plane and orientation), thus the con-
figuration space should be three dimensional. The robot’s outline is approximately rectangular,
with the longest diameter being approximately 20 cm longer than the shortest. If the robot was
modeled as a circle with the long diameter, a path through a narrow doorway would appear to be
blocked, even if in reality there is enough space left to navigate. Unfortunately, doorways with
such a diameter are common in the robot’s environment, thus such a solution is not satisfactory.

If a shorter diameter is chosen, a path with a collision might be generated. For example, the
algorithm could bring the robot into a doorway and make it turn there. If the doorway is small,
the robot might fit just into it, but a collision would occur upon turning.

As a result, the robot cannot be assumed as rotationally symmetric, and the configuration space
must remain three dimensional if we want to robot to navigate trough narrow passages.

Until now, no mention was made of the robot’s height nor of the obstacles’ heights. When the
robot’s representation is being shrunk to a point, one also must account for its height. The

12

2.1. Configuration space

solution to this is simple. Consider the plane G, which is the ground plane the robot moves at,
and the plane T above G, as in figure 2.3. G and T are parallel and the distance between them
is the same as the robot’s height. Obviously only obstacles between these planes are of interest,
and any obstacle within this room must have a counterpart in the configuration space. If there
is an obstacle anywhere between those planes, the outline of this obstacle is marked as occupied
in the configuration space.

More formally, G is described by the equation 2.1 and T by equation 2.2.

0· x+0· y+ z+0 = 0 (2.1)

0· x+0· y+ z−h = 0 where h is the robots height (2.2)

G and H can be seen as sets of points which fulfill the equations. Thus G = {~p|~p = (x0,x1,0)T}
and T = {~p|~p = (x0,x1,h)T } with arbitrary xi.

An obstacle Oi in the three dimensional environment can be represented as the set of points
it occupies. The relevant environment RE is the space between the planes G and T , that is
RE = {(x0,x1,x2)

T |0≤ x2≤ h}. Now the occupied relevant environment REocc can be stated as in
equation 2.3.

REocc =
[

i

Oi∩RE (2.3)

The next thing to determine is how the relevant occupied environment REocc is to be trans-
formed into obstacles of the three dimensional configuration space C3

occ. The three dimensional
configuration space shall be denoted as C3 and the configuration space without orientation as
C2.

It suffices to have at least one point obstructed by an obstacle along the line between (x,y,0)T and
(x,y,h)T to mark the position (x,y)T as occupied in C2. Thus the first step of the transformation is
a projection of the obstacle points into C2 as described by the mapping pro j in Definition 2.1.3.
Equation 2.4 explains the relation between the occupied space in the environment and the
occupied space C2

occ in C2.

Definition 2.1.3 pro j : R
3→C2, pro j

x0

x1

x2

 =

(
x0

x1

)

C2
occ = {~p|~p = pro j(~q),~q ∈ REocc} ⊆C2 (2.4)

The next step is the expansion of the obstacles to compansate for the shrinking of the robot.
Definition 2.1.4 establishes a mapping exp which expands the occupied point in C2 into a set of
points in C3 to this end. How the expansion must be facilitated has been described above in this
section and will not be formalized in detail.

13

2. Path planning

Figure 2.4.: A visibility graph

Definition 2.1.4 exp : C2→ P (C3)

Finally the occupied space in C3 can be described by equation 2.5.

C3
occ =

[

i

exp(~pi) with ~pi ∈C2
occ (2.5)

2.2. Visibility graph

The planning algorithm used by the navigation system is based on the well established visibility
graph method [LPW79, Lat98]. The reasons why this method was chosen will be stated in
section 2.2.2. But first, the algorithm will be introduced in the following section. To avoid
unnecessary complexity, it will be presented for the two dimensional case. Furthermore, the
algorithm is used in this work only in a two dimensional context. However, the visibility graph
algorithm can easily be transfered for use with higher dimensional configuration spaces.

2.2.1. Description

The visibility graph method starts out with a map with polygonal obstacles and free space
between them. Curved obstacle borders must be approximated by multiple lines. From this
map a graph is constructed. For all points defining the polygons’ borders a node is added to the

14

2.2. Visibility graph

Figure 2.5.: A tangent graph

graph. Additionally, there is one node for the robots starting position p and one for the desired
position q (see figure 2.4).

The graph contains all free edges between any two nodes. A free edge is an edge which does
not pass through an obstacle. Thus all edges in the graph are possible routes for the robot, i.e.
movements along these edges do not result in collisions. The name visibility graph is derived
from the fact that a node is connected to all other visible nodes, i.e. all nodes which are not
obstructed by an obstacle in the direct line of view.

Now it is possible to use a graph searching algorithm, like A∗ [HNR68], to determine a (shortest)
path between p and q. The cost of an edge can be set to be the distance between its nodes.

Some of the edges in the visibility graph are actually useless and can be omitted from the
graph [LA92], thus reducing the number of operations needed during the search. An edge is
unnecessary, if any arbitrary small expansion of the edge would intersect with an obstacle. The
graph without such edges is called reduced visibility graph or tangent graph2 (see figure 2.5).

2.2.2. Comparison with other planning algorithms

The visibility graph method was chosen because of its simplicity and small computational com-
plexity. Furthermore the path it produces consists of straight lines with only few changes of

2This designation stems from the fact that all expansions of the edges in this graph are tangential to the obstacles

they connect

15

2. Path planning

Figure 2.6.: The shortest path between p and q on the tangent graph

orientation. This is favorable because the robot is only able to move in straight lines (see sec-
tion 1.3). If an algorithm had been used that produces curves or even erratic paths this would
require the resulting paths to be straightend afterwards. This in turn would further increase
complexity and could worsen the results.

The visibility graph method also has some weaknesses compared to other methods. But at the
time the planning algorithm was drafted it seemed that these weaknesses would not be grave
for this particular application or they could be overcome. The most serious weakness is that
the resulting path comes as close to an obstacle as possible. In the area of robotics, where there
always are inaccuracies in the representation of the environment as well as in the execution of a
planned path, such a property is not very desirable.

All in all it seemed that the visibility graph may provide a good base for the planning algorithm.
This assumption was proven to be correct by the achieved results.

2.3. The two stage approach

As already stated in the previous section, the main drawback of the visibility graph method is
that it brings the robot very close to the obstacles. The straightforward usual solution to this
is to expand the obstacles gratuitously so that there is enough space left to navigate the robot
safely. The amount of the additional expansion depends on the accuracy of the map, localization,
and locomotion. This is the approach taken by [SW02] in the previous navigation algorithm for
TASER (see section 1.4).

16

2.3. The two stage approach

Furthermore, planning in a two dimensional configuration space requires modeling the robot as
a circle with a diameter equal to the longest diameter of the actual robot (see section 2.1.2).
But this means that the expansion of an obstacle may be larger than needed, depending on the
orientation of the robot. In the case of TASER, there are approximately 20 cm wasted. This
may be acceptable if obstacles are scarce and there is enough space between them. But this is
not how a typical indoor office environment looks like.

The problem is even more pointed with passages like doorways, because the wasted space occurs
on both sides of a doorway. Thus with the visibility graph approach the robot could not pass a
doorway, even if it is 40 cm wider than the robot.

The solution taken to overcome this weakness is the two stage approach. Planing is first con-
ducted by the visibility graph method with minimal obstacle expansion. To ensure that there
are no collisions, the path is modified in the second stage. To this end the path is divided into
sections which are far away from obstacles and sections close to obstacles. Section 2.3.1 describes
how the path is divided into sections and how sections are classified.

The sections of the path close to obstacles are re-planned with another algorithm, which is
explained in section 2.3.2. This second algorithm is specialized to plan a path for sections with
little free space left.

This two stage approach has been initially examined in a practical course by three students in
2005, one of them is the author of this thesis. During the work for this thesis, this approach was
refined and completed.

The main advantage of the two stage approach is that a computational costly algorithm can be
used for planning in narrow passages, but the overall computational cost of planning remains
relatively small, because the costly algorithm is invoked only for a small area and not for entire
map.

The drawbacks of the approach are in terms of completeness and optimality. The first stage
(visibility graph) cannot know for sure whether there is a way through a narrow passage or not.
It may turn out at the second stage, that a path cannot be found for the designated passage.
As a consequence, the algorithm terminates with no path found, although there could be a path
via a different passage. This situation will be called case “A” in the following.

Furthermore, there is the opposite case; this is when the first stage determines there is no passage
between two obstacles, but the second actually may have found one if it had been invoked for
this passage. If there is no other possible path apart from going through this passage, the result
will be that the two stage approach finds no path altough one exists (case “B”).

It could be possible to remedy this situation, but it would involve much more computational
cost and these situations occur in practice very rarely, so this effort was not undertaken. Still,
a possible strategy will be described in short.

When the obstacle expansion at the first stage is chosen small enough, it is always the second
stage which determines that a passage would be impassable and not the first, thus case “B”
would not occur anymore. Instead, the frequency of the occurance of case “A” would increase.
The associated problems could be resolved with some kind of feedback to the first stage. The
second stage would notify the first stage that the designated passage is blocked. Then, the first

17

2. Path planning

Figure 2.7.: Stretching a path to a wider expansion

stage could mark this passage as impassable in its map and start over again, thus generating a
different route if possible.

Another way to handle this situation would be to simply extend the second stage to the entire
map, but this would drive computational costs up and render the two stage approach absurd.

Optimality of the computed paths cannot be guaranteed for similar reasons. Still the resulting
path cannot deviate too far from the optimal path, because the changes to the path resulting
from the first stage, which is optimal in the first stage model, are restricted to a local area. So
the resulting path may be less than optimal, but it will not be a very bad path.

2.3.1. Detection of narrow passages

After the first stage of planing determined a path using the visibility graph method with a small
obstacle expansion, this path needs to be modified so that no collisions occur. This is done by
using a wider obstacle expansion and stretching the path to fit with the new expansion. This
can be done when there is enough free space between the obstacles (see figure 2.7).

But in the presence of another nearby obstacle, the result of stretching the path can be that
the path lies within the expansion of the other obstacle. It is possible that there is no way to
pass between both obstacles without intersecting either expansion, because both the expansions
overlap (see figure 2.8).

18

2.3. The two stage approach

Figure 2.8.: Overlapping expansions

Sections of the map with intersections of multiple wide expansions of obstacles are called narrow
passages. Sections of the path that lie within a narrow passage can be easily identified. All that
is needed is to check whether the section intersects with some expansion after the path has been
stretched to the wide expansions.

These sections of the path are passed to the second planning stage. The task of the second stage
is to find a path from the entry point into the narrow passage to the exit point, where the path
leaves the narrow passage. After the second stage found a path through the narrow passage,
this path replaces the section of the original path.

2.3.2. Planning in narrow passages

The two stage approach allows the usage of a planning algorithms with quite high computa-
tional cost at the second stage without making the overall planning too much computationally
expensive. One quite simple, yet powerful planning algorithm is the state space search.

It involves the creation of a graph with all possible configurations of the robot as the graph’s
nodes. The edges represent transitions from one configuration to another. Transitions are
allowed only between neighboring configurations. The two neighboring configurations must not
differ too much, so that a transition between these two can be done safely without further
planning. A graph search, such as the A∗-Algorithm, can be used to find a path between the
start and the end configuration.

19

2. Path planning

Figure 2.9.: Possible orientations with different neighbor relations

The main drawback of this algorithm is the high cost in terms of numbers of operations and
memory used. But, as already mentioned, the impact of this is not very grave, because only a
relatively small configuration space is searched.

The configuration space graph

Every node in the graph represents exactly one point in the configuration space. Thus the
configuration space cannot be represented as a graph in continuous form, because this would
require an unlimited number of nodes. Therefore a discretization of the configuration space is
needed.

The graph resembles a grid with regular intervals between the nodes. The actual size of the
interval can be set to different values, and intervals between 20 and 60 mm proved to be good
tradeoffs between size and exactness of the representation. Nodes at occupied positions, i.e.
positions that would result in an collision with an obstacle, are not included in the graph.

This approach to planning can be seen as a variant of the occupancy grid mapping method,
which has been first used for mobile robots by Moravec and Elfes in [ME85] and [Elf89].

To account for effects of turning the robot as laid out in section 2.1.2, the configuration space
must be three dimensional, with two dimensions for the position in the plane and one for the
orientation. Each node of the graph has an associated configuration, which consists of a x and a
y coordinate, and the robot’s orientations. Nodes at blocked positions, i.e. positions that would
result in an collision with an obstacle, are not included in the graph.

Within one plane of the graph’s grid, all nodes have a configuration with the same orientation,
thus they differ only in the position. The planes can be assumed as stacked on one atop the
other, one plane for each possible orientation. Each node is connected with the node that lies
next to it in the direction of the plane’s orientation, representing the possible straight forward
movement without changing the orientation. It is also connected to the two nodes representing
the adjacent orientations at the same position. Thus the transitions between the graph’s nodes
represent the two basic motions the robot may execute, straight forward motion and rotation.

20

2.3. The two stage approach

Figure 2.10.: Cutting from a configuration space graph

Due to the grid shaped graph, only selected orientations can be represented. Eight orientations
are possible if position changes are restricted to immediate neighbors of the node. The other
orientations would result in movements that end somewhere “between” the grid nodes. The
current implementation uses transitions to immediate neighbors and to neighbors two steps
away, thereby allowing for sixteen orientations (see figure 2.9).

The intention for the use of many orientations is to reduce the occurance of erratic movements.
The path in a passage that requires a movment in a direction, which is not available to the
planner, would require a discrete approximation. The result would be many small steps, which
are interrupted by rotational movements, one to the left, the next to the right.

A cutting from a simplified configuration space graph with eight possible orientations is shown
in figure 2.10. Note that the planes are connected in a circular way, as it is possible to move
from the last configuration (at 315◦) to the first (at 0◦) in one step.

Backward motion would be possible, but is not implemented, because the stereo vision system
for obstacle detection looks only in forward direction, so a backward motion would pose the risk
of collisions.

21

2. Path planning

Edge costs

The planing algorithm for narrow passages presented so far still lacks any provision to avoid
paths which come close to obstacles. The search in the configuration space for the shortest path
in fact tends to produce paths with little distance to obstacles, because going along the shortest
path usually means to pass an obstacle with the shortest possible distance to it.

Here the flexibility of the graph search method makes it possible to change the semantics of
what the best path actually is. The edges of the configuration space graph can be associated
with costs, and as the search finds the path with the shortest total cost, it avoids using costly
edges when there are cheaper alternative routes.

By associating high costs with undesirable edges, these edges will be less likely be part of the
resulting path. Hence paths which come close to obstacles will be avoided, if edges close to
obstacles have high costs.

This approach presented in this work has been inspired by the potential field planning method,
which was pioneered by [AH83] and [Kha86]. The potential field method is a navigation al-
gorithm based on a virtual field, which pulls the robot towards the destination and repels it
away from obstacles. This method, however, has the drawback that the path may end at at
a local minimum, thus it can fail under certain circumstances (e.g. in the presence of concave
obstacles).

The present approach does not use potentials to determine the direction of a motion. Instead,
a potential is used to determine the cost of an edge in the graph. A similar approach was taken
in [MJ97] and in [SFG+04].

The cost of an edge E is set to be proportional to the length of the edge. Additionally, the cost
is multiplied by a proximity factor, which is high when the edge is close to an obstacle. When
the edge is far away from any obstacle, the proximity factor approaches 1.

So if the edge EAB connects the nodes A and B, then its cost is determined by equation 2.6. The
function distp in this equation denotes the euclidean distance between the location of a node,
while distφ provides the difference of the orientations of the two nodes. The function Pot is the
potential that maps the location of a node to the interval [1,∞].

cost(EAB) =
1
2
(Pot(A)+ Pot(B)) · (distp(A,B)+ α ·distφ(A,B)) (2.6)

The term α · distφ(A,B) on the right side of equation 2.6 accounts for the costs of rotational
movements. Because the graph contains no edges that would connect nodes with different
positions and different orientations, either distp or distφ is zero. The factor α is adjustable and
determines how much rotational movements are penalized compared to translational movements.
Experiments were made to determine the influence of α on the planning results. The experiments
and their evaluation will be presented in section 2.5.2.

Many potential functions are possible, although they should be continuous and increase mono-
tonically as the distance to an obstacle decreases. Figure 2.11 shows how different planning
results, which are the outcome from the use of different potential functions. Experiments with
various potential functions and their results will be presented in more detail in section 2.5.1.

22

2.3. The two stage approach

Figure 2.11.: Planning results with different potential functions

23

2. Path planning

2.4. Computation of expansions

After the principles of the planning algorithm have been laid out, this secion will highlight some
aspects of implementing the algorithm.

The planning algorithm was said to work on polygonal obstacles. However, computing the
expansion of polygons proves to be a little tricky. The problems are described in [SW02]. The
same paper proposes a solution by reducing the polygons to only their outline and using an
expansion of their bordering lines. This expansion can be computed easily (see below).

The expansions of lines are polygons of themselves or they form curved areas, which must be
approximated by polygons. Some expansions of lines may overlap as a result, but this is not a
problem at all. Furthermore, the inside of a sizeable obstacle now can be represented as free
space, but this does not matter neither, since the free space is all bounded by the expanded
bordering lines. Therefore, this inside space cannot be reached from the outside. Thus the map
contains only lines expanded to polygons and it can be used by the planner without further
modifications.

A simple approach to compute the expansion of a line would be to lay the outline of the robot
and moving the robot’s outline along the line in a manner that it always touches the line, but
never intersects with it. The reduction point also moves together with the robot’s outline. Its
movement will mark a line that is the border of the basic line’s expansion (see figure 2.12). This
procedure must be repeated for every orientation of the robot that is to be used by the planner.

Figure 2.12.: Computing the expansion by moving the robot around the obstacle

This approach is also computationally complex, since it involves a lot of points being computed
as the reduction point moves along the basic line. The same result can be achieved using a less
complex method. To understand how this method works, the expansion of a single point will
be explained first. This means that the following question must be answered: Which areas of

24

2.4. Computation of expansions

the map are blocked, i.e. may not be entered by the reduction point of the robot, if the map is
entirely free, apart from a single very small sized obstacle e.g. a vertical bar?

As the robot approaches the obstacle, a collision would occur if the distance between the re-
duction point and the obstacle is the same as the distance between the reduction point and the
outline of the robot. From the obstacle’s point of view the reduction point must not come closer
to it, than the distance from the reduction point to the robot’s outline.

Because the robot is not rotationally symmetric, there are different distances from the reduction
point to the outline. Here the one must be considered, which lies on the line between the
reduction point and the obstacle.

Therefore, the distance between the obstacle and the expansion at any given angle is the same
size as the distance between the reduction point and the robot’s outline but at the exact opposite
angle. As a result the shape of the expansion of a point obstacle is the point-reflected robot’s
outline, reflected on the reduction point (see figure 2.13).

Figure 2.13.: The expansion of a point obstacle is the point reflected robot outline

Now that the expansion of a point has been determined, this approach can be extended to lines
as well. All that is needed is to take the reflected shape of the robot and move it along the
obstacle line. All points marked by the shape are blocked and part of the expansion of the line
(see figure 2.14).

The computation of this area can be done very simple. It can be seen as the convex hull of the
defining points of the robot’s shape put at the start and the end of the line (see figure 2.15).
There are many algorithms to find the convex hull of a graph. The one used in this work was the
algorithm called “Jarvis march” [Jar73] (sometimes also named “Gift wrapping”). It was used
because of its simplicity, altough there are algorithms performing better. Yet in the presence
of a small number of points, as it is in this case, the algorithm’s performance is only of small
significance.

25

2. Path planning

Figure 2.14.: Moving the point expansion along a line

Figure 2.15.: The expansion as a convex hull
The nodes are the points defining the robot’s outline

26

2.5. Experiments

2.5. Experiments

It has been stated in section 2.3.2 that it is possible to exert influence on the paths generated by
the graph search by modifying the costs of the edges in the configuration space graph. The costs
are determined by equation 2.6, which has two adjustable components: The potential function
Pot and the turn cost factor α.

Experiments have been conducted to determine the impact of these variables on various prop-
erties of the generated paths. To this end, seven different planning tasks were devised, which
are shown in appendix A. The planning algorithm was used to generate paths for each of the
planning tasks. This has been repeated with different settings for the potential function and the
turn cost factor.

Every path generated was analyzed for several measures which are significant for the judgment
of the quality of the path. These measures are:

• The overall length of the path l

• The number of rotational movements (changes in orientation) along the path nr

• The sum of the amount of all rotational movements φ̂

• The average distance from the path to the closest obstacle d̄

• The average distance at a turning point to the closest obstacle d̄t

• The closest distance from the path to an obstacle dmin

• The closest distance from a turning point to an obstacle dt,min

Additionally the planning duration has been recorded. While this is not a property of the path,
it also should be considered, because it might be undesirable to gain a small quality improvement
in exchange for much longer planning duration.

The experimental values of the measures are normalized to make them comparable, thus the
values presented here are not absolute. Furthermore, they are averaged over the different plan-
ning tasks. The index base is set to 100. So if a measure has the value 150 in a certain setting,
this means this measure was in average 1.5 times greater than in the reference setting.

It should be noted that the safety of the path in general does not rely on high values for dt,min or
other distances. If the localization assumption of the robot is correct and the environment map
is exact, the generated path will be collision free. This is asserted by the occupancy grid method.
The grid has no nodes at blocked positions, therefore no paths through blocked positions can
occur.

As a result, basic safety is already provided by the underlying algorithm. Yet the additional
distance to obstacles gained by modifying α or by choosing the right potential function can
provide some additional safety, just in any case. Since measurements, either of the own position
or of the obstacles, are never exact, this additional safety is useful.

27

2. Path planning

2.5.1. Testing different potential functions

In the potential field method, the repellent forces from different obstacles are usually summed up
to determine the resulting force at any location. However, with this approach it is also possible
to use only the proximity factor of the closest obstacle.

To be more precise, assume that rep(di) is the magnitude of the repellent force at a distance di

to an obstacle i. Furthermore, Pos(i) gives the position of obstacle i and Pot(p) is the combined
magnitude of all obstacles at position p. Then whereas in typical potential functions equation 2.7
is valid, in this planing algorithm a function according to equation 2.8 could also be used. Since
the potential function is required to be monotonic, choosing the closest obstacle is identical to
choosing the obstacle with the highest potential at a given point. This section will present the
different planning outcomes that result from using either of these possibilities.

Pots(p) = ∑
i

rep(‖p−Pos(i)‖) (2.7)

Potm(p) = max
i

(rep(‖p−Pos(i)‖)) (2.8)

In the following, the function rep(d), which determines the magnitude of the repellent force in
dependence of the distance to an obstacle, will be called repulsion function, whereas the function
Pot(p), which determines the combinded magnitude of the repellent forces of all obstacles will
be called potential function.

In the experiment, three different repulsion functions were used. For each repulsion function,
two different potential functions were designed. The first potential function considers only the
cost of the closest obstacle (according to equation 2.8), and the second one sums up costs from
all obstacles (according to equation 2.7). This yields a total of six different potential functions.
For each of them, one experimental run has been carried out.

Any repulsion function should be monotonic. It maps a distance di (from a certain point to
obstacle i) to a positive value. At big distances it should have a value close to 0, and at close
distances it should have very high values. All field functions tested fulfill these requirements.

In the experiments the distance unit was one millimeter. Every run has been carried out with
α = 1.

The repulsion function given in equation 2.9 increases linearly as the distance between one point
and an obstacle decreases. u and a are parameters to the function. The parameter u sets the
value of the function at the distance 0, and a sets how fast the function decreases. In the
experiment, u = 10000 and a = 10 was chosen. To be exact, this function is only used when
a ·d < u, for other d the function has a 0 value. Otherwise negative values would occur.

The repulsion function in equation 2.10 has a reciprocal relationship between the distance and
the resulting value. The parmeter u sets the distance at which the function assumes the value 1,
and the parameter a determines how fast the function grows when the distance decreases. This
repulsion function has been used in the experiment with two different sets of parameters. In the
first instance a = 1, u = 1000and in the second a = 0.25, u = 1000was chosen.

28

2.5. Experiments

Function maxi(4

√
1
di

) ∑i(
4

√
1
di

) maxi(u−di) ∑i(u−di) maxi(
1
di

) ∑i(
1
di

)

l 100 96.9 121 121.5 133.5 114.5

nr 100 71.2 85.9 86.2 252.4 166.9

φ̂ 100 73.1 166.7 164.5 362.6 155.5

d̄ 100 95.2 123.6 117.6 126.9 108.3

d̄t 100 88.6 143.7 129.3 131.2 104.9

dmin 100 94.5 94.2 81.4 108.3 106

dt,min 100 94.2 93.6 85.9 96.2 104.4

plan. duration 100 112.6 123.6 118.4 145.9 126.1

Table 2.1.: Experimental results for planing with different potential functions

rep(di) = u−a ·di (2.9)

rep(di) =

(
u
di

)a

(2.10)

The results of the experiments are given in table 2.1 and in figure 2.16. The values of the
measures are normalized, so they equal 100 for the first potential function. Attention should be
paid to the diagram, where in the instance of the second last function two measures are off the
scale. Their actual values can be read from the tabular view.

The results show that the first two potential functions (in the same order as they occur in the
diagram) yield much smoother paths, with less rotation and less overall length than the other
functions. They also generate paths which have on the average the highest shortest distance
at a rotation dt,min, with the exception of function six, which has a 4% higher value for dt,min.
Thus function one and two both seem to be good choices for the navigational system as they do
not differ much. Furthermore, with these two functions the planning duration is the shortest,
although with the other functions it was no more than 46% higher. Function one has a slightly
higher dt,min and the shortest planning time, while function two produces shorter paths with less
rotational movements.

2.5.2. Testing different turn costs

In this setting the impact of changing the turn cost factor α was analyzed. The planning
algorithm was executed with different values for α. The resulting values of the path measures
have been normalized so they equal 100 for planning with α = 0 Setting α to 0 means that the
planning algorithm considers changes of orientation as free of costs. These values are given in
table 2.2 and figure 2.17 as a diagram. The potential function used was 2.10, with u = 1000and
a = 0.25, and only the closest obstacle counted (this is the first function in diagram 2.16).

The results show that the turn factor may help to generate path with less rotational movements.
Furthermore the rotational movements are performed with more distance to obstacles (measure

29

2. Path planning

Figure 2.16.: Experimental results for planing with different potential functions

d̄t), thus making the path more safe. Especially the rotation with the closest distance to an
obstacle (measure dt,min) is performed at a about 20% larger distance, when α has a value of 4
to 8. This is a very good sign, because it means that the most critical situation is alleviated.

However, increasing α also seems to result in a path which may lead a little closer to an obstacle
during translational movements (measure dmin). Thus adjusting this parameter allows a trade
off between rotational movements performed further away from obstacles and translational ones.
With higher α, the overall path length also increases slightly.

It is not quite clear why the sum of all rotational movements φ̂ has a minimum at α = 2 and
then starts to grow for higher αs, especially since the total number of turning points decreases
continuously. Perhaps this experimental result is caused by the some characteristic of the plan-
ning tasks used in the experiment and this feature would not occur if more planning tasks would
be evaluated.

The value of α has a heavy impact on planning duration, as can be seen in table 2.2. This
is probably caused by the higher edge costs, which make the cost estimation function3 in the
A∗-search less informed. Thus more nodes are visited during the search before the path is found.
This should be kept in mind before choosing excessively high values for α.

As a result from this experiment, a value of 1.5 for α was used for the navigation system of the
robot.

3The cost estimation function used for the A∗-algorithm is the simple euclidean distance from the node to the

final node, plus the minimum rotational cost needed

30

2.5. Experiments

α 0 0.5 1 2 4 8

l 100 100.4 99.6 100.2 100.9 104.5

nr 100 82.3 69 62.2 56.4 46.1

φ̂ 100 80.7 68.3 61.2 63.9 74.7

d̄ 100 99.6 99.1 98.8 97.4 99.8

d̄t 100 107.3 113.7 108.4 109.4 120

dmin 100 98.5 98.9 98.4 94.8 94.8

dt,min 100 104.1 112 114 117.8 121.7

planning duration 100 215 305.4 498.7 735.3 951.4

Table 2.2.: Experimental results for planing with different αs

Figure 2.17.: Experimental results for planing with different αs

31

2. Path planning

2.6. Summary

In this chapter the path planning part of the navigation algorithm was introduced. There were
three central topics. At first, there was a description how obstacles have to be expanded if the
robot is shrunk to a point in the configuration space. Then there was a presentation of the
basic navigation algorithm used, namely the visibility graph method. At last, the algorithm for
navigating through a narrow passage was described. It is based on a search in a space grid with a
potential field. The field causes the search to prefer locations further away from obstacles. Both
planning methods are combined to generate well suited paths quickly. Another short section
showed how the expansion of obstacles is computed.

After all principles used for path planning have been laid out, there was a presentation of exper-
iments which have been conducted in order to decide which parameter settings suit the problem
best. Offline runs of the planning algorithm show that the generated paths are sensible and
the planning duration is within acceptable bounds. Thus the planning part of the navigational
algorithm seems to provide a good base for the further tasks remaining to be done.

The planning algorithms presented so far works on static data. The next step to do is to acquire
data from sensors about obstacle positions and to integrate this data into the planning algorithm.
Only with this live data a reliable navigation algorithm can be achieved when moveable, transient
obstacles or map inaccuracies are present.

32

Integrating sensory data 3
The path planning algorithm presented in the previous chapter works on static data. As already
stated before, the robot cannot rely only on static environment data. The reason is obvious. The
office environment is dynamic, and changes in the environment, like a moving human or a moved
object, must be reflected in the robot’s representation immediately. Therefore the robot must use
sensors to gather information from its environment and update its representation accordingly.

However, as will be pointed out in more detail in section 3.3, a static map of immobile objects
(like walls) is not useless at all. Therefore the planning system uses a mixture of static map
data and sensory data for the environment representation. The static map must be once created
by an operator an can be stored in a file for reuse. It contains only permanent obstacles, i.e.
obstacles which will never move or dissapear. A door is considered to be a moveable obstacle,
which can block the doorway. Therefore doors are not entered into the static map, only open
doorways are inserted instead. The sensors will sense the position of the door and the dynamic
environment representation will be updated accordingly.

The navigation system can make use of any sensory data, as long as there is a transformation
which maps the sensory data into a map of occupied and free space. In this work, laser range
finders and a pair of cameras were used as sensors. The main parameters for these sensors have
been presented in section 1.3.

This chapter explains the details that have to be considered when integrating sensory data into
the environment representation, with the main focus on laser range finder data.

3.1. Reacting to a changing environment

The basic approach how to handle a dynamic environment is the following: After a path to
the destination has been planned, the execution of this path starts. During the execution, the
data from sensors updates the environment representation. At the same time, the navigational
system periodically checks whether the planned path intersects with an obstacle. Of course the
path initially did not intersect with any obstacles. If it does at a later moment, this is caused
by some new or moved obstacle, which came into the planned path.

If such a situation is detected, the path execution stops immediately, and a new path is generated
from the current position to the destination, using the new environment data. Then the execution
of the new path begins, which is known not to intersect with any obstacles known at the time of
the planning. Thus the new path circumvents the new obstacle. Such an approach was pioneered
by [Zel92].

33

3. Integrating sensory data

There are more sophisticated approaches to the problem of replanning in the presence of a
dynamic environment, like the D∗-algorithm [Ste94, Ste95]. Their main advantages are less
computational costs of replanning. This is accomplished by not performing the entire planning
phase again. Instead, only small changes to the last planning result are made.

However, in the scenario evaluated by this work, the replanning phase is often hardly noticeable,
and only in awkward difficult situations the replanning phase takes longer than a few seconds.
This is in large part caused by the fast performing two stage approach. So there is not much
need to implement the sophisticated replanning methods, when the simple approach of starting
all over yields satisfactional results.

3.2. Integrating data from laser range finders

The main advantages of laser range finders are that they provide reliably accurate measurements
of the distances to obstacles surrounding the scanner. The measurements are done quickly and
can be repeated several times per second. They produce a comparatively small amount of data,
so not much filtering or postprocessing is needed. The data from one scan simply consists of 361
distance values.

All these properties would make the laser range finder an ideal sensor for obstacle detection, if
not for one decisive drawback. It performs the scan only in one plane, thus it inherently cannot
detect hanging objects and it has only a bad perception of certain objects like chairs or tables,
as it senses only the legs, but not its far more sizeable surface.

Although there are tiltable laser range finders which scan different planes subsequentially (as
used in [BWW03]), such a scanner is not available on the robot. Besides, this type of scan takes
much longer and generates much more data, which makes complex postprocessing necessary.

Still, the laser range finder can detect a lot of obstacles reliably, so it would be a waste not to
use this valuable data. The intention is to detect the remaining obstacles by the stereo cameras
(see chapter 4).

One scan can be seen as a set of points surrounding the scanner. For each point, the distance to
the scanner and the angle relative to the scanner are known. So the scan points are given in polar
coordinates relative to the scanner. Because the position of the robot in the world coordinate
system can be retrieved from the localization system, and the position of the scanner relative to
the robot is fixed and known, the coordinates of the scan points can be easily transformed to
world coordinates. This is necessary, because the map uses the world coordinate system.

It is worth to remind that the robot’s map is based on lines (see section 2.4). Although it
is technically possible to insert each point individually into the map as a zero sized line, the
computational cost of the planning algorithm depends on the number of obstacles. Thus it is
favorable to group a set of points together and insert them as one line. In fact, in a typical scan
there are a lot of points which form a line (like walls, doors, etc.). Thus the next transformation
step from the raw data is to perform a line extraction on the points from the scan.

There are a lot of different line extraction algorithms. A comparative overview is given in
[NMTS05]. One of the most popular line extraction algorithms is called split and merge. This

34

3.3. Obstacle memory

algorithm originates from the field of computer vision [PH74], and was then adopted to mobile
robotics [BA04]. The algorithm used for line extraction in this work is a variation of the split
and merge algorithm. Algorithm 1 outlines how it works.

First the set of points is approximated by a line stretching from the first point to the last. A line
error function calculates the total approximation error of the set of points being approximated
by the line. If the error is below the threshold σmax, the line is accepted as the approximation
of the set. In the opposite case, the set is split into two subsets at the point that has the
highest distance to the approximating line. Then the split function is called recursively on both
subsets. The union of the results of both recursive calls is then returned as the result of the line
extraction.

Algorithm 1: The split line extraction algorithm

Constant: σmax: Maximum line error
Function: split(P)
Input: P List of scanned points ordered by angle to laser range finder
Output: L : A set of lines

begin

start ←− 0
end←− P .size()
line←− new Line(P [start],P [end])
if line.error() < σmax then

L ←− {line}
else

Psplit ←− f ind most distant point(line,P)
isplit ←− P .indexo f (Psplit)
P le f t ←− P .sublist(start, isplit)
P right ←− P .sublist(isplit ,end)
L ←− split(P le f t)∪ split(P right)

endif

return L
end

σmax is an adjustable parameter. Set to high values, the algorithm will produce fewer and longer
lines, but the lines may deviate a lot from the original scan points. If the parameter is set to a
low value, the generated lines will be close to the original scan points, but they tend to be short
and many.

The extracted lines, given in world coordinates, can be inserted into the map without further
transformation. These lines are interpreted as new obstacles.

3.3. Obstacle memory

It is not enough only to add obstacles to the map. At some point they must be removed again.
Otherwise, more and more obstacles would be added to the map, thus slowing down the planner.

35

3. Integrating sensory data

Furthermore these obstacles would block positions which in fact are freed meanwhile. This would
happen when a moving obstacle is observed. All of its old positions would remain as obstacles
in the map. Finally, without clearing old obstacles, a memory overflow could occur.

Even in the case of a static environment and the robot not moving, more and more obstacles
could clutter up the map, if there was no provision to remove obstacles after some time. The
reason is, that there is no obstacle matching included in the mapping algorithm. Because of
sensor noise, the same obstacle might have slightly different appearances in subsequent scans.
Without scan matching, which could try to match the scanned obstacle with an obstacle from
previous scans, each differing scan is treated as a new obstacle. Thus one single obstacle in the
environment could produce a lot of obstacles in the representation.

As the approach presented in this works performs no kind of object recognition, there is no
way for the robot to distinguish temporary, movable obstacles (like humans or doors) from
permanent ones (like walls). This requires all sensed obstacles to be treated as temporary. Only
the obstacles entered into the static map are treated as permanent.

Several ways of removing obstacles are possible. One approach could be to remove all obstacles,
which according to the most recent scan cannot exist anymore, because the scan sees an object
behind the obstacle. Yet this approach doest not guarantee that all old obstacles are eventually
removed. An obstacle that was once detected, but cannot be seen from another position, could
remain in the map forever.

One method which guarantees that an obstacle is eventually cleared is to tag any new obstacle
with a timestamp, and remove any obstacle from the map which has a timestamp which is older
than a certain threshold.

This raises the question, which threshold to use. One could be tempted to use a very small
threshold, thus removing obstacles immediately upon the next scan. But during tests of the
navigational system, certain situations emerged, which suggested that it might be beneficial to
the system behavior if not only immediate sensor data was used for planning, but obstacles from
earlier scans were also considered.

The first such situation is, when a certain pattern in the scan repeats itself over a short time.
This might be caused by a periodically moving object or by sensor noise, which makes the
same obstacle appear at slightly different positions every time. In this situation it is sensible,
if the planning algorithm not only “knows” the most recent scan, but is also aware of obstacles
identified by previous scans. To achieve this, a threshold of a few seconds could be used. In
effect, the entire area where the mentioned movement takes place appears as blocked to the
planner.

While this situation does not occur often and might be glossed over, in another situation the
correct threshold is much more important. This is the situation when an obstacle that was
visible in a certain scan is not visible in subsequent scans, although the obstacle has not moved.
This might be caused by two reasons.

Firstly, as stated in section 1.3, there are two “blind areas”, where no scanning is possible due to
the characteristic of the scanners and their positions on the robot. If an medium sized obstacle
is inside the scan area, thus visible in the scan, and the robot performs a movement, the obstacle
might end up being inside the blind area and not visible any longer.

36

3.3. Obstacle memory

Figure 3.1.: Robot “trapped” between two obstacles

Secondly, in the case of two (or more) visible obstacles, one obstacle might “disappear” because
it is hidden behind the other obstacle after the robot performed some translational movement.

Both cases can lead to oscillations in behavior, when only immediate scan results are considered.
The robot might get caught trapped between two obstacles; figure 3.1 illustrates this situation.
The robot does not see obstacle b, therefore it plans a path trough the position of b. If it turns
to the right to execute the path, b becomes visible, but a dissappears. The planner detects the
potential collision with b, thus a new path is planned. Because now a is not visible anymore, a
path through a’s position is planned. The robot turns back left. Then the same situation as in
the beginning is reached, and the cycle can repeat again.

For the second case, consider figure 3.2. There are two doors to a room, but both of them
are closed. The robot has the task to enter the room. A wall between both doors blocks the
view, such that both doors cannot be observed at the same time. In this case, the robot would
endlessly move from one door to the other, always anticipating one of the doors is open, only
to detect it is closed when it stands in front of it. Yet at this position it cannot see the other
door, thus the other one is assumed to be open. When the robot reaches it, the cycle starts over
again.

This problem can be addressed to a certain extent by setting a higher threshold for removal
of obstacles which are not visible from the current position. The planning system checks if a
previously scanned obstacle is either within the blind spot or behind some other obstacle. If
this is the case, it will be removed only when a longer timespan has passed since last sensing
the obstacle (this timespan is presently set to 60 seconds).

This kind of remembering of obstacles which are not visible directly could be called short term
memory. While this technique breaks most of the usual oscillation situations, there are some

37

3. Integrating sensory data

Figure 3.2.: Robot oscillates between two doors

limitations. Consider the before mentioned examples of the room with two doors. It is con-
ceivable to create a situation where the distance between the two doors is long enough for the
robot to “forget” the closed state of the first door before it arrives at the second. Of course, the
threshold to forget an obstacle could be adjusted to fit the current environment, so that this
situation does not occur. But the threshold cannot be increased indefinitely, due to the reasons
laid out at the beginning of this section.

To handle such situations properly, other planning approaches must be used. Planners that make
use of learning or behavioral techniques could be used here. Higher level planners with different
types of memory and world knowledge could use object recognition to detect obstacles that are
crucial for path planning (like doors or elevators). In combination with a set of behaviors, either
pre-programmed or learned, the robot could start actions like opening doors or moving away
obstacles to reach its goals. These techniques are however still being research and at an early
stage of development. They are out of scope of this diploma thesis, but could be used in further
work.

With the problem of oscillations in mind, it becomes obvious why a static map of permanent
obstacles is a necessity. Consider an environment representation that does contain only obstacles
sensed by the sensors and does not contain any permanent data. Because previously sensed
obstacles that cannot be sensed anymore have to be removed eventually from the map, similar
situations like the before mentioned ones could occur. Such a situation is shown in figure 3.3.
The robot could move between rooms A and B, trying in vain to reach a third room C. Each
time the robot enters room A it would “forget” that there is a wall separating B from C, because
it can see only the walls colored red in the figure. Upon detection of the wall between A and
C it would go back to B, because it supposes that the shortest path to C is via B. But when it
arrives at B, the same problem occurs and the robot moves back to A.

38

3.3. Obstacle memory

Figure 3.3.: Robot oscillates between two rooms, because static map data is missing

With static map data, this type of oscillation occurs rarely. In contrast to the short term memory,
which contains recently sensed obstacles, this static information could be seen as a simple long
term memory.

This problem could also be solved by using a good mapping algorithm which remembers the
obstacles that the robot scanned over a long time. However, a good mapping algorithm would
require some kind of obstacle classification, because moveable obstacles need to be removed
quickly, and permanent obstacles should remain in the map over a long time. Because the
discrimination between temporary and permanent obstacles is impossible without some kind of
object recognition, which this approach lacks, such a solution is not appropriate for this work.

39

3. Integrating sensory data

40

Using stereo cameras 4
As has been already stated in section 3.2, the laser range finders are inherently incapable of
detecting certain obstacles. The question arises: Can another modality compensate for this
weakness? If so, both modalities combined could produce a more reliable representation of the
environment. As the robot possesses multiple cameras, including a pair of stereo cameras, these
might be used as the second modality. Stereo computer vision is nowadays a well established
field of research with many working applications. So the question to be examined for this part
of this thesis is: How can stereo vision be applied to gain additional information about the
environment to make the navigation system more robust and safe? To answer this question, the
process of generating depth information from stereo images must be understood.

This chapter will describe the process of computer stereo vision. At first, there will be an
introduction into stereo vision in humans and animals, which acts as inspiration for computer
stereo vision. Then the camera model is presented, which is a formalizing abstraction of the
image taking process. This model allows to make geometrical computations with the scene
shown in the picture. The camera model is closely bound up with the process of calibration,
which estimates unknown parameters of the camera model. This process will be explained in one
section of this chapter. After that, the geometrical coherence of a scene which is photographed
by two cameras will be explained. This allows to formulate equations, from which the depth of
a scene feature can be calculated. These calculations are based on disparity, the difference in
position of the same feature in the left and the right picture. The subsequent section will cover
how to detect disparities computationally. Finally, it will be shown why line segments in the
picture are chosen to find disparities, and how they can be extracted from images.

4.1. Natural stereo vision

The vision system in humans and many animals allows for a three dimensional perception of
the environment. The bearer of such a system sees the world not in a plane, but he can also
percept the approximate distance to an object. This capability is a considerable advantage for
predators, since they can attack their prey much more accurately, thus more successfully, if they
know the exact position in space of their prey relative to themselves. This advantage has led
to the gradual development of three dimensional vision in various species during the millions
of years of evolution, until the highly sophisticated vision systems of humans and some other
animals were reached.

Humans, and many animals, are capable of three dimensional vision in spite of the fact that all
visual information is gathered from a two dimensional retina. This means, that the information

41

4. Using stereo cameras

about the depth of an object must be somehow reconstructed by the visual system after capturing
the scene in the eye. A good reference for current knowlegde about the workings of natural vision
systems is [PCGK95].

There are varying degrees in the capability of depth perception in different species. Less de-
veloped animals, like insects, reptiles or fish, have little or no depth perception at all. Higher
developed animals have a certain degree of depth perception, but only a few species like cats,
some birds and primates seem to have visual capabilities similar to humans [HS01, PG75]. The
ability of three dimensional vision seems to have developed independently in birds and primates.

There are many ways how depth information can be acquired from flat images, including depth
perception by relative size of objects, overlay and shadowing. Animals which have a vision
system that uses this information have some depth perception. But what is unique to species
with best depth perception capabilities is the ability to generate depth information from the
differing images in the eyes. Because of the different positions of the eyes, light rays coming
from the same object do not hit the retinas in the same point. The difference is directly related
to the distance from the eyes to the object. The process of generating depth information from
two images taken at differing positions and orientations is called stereopsis, binocular vision or
stereo vision. Its geometry will be explained more detailed in section 4.4.

Binocular vision in nature requires eyes with parallel vision axes and a visual cortex able to
process the information. It seems that the development of binocular vision contributed heavily
to the growth of the visual cortex and the brain in general in primates [Bar98, Bar04]. This fact,
the late stage in evolution at which binocular vision was developed and the rather small number
of species who developed it at all point to the complexity of this capability. Of course some
species, e.g. herbivorous animals, have not much use for stereo vision. For humans however it
seems to have been one key ability necessary for the development of civilization because tool
making requires a good depth perception.

If the principles of the natural vision system are understood, the natural process of retrieving
depth information from planar images can be emulated by technology. Although stereopsis is
not the only means how the human vision system generates depth information, most computer
vision systems use it exclusively. This is true for all the works about robotic vision stated in
section 1.4.2. The reason is that the process of stereo vision is best understood and easiest
to implement compared to the other sources of depth information. Furthermore, this method
provides quantitative results while others often can only provide qualitative results (e.g. object
A is behind object B).

To state an example for another possible information source consider that humans know that
objects usually do not shrink or grow when they move. So when they see a small image of
an object, which is known to be otherwise much bigger, they will assume it is far away. Such
an approach however would be much more difficult to implement. It would require knowledge
or assumptions about the world and object recognition. Then different hypothesises about the
position of objects could be tested whether they are compatible with the world knowledge or
assumptions. In contrast, the principle behind stereo vision is only basic euclidean geometry.
For these reasons and because this approach has proved workable in many systems, preference
was given in this work for stereo vision above other visual methods.

42

4.2. The camera model

4.2. The camera model

A camera is a device which somehow controls the flow of light rays from a scene and guides the
light rays onto a light sensitive two dimensional medium, which can measure or record the flux.
Eyes would also be cameras by this definition, but in the following sections only artificial cameras
will be considered. In such cameras the flux measuring medium is usually flat, and is either a
light sensitive chemical substance (in traditional analog cameras) or a CCD1. To enhance its
image capturing capabilities, cameras also have lenses and mirrors, which refract and reflect the
light rays.

A mathematical model for a camera which contains all the effects of refraction, diffraction and
reflection in multiple lenses would be very complex and inconvenient to handle. Fortunately, for
most computer vision applications a simpler model is accurate enough. This is the so called pin-
hole camera model, which can be extended by an additional model of radial distortion occurring
in a lens. This model will be explained in the following.

This section will describe the camera model and the projection geometry. These two items are
indispensable for a good understanding of how an image is formed and what relationship exists
between the coordinates of the photographed scene and the coordinates of the image of the
scene. The notions in this chapter are chosen to be similar to those in the literature. For further
reading on this topic, consult [MSKS04] or [Sch05].

4.2.1. The pinhole model

The pinhole camera model consists of a point (the optical center) and an image plane. The image
plane is located behind the optical center in respect to the scene which is being photographed.
The photographic medium is located on the image plane. The camera is sealed, so that no
light rays, apart from those which pass through the optical center, can fall on the photographic
medium. The distance between the optical center and the image plane is the focal length f . The
line which is perpendicular to the image plane and passes through the optical center is called
optical axis. The origin of the image coordinate system is the intersection of the optical axis
and the image plane. This model is shown in figure 4.1.

Because we assume the light rays travel linear, simple euclidean geometry provides the properties
of the perspective transformation within this model. Equations 4.1 and 4.2 show the relation
between a point M = (x,y,z)T in the scene, and the corresponding projected point m = (v,u)T in
the photographic medium. The model can be seen as a linear mapping, or projection, from the
three dimensional scene space to the two dimensional image space. The mapping can also be
described with homogeneous coordinates (m̃, M̃) and a projection matrix P′ as in equation 4.3.

u = (− f · x/z) (4.1)

v = (− f · y/z) (4.2)

1A CCD is an array of light sensitive capacitors. The abbreviation stands for “Charge-coupled device”

43

4. Using stereo cameras

Figure 4.1.: The basic pinhole camera model

m̃ =

− f 0 0 0
0 − f 0 0
0 0 1 0

M̃ = P′M̃ (4.3)

4.2.2. Internal parameters

This very simple model can be extended to provide some more flexibility, more convenience and
more accuracy. First of all, with the basic pinhole model images are upside down, and the left
and the right sides are switched. It is more convenient to work with an equivalent model, where
the image plane is at the distance − f , i.e. the image plane is before the optical center. In this
case, the image is captured in the usual top-down and left-right orientation. This setup will be
used from now on. Equation 4.4 shows the corresponding projection matrix.

P′ =

f 0 0 0
0 f 0 0
0 0 1 0

 (4.4)

The coordinate system of the image has its origin usually in the top left corner, and the x
coordinates increase to the right, while the y coordinates increase in downward direction. The
photographic medium is not necessarily perfectly aligned, so the intersection of the optical axis
and the photographic medium can can lay anywhere in the the image plane. This intersection
is called the principal point. The coordinates of the principal point are C = (u0,v0)

T .

The coordinates in the scene are usually measured in a metric unit (like millimeters), whereas
the coordinates in the image are measured in pixel. We can use another transformation matrix

44

4.2. The camera model

Figure 4.2.: The basic pinhole camera model

H to perform unit scaling and the translation of the principal point. H is shown in equation 4.5
with the unit scale factors being ku and kv.

H =

ku 0 u0

0 kv v0

0 0 1

 (4.5)

This matrix is known as the internal transformation matrix. The model that combines the
pinhole camera model with a frontal image plane and internal unit transformation is shown in
figure 4.2. Equation 4.6 shows the resulting coordinate transformation.

sm̃ =

f ku 0 u0 0
0 f kv v0 0
0 0 1 0

M̃ = HP′M̃ = AM̃ (4.6)

4.2.3. External parameters

Until now it has been assumed that the coordinate system of the scene and the coordinate
system of the image are aligned, i.e. orientated in the same direction and that they have a
common origin. It is much more practical to use different coordinate systems, especially if the
camera can be moved or oriented freely. What is needed then is a euclidean transformation
which converts the scene coordinate system into the image coordinate system, and its inverse
transfromation converts in the opposite direction. Such a transformation consists of a rotation
and a translation. The matrix D in equation 4.7 describes such a transformation. It converts a

45

4. Using stereo cameras

vector M̃w of homogeneous scene coordinates into a vector M̃c of homogeneous image coordinates
(equation 4.8). D is called external transformation matrix. It should be noted that it has only
six degrees of freedom, because the ri j cannot be chosen arbitrarily, but they depend on three
rotation angles [GL96].

D = TR =

1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

r11 r12 r13 0
r21 r22 r23 0
r31 r32 r33 0
0 0 0 1

 =

r11 r12 r13 tx
r21 r22 r23 ty
r31 r32 r33 tz
0 0 0 1

 (4.7)

M̃c = DM̃w = [R∗ t]M̃w (4.8)

with R∗ =

r11 r12 r13

r21 r22 r23

r31 r32 r33

0 0 1

 , t =

tx
ty
tz
1

Now all of these transformations can be combined into one, as in equation 4.9, where m̃s is the
image point in sensor coordinates (pixels) [Sch05]. s is a scale factor which has not much meaning
because the coordinate vector in homogeneous representations can be multiplied arbitrarily, but
it still represents the same coordinate.

sm̃s = HP′[R∗ t]M̃w = ADM̃w = PM̃w (4.9)

Here P is the general projection matrix. It has ten degrees of freedom, six for the orientation
and position of the camera coordinate system, two for vertical and horizontal scaling (includes
the focal length), and two for the position of the principal point.

4.2.4. Radial distortion

The last extension to the basic pinhole camera model will be radial lens distortion. Optical
lenses often distort an image radially. This means the image magnification is not constant over
the image, but depends on the distance to the optical axis. As a result, straight lines do not
appear straight in the image (see figure 4.3).

The distortion function can be approximated by a polynomial (equation 4.10) [Tsa87], where the
κi are distortion parameters, md are the distorted and mu the undistorted image coordinates, and
rd =‖ md ‖. The approximation is usually good enough if only one second degree term is used.
This means that only κ1 will be used as distortion parameter. All other coefficients (κi, with
i ≥ 2) are set to 0. This restriction makes the model, especially the inversion of the distortion
function, much simpler.

mu = md(1+ κ1r2
d + κ2r4

d + . . .) (4.10)

46

4.2. The camera model

Figure 4.3.: Radial distortion
Undistorted left, barrel distortion middle, pincushion distortion right.

Figure taken from the Encyclopaedia Britannica, 1911 edition.

A more accurate model for radial distortion allows for the center of distortion to be anywhere on
the image plane [DF95]. It is shown in equation 4.11, with cd being the center of distortion. The
center of distortion is often the principal point. The same rationale for why the principal point
may be not in the exact center of the photographic medium, applies to the center of distortion.

mu = md +(md− cd)(κ1r2
d) (4.11)

Since radial lens distortion is a nonlinear process, it cannot be modelled with a matrix. Therefore
it cannot be integrated easily into the existing mathematical model. As a result, any image
obtained from the cameras must first be undistorted, i.e. another image must be computed from
the source image which “undoes” the distortion, before further image processing can proceed.

A simple way of undistorting an image could be done by calculating the undistorted coordinates
for each pixel in the distorted image using equation 4.10 (see algorithm 2). This approach is
called forward-mapping.

However, with this approach a problem arises due to the discrete character of the image. It may
happen that two neighboring pixels in the distorted image are transformed into pixels in the
undistorted image which are no neighbours anymore. Instead, there is then a small gap between
them, which will not be filled. These gaps will be present throughout the image, as can be seen
in figure 4.4, and they will severely hinder further image analysis.

To circumvent this a slightly modified approach can be employed [Sch05]. Instead of taking every
pixel position from the distorted image to compute the undistorted position, it is possible to
consider every pixel in the undistorted image, and compute the coordinates of its corresponding
pixel in the distorted image. This pixel is taken to fill the pixel in the undistorted image. This
makes sure that every pixel in the undistorted image is filled, as long as there is a corresponding
pixel within the distorted image’s bounds. Because the transformation follows the opposite
direction in this approach, it is called backward-mapping.

47

4. Using stereo cameras

Algorithm 2: Simple image undistortion algorithm

Function: undistortImage(Dist Image)
Input: Dist Image: The distorted Image
Output: Undist Image: The undistorted image

begin

Undist Image←− new Image
foreach (x,y) from Dist Image do

(xu,yu)←− undistort(x,y) // Equation 4.10
p←− Dist Image.getPixel(x,y)
Undist Image.setPixel(xu,yu, p)

endfch

return Undist Image
end

Figure 4.4.: Undistortion performed with forward mapping

48

4.3. Camera calibration

Now the coordinates of the corresponding distorted pixel may have a fractional part, meaning
that the source from the distorted image lies actually between two discrete pixels. This can be
addressed by bilinear interpolation of the data from the source’s four surrounding neighbours.

To calculate the distorted pixel positions it is necessary to invert equation 4.10, which is not
trivial since it involves the solving of a cubic [DF95].

This approach of backward-mapping can in fact be applied to any image transformation which
involves only a transformation of pixel coordinates. It will be used again for rectification in
section 4.5.

4.3. Camera calibration

In the previous section the pinhole camera model was introduced. Central to the model is the
projection matrix P (equation 4.9), which has ten degrees of freedom. Furthermore, the model
can be extended by a parameter for radial distortion, adding one additional degree of freedom.

For further scene analysis, especially for photogrammetry, it is necessary to determine all these
parameters. Only when the projection matrix is known, it is possible to calculate where a scene
point will appear on the picture. The same is true for the other direction, i.e. the question
“Given a pixel in the picture, what is the position and orientation of the light ray that produced
this pixel?” can only be answered if the projection matrix is known.

The process of determination of these parameters is called camera calibration. The Tsai-Method
[Tsa87] is one widespread method for calibration, although there are others [CT90, Rob96]. It
requires a number of points in the scene whose coordinates are known with respect to the scene
coordinate frame and the positions of the projections of these calibration points into the image.
One of the advantages of the Tsai-Method is that it allows for the calibration points to be
coplanar.

The Tsai-Method permforms an iterative error reduction to determine a set of parameters that
fits the data best. This is done in two steps. First, estimates of the parameters are obtained
by the linear least-squares method [LH95]. These estimates are used as staring values for a non
linear optimization which enforces model restrictions in the second step.

Usually calibration is performed on a calibration rig with a checkerboard pattern. For this
work however, a set of points in the scene has been marked with strips, with their coordinates
known in the world coordinate system (see figure 4.5). When using a calibration rig, the camera
parameters are obtained with respect to the rig’s coordinate frame. With the approach used,
the parameters are obtained with respect to the world coordinate frame, thus eliminating one
potential source of inaccuracy, namely the transformation of the rig’s coordinate frame into the
world coordinate frame.

These calibration points are identified in the image manually (i.e. by human action). This
seems acceptable, since calibration does not need to be performed repeatedly, but only when the
camera setup has been modified.

49

4. Using stereo cameras

Figure 4.5.: Calibration scene

4.4. Geometry of two parallel cameras

When a scene is photographed from two different positions, the differences between the images
can be used to infer information about the depth structure of the scene. Due to the difference
in the cameras’ positions a feature from the photographed scene is present at different image
coordinates in the two pictures. This can be easily observed from drawing 4.6. The distance
between the two image positions at which the same feature is pictured is called disparity. In
figure 4.6 this would be the distance between m1 and m2, with their coordinates given in their
respective image coordinate system.

To keep the geometric model simple, some restrictions on the cameras’ internal and external
parameters, their positions and orientations will be introduced. Firstly, the internal parameters
must be the same for both cameras. This can be (approximately) achieved by using two iden-
tical cameras. Secondly, both cameras must have the same orientation in respect to the scene
coordinate system. And finally, the cameras must be aligned in a manner that the position of
the second camera results from a translation of the first camera position along the x-axis of the
camera coordinate system. Such a set-up is called parallel axis stereo.

From these restrictions follows that there are seven degrees of freedom for the camera setup -
six for the position and orientation of one camera, and one for the distance of the two cameras.
The distance between the cameras2, is called baseline.

In practice it might be quite difficult to meet these restrictions. The cameras’ internal parameters
could differ in spite of both cameras being build equal. And without a rigid mount for the
cameras, it might also be difficult to align them perfectly. Nevertheless the simple geometric
model can be useful. As section 4.5 will show, there is a method for transforming two images

2to be more precise, the distance between the optical centres of the two cameras

50

4.4. Geometry of two parallel cameras

Figure 4.6.: Photographing a scene with two cameras

which were taken with arbitrary external and internal parameters, into images that were taken
with a camera set-up which meets the mentioned requirements.

The advantage of axis parallel stereo is twofold. Firstly, its geometry is very simple, which is
shown in figure 4.7. And secondly, it makes finding feature correspondences much easier because
all features are shifted between both images only in horizontal direction. Two corresponding
pixels always have the same y-coordinate. The problem of finding correspondences will be
addressed in section 4.6.

It is obvious that the size of the disparity depends directly on the depth of the underlying three
dimensional point. What is now needed is an equation that shows the relation between disparity
and depth. With such an equation it is possible to calculate the distance of a 3D-point, for
which a pair of corresponding image pixels is found, to the cameras. With this distance, and
the known camera position in the scene, it is possible to determine the three coordinates of the
point in the scene coordinate system.

According to [Sch05], the disparity δ is determined by equation 4.12.

δ = u1−u2 (4.12)

From figure 4.7 can be inferred with similar triangles that the ratio between ρ and f is the same
as the ratio between B and δ ·du, with du being a scale factor that translates the disparity, which
is measured in pixel, into the unit of the focal length (usually millimeters). This can be written
as in equations 4.13 and 4.14 [Sch05].

ρ
f

=
B

du ·δ
(4.13)

51

4. Using stereo cameras

Figure 4.7.: Axis parallel stereo setup (top view)
Drawing taken from [Sch05].

⇔ ρ =
B · f
du ·δ

(4.14)

With these equations it is easily possible to calculate the depth of a feature, for which two
corresponding pixels in the left and the right image have been identified if a parallel stereo setup
was used. Together with the external camera parameters, which describe the position and the
orientation of the camera, it is possible to determine the 3D coordinates of that feature.

4.5. Rectification

As mentioned before, a parallel stereo setup is often desirable, but at the same time sometimes
difficult to achieve. However, it is possible to transform the stereo pictures taken by an arbitrary
stereo setup into two new pictures, which look like they were taken with a parallel stereo setup.
This transformation is called rectification.

There are different approaches to rectification. [Har99] proposes an approach which does not
require knowledge of the cameras’ parameters (i.e. no calibration is needed). However, methods
that use the cameras’ parameters are much more simple. Since these parameters are needed
anyway in the stereo vision approach presented in this thesis, there are no objections to use such
a method. The rectification in this work has consequently followed the approach described in
[FTV00].

When a pair of images is rectified, the images are projected virtually onto a new image plane.
The new image planes are chosen as if they were the image planes of a parallel stereo setup.

52

4.6. Stereo correspondence analysis

The optical center of the old and the new image planes stays the same, so the transformation
between the image planes is a rotation around the optical center.

According to the camera model discussed in section 4.2, the projection equation for the left3

image is 4.15. The projection equation onto the new, virtual image plane is 4.16. The projec-
tion matrix Po = [Qo|qo] is obtained by calibration, and Pn = [Qn|qn] can be chosen within the
constrains stated above.

som̃o = PoM̃w (4.15)

snm̃n = PnM̃w (4.16)

Because the optical centres are the same for both images, m̃o and m̃w are at the same optical ray,
which connects M̃w and the optical center C1, thus equations 4.17 and then 4.18 are obtained.
The scale factor s in equation 4.18 can be ignored, because m̃n is a homogeneous coordinate
representation. Thus all required parts of the rectification transformation T = QnQ−1

o , are given
or can be computed easily.

C1 + soQ−1
o m̃o = C1 + snQ−1

n m̃n (4.17)

m̃n = sQnQ−1
o m̃o (4.18)

4.6. Stereo correspondence analysis

Section 4.4 described how to determine the three dimensional position of a feature from its
disparity, i.e. the distance between the positions of this feature in both pictures. However,
the disparity cannot be determined before the same feature is identified in both images. The
process of finding features in both images which show the same three dimensional structure is
called stereo correspondence analysis.

It has already been noted in the previous section (4.5), that rectification makes stereo correspon-
dence analysis much simpler, because corresponding features must have the same y-coordinate
in both images. Therefore, the search space for the corresponding feature in the other image can
be limited to one line. Still, stereo correspondence analysis remains a complex and error prone
task.

In general there is no guarantee that a feature from the left image will have a corresponding
feature in the right. The other feature might not be included in the right image, because it is
out of scope of the right image (this often happens to features near the left border of the left
image). Furthermore, the different camera positions make it possible that a feature visible in
the left image is is concealed by some other object in the right image. Finally, a feature might
look very different from the other perspective so that it is very difficult to identify it as the same
structure.

3The steps needed for the rectification of the right image are the same, therefore it will be omitted

53

4. Using stereo cameras

These problems tend to increase when the baseline of the camera setup is increased. But a
large baseline is otherwise desirable because it makes the results of stereometry more exact. In
this work, however, there was no possibility to test the results of different baselines because the
camera mount had no provision to change the baseline. Thus, the baseline was fixed to approx-
imately 12 cm, which seems to be a fairly reasonable choice for the assigned task. In [Joc06],
different baselines in are tested with a different camera setup. These results support the claim,
that 12 cm is a reasonable baseline for stereometry in the range from 1 to 10 meters.

On the other hand, it is possible that there is a feature in the left image, for which the cor-
respondence analysis algorithm finds more than one corresponding feature in the right image,
and cannot determine which one is the “real” correspondence because all seem equally good.
The algorithm might also choose the wrong one because the correct correspondence could have
been distorted by noise or it looks differently due to geometrical effects. Such ambiguous corre-
spondences occur often when there are periodic structures in the image, areas without structure
or when the images have much noise. They can lead to wrongly identified correspondences
(miscorrespondences).

Stereo correspondence analysis can be performed at different semantic levels. At the lowest level
corresponding pixels are considered, i.e. for each pixel in the left image a corresponding pixel in
the right image is searched for and vice versa. At the higher levels more complex features are
considered, starting from corners, over line segments, contours, regions, up to entire objects. Of
course these features are exemplary, and other features may also be considered.

The choice of the level has great impact on the speed, error rate, information amount and
correspondence ambiguity. At higher semantic levels, the correspondence analysis is performed
faster and more reliably, because there a fewer features, thus fewer potential matches, and the
features are more complex, so ambiguities are less likely to occur. However, these higher level
features must first be extracted from the original image, which can be time consuming and error
prone. Therefore, higher level feature correspondence analysis is not automatically faster and
more reliable than correspondence analysis with lower level features.

Another downside of high level analysis is that because there are less features, there will be
less depth information gained from the process, because depth information is only generated for
corresponding features. Whereas in pixel based analysis depth information can be ideally gained
for each pixel in the image, in object based analysis there will be depth information only for the
few detected objects (or none if no object is detected at all).

Pixel based analysis seemed to produce too many miscorrespondences [Joc06] when used for
this thesis. There is the danger that singular miscorrespondences and the resulting wrong depth
information would clutter up the map with points (i.e. obstacles) at random positions. It could
be difficult to filter them out, so this approach was discarded.

Instead, line based analysis seemed to be a much more workable approach. Lines segments are
not too difficult to detect, as will be shown in 4.7, and with line segments miscorrespondences
seem very unlikely. They should provide sufficient information, because in an office environment,
obstacles nearly always feature at least some straight edges which can be detected. In other
settings, however, straight edges are much less common. A robot navigating in a wilderness (i.e.
forest, desert, meadows, etc.) would face difficulties in finding edges. For this reasons, it was
decided to use line segment based analysis in this thesis.

54

4.7. Line segment extraction and processing

4.7. Line segment extraction and processing

This section will describe how to detect line segments in images and how to match corresponding
line segments from a pair of stereo images.

The detection of line segments is done in a three stage process. These stages will be described in
detail in the following sub-sections. Firstly, an edge detection operator is applied to the image
(4.7.1). Then, a Hough transform is performed on the resulting image (4.7.2), which can detect
the main lines in an image. The last step is to divide the obtained lines into segments (4.7.3),
by comparing the lines with the edge image.

The last subsection (4.7.4) will outline the methods that can be used to detect corresponding
line segments from pairs of stereo images.

4.7.1. Edge detection

Within an image boundaries of objects often feature sharp changes in luminous intensity. This
is because one object usually hides another region which differs in colour, texture, lighting, etc.
As man made objects often feature linear boundaries, one can observe such luminous intensity
changes along a line segment. The task of edge detection is to find those pixels in an image
which have great changes in intensity compared to their neighbours.

Of course not every edge must necessarily be a boundary of an object as it can also be caused
for many other reasons, e.g. a change of the object’s surface structure or a shadow. However,
this does not matter in this case as any detected edges should point to the presence of an object,
and the aim is to find objects and measure their position.

Most methods for edge detection have one thing in common: They consider the first or second
order derivate of the image to find regions with sharp intensity changes. Because an image
is a two dimensional structure, the intensity change at any pixel depends on the direction of
the change. The various methods for edge detection, like the Prewitt [GW03], Sobel [GW03],
Laplace [MH80], Kirsch [Kir71], Roberts [Rob65] or Canny [Can86] operators, differ mostly in
how they handle the direction of the intensity change (gradient). Whereas some operators, like
Prewitt or Sobel are sensitive to a intensity change only in either vertical or horizontal direction,
more sophisticated edge detection algorithms like the Canny Algorithm are independent of the
gradient’s direction.

For this thesis the Laplace-Operator was chosen because it provides independence of the gra-
dient’s direction and it is easy to implement. No systematic research was made as to which
operator would provide the best results, because it seems not likely that other edge detection
algorithms would improve the overall process significantly.

The Laplace-Operator is a convolution of the image matrix with a kernel, which represents a
discrete approximation of a Laplacian of a Gaussian (LoG, see table 4.1). The LoG is shown in
equation 4.19 with σ being the standard deviation, and figure 4.8 shows an exemplary graph.
The kernel function is radially symmetric; therefore the direction of the image gradient does not
influence the result.

55

4. Using stereo cameras

Figure 4.8.: The Laplacian of a Gaussian

-0.27 0.39 0.65 0.39 -0.27

0.39 0.52 -0.69 0.52 0.39

0.65 -0.69 -4 -0.69 0.65

0.39 0.52 -0.69 0.52 0.39

-0.27 0.39 0.65 0.39 -0.27

Table 4.1.: The convolution kernel, a discrete approximation of the Laplacian of a Gaussian

LoG(x,y) =−
1

πσ4

(
1−

x2 + y2

2σ2

)
e−

x2+y2

2σ2 (4.19)

The result of the application of the Laplace-Operator is a derivate of the original image. Regions
of high intensity change (i.e. edges) are now easily identifiable. They have high pixel values,
while all other areas have low values.

Figure 4.9 shows a typical scene in the robot laboratory. In figure 4.10, the result of the
application of the Laplace-Operator on this image is shown4.

4The image is actually inverted only to increase its visibility

56

4.7. Line segment extraction and processing

Figure 4.9.: The original chair scene

Figure 4.10.: The chair scene after edge detection

57

4. Using stereo cameras

4.7.2. Hough transform

The edge detection only highlighted those pixels which are in a region of sharp intensity changes.
What is needed to be done now is to group these pixels into line segments. This means that
groups of edge pixels that can be approximated by a line segment have to be identified and the
parameters of the line segment have to be determined. This can be accomplished with the help
of the Hough transfrom [Hou62].

The Hough transfrom in general is able to detect features of a particular shape in images. This
section will be limited to the ability of the Hough transform to detect straight lines.

For reasons which will become apparent later the Hough transform requires a parametric descrip-
tion of the lines. In the original presentation of the Hough transform [Hou62] the very common
paramertic description of a line as in equation 4.20 is used. When values are assigned to the
parameters a and b, the resulting line is the set of all points P = (x,y), which fulfill equation 4.20.
However, this representation is not a very convenient choice, because vertical lines cannot be
represented with this description5. This in turn causes problems in the implementation of the
Hough transform.

y = ax+ b (4.20)

Therefore, a different parametrical description will be used here, which is called Hesse normal
form. It is shown in equation 4.21, with the parameters being r and θ.

xcosθ+ ysinθ = r (4.21)

With this parametrical description, r is the length of the normal from the origin of the coordinate
system to the line, and θ is the angle between this normal and the x-Axis. This geometric
interpretation is shown in figure 4.11. With the Hesse normal form θ is in [0;2π] and the lower
bound of r is 0 while the upper bound is determined by the image size. The usage of the Hesse
normal form with the Hough transform was introduced by [DH72].

For each edge point P its image coordinates are known, but what is unknown are the parameters
of the line that passes through this point. A unlimited number of lines could pass through this
point. The Hough transform now marks all possible combinations of (θ,r) (i.e. all possible lines
through P) in the parameter space. They form a sinusoidal curve in this space.

This point-to-curve transform is now performed for all edge points, each one generating a different
curve in the parameter space (Hough space). Points that are collinear in the image space generate
curves in the parameter space which intersect in one common point. This follows directly from
the presumption that they are collinear, therefore there must be one line common to all of
these points. This line has a certain parametrical description (θ,r), and all the curves from the
different points must contain this point.

The Hough transform can be implemented in a computer with an accumulator matrix. The
parameter space is discretized into many buckets for each parameter. For each edge point, the

5As a line approaches vertical orientation, a approaches infinity

58

4.7. Line segment extraction and processing

Figure 4.11.: The Hesse normal form

parameter space curve is calculated and the accumulator value of each bucket the curve passes
through is increased. After this has been repeated for each significant edge point, the edge points
of a common line have caused many accumulator increases in a common bucket. This is the
bucket that represents the intersection of the parameter curves from the edge points. Now the
buckets with the highest values in the matrix describe the most significant straight lines in the
image.

4.7.3. Line segmentation

The Hough transform, as described in the previous section, provides information about the
position and orientation of lines in the image. It does not provide the information where line
segments begin and where they end. But together with the edge filtered image this is easy to
determine.

Line segments are part of the lines obtained by the Hough transform. Therefore the image can
be scanned along such a line while testing if a particular pixel is part of a line segment or not.
A simple way to do this is to test the pixel’s intensity. If the intensity value pixel exceeds a
certain threshold, a start of a segment is assumed. If it falls below the threshold, the end of the
segment is reached.

This simple algorithm can be modified to make it more robust against noise although the edge
filtered image is already noise reduced. Modifications can include two different thresholds for the
start and the end of a segment, making the choice dependent of the last few pixels, or varying
the threshold depending on the last pixel values.

Figure 4.12 shows the chair scene after the hough transform has been applied and the lines have
been divided into segments as described above.

59

4. Using stereo cameras

Figure 4.12.: The chair scene after Hough transform

4.7.4. Line segment matching

Section 4.6 stated the problems of stereo matching in general. This section will discuss how
matching of line segments in particular can be performed.

Although rectification aligns pixels in both the left and the right image onto the same y-
coordinate, corresponding line segments might have different y-coordinates at the start and
the end anyway. The reason for this is, that the differences in the stereo image pair, which are
caused by the different perspectives of the cameras, may have impact on the each processing
stage (edge detection, hough transform, line segmentation).

For example, an object might occlude a pattered background. Then, the colour transition on
the edge between the object and the background might be different on both images, due to the
different perspectives. As a result, the edge is more intense in the left image than in the right,
and therefore a longer line segment might be obtained from the left image than from the right.

This example shows that it cannot be taken for granted that corresponding line segments have
the same y-coordinates. However, the difference in y-coordinates cannot become arbitrarily high,
therefore a windowed search for corresponding segments is reasonable.

A common technique to decide whether two samples are similar is the use of the normalized
feature vector distance. This means that several features of the samples are to be extracted and
quantified. These feature values are then normalized and stored together in a feature vector.
For each sample such a feature vector is calculated. The distance of the feature vectors of the
various samples then is a measure of how similar the samples are.

60

4.8. Summary

If this technique is to be applied to compare line segments, following features can be used:

• The length of a segment

• The orientation of a segment

• The distance form the origin to the center of the segment

• The orientation of the vector from the origin to the center of the segment

• The (average) intensities left and right to the line segment in the image.

A problem arises with the use of orientations as a segment feature. Due to the periodic nature
of angles, the quantification of the orientation should receive special attention. Otherwise a 1◦

orientation and a 359◦ orientation would cause a huge feature vector distance, where in fact the
segments are very similar. Therefore a special provision must be made when calculating the
feature vector distance, so that the difference of two angles cannot exceed 180◦.

4.8. Summary

This chapter explained the many steps necessary to obtain depth information from stereo images.
It began with a brief overview of the development and mode of operation of natural stereo
vision. Then the camera model for artificial cameras was introduced and camera calibration
was described, which estimates the parameters for the camera model. The geometry of the
stereo setup was explained in the next section. With this geometrical model it is possible to
establish the numerical relashionship between disparity and distance. Provided that there is
exact calibration data, rectification allows to transform arbitrary images into images from a
virtual parallel stereo setup, which simplifies the subsequent evaluation stages. To determine
disparities, corresponding pairs of features have to be found in the stereo images. The last
section explained how line segment features are extracted from images, and how the search for
corresponding features can be achieved.

With this knowledge it is possible to implement a stereometry system which is able to detect
obstacles and measure their distance to the cameras. The next chapter will elaborate on which
problems arose during this implementation and what results have been achieved in conjunction
with the navigational system.

61

4. Using stereo cameras

62

Results and conclusion 5
5.1. Planning and movement

Many experimental tests of the planning algorithm with the robot have shown that the algorithm
proves to be a robust and performant basis to the navigational system. Under many different
conditions, the planing algorithm generated safe paths. Only in a few cases, in the presence of
passages with only few centimeters of space to manoeuvre, the algorithm failed to produce a
path. But to master these situations is only a question of parameters. With a higher resolution,
which of course would increase planning time, a path would have been found.

The data from the laser range finders enables to robot to react to changes in the environment and
to handle unforeseen situations (as a blocked doorway). Many test drives have been conducted
with the robot, and the robot was able to navigate through various sets of obstacles, doorways
and walking people without colliding. Initial problems with obstacles that get outside the visible
area, as described in section 3.3 were alleviated by remembering obstacle positions over a period
of time.

The planning algorithm has proved to be fast enough. Most of the time, a stop of motion to
perform planning was hardly noticeable. Longer planning phases occurred rarely, and were in
the order of a few seconds.

One downside of the algorithm is, that movements in narrow passages sometimes still are a bit
erratic. This means, the robot moves a little step forward, then makes a turn, then the next step
and so on. Although measures have been taken to avoid this, as stated in section 2.3.2 and 2.5,
this behavior cannot eliminated completetely, because the software responsible of controlling
the robot’s drive limits movements to straight translations or rotations. This has no grave
consequences, it only slows down the movement and looks a bit awkward. A control software
that enables the robot to follow curves, e.g. B-splines, could be used to avoid such behaviour.

Another aspect that could be improved is the classification and memory of obstacles, as pointed
out in section 3.3. With object recognition, the planner could make a better estimate whether
an obstacle has rather a permanent or a temporary character. Planners that can resort to world
knowledge, behaviors, and learning possibly could manage much more complex environments,
than the office scenario. But these techniques are part of a broad field of research that still
requires much investigation.

However, the limitations of this planning approach do not pose major problems in practice.
Situations in which these limitations surface occur very rarely in the given scenario, thus the
results achieved by these parts of the navigational system were entirely satisfactory.

63

5. Results and conclusion

5.2. Obstacle sensing and stereometry

The laser range finders provided data which resulted in an accurate representation of the envi-
ronment. Therefore many obstacles can be detected by the navigational system and a new path
around them can be planned. However, there remains the principal uncapability of the laser
range finders to detect some obstacles reliably like tables or hanging objects. The stereo vision
approach was assigned to resolve this problem.

Stereo vision is a much more complex task than reading and interpreting data from the laser
range finders. Many stages of generating and processing data are involved, which have been
explained in chapter 4. Unfortunately, in the initial step a problem has occurred, which led to
a poor quality of the stereometry results.

Stereometry needs very exact calibration data, and especially the external camera parameters
have a major impact on the results. From simple comparative analysis of the stereo images and
the generated calibration data could be concluded that the camera model parameters, calculated
by camera calibration (see 4.3), were not accurate enough.

The estimated camera orientation differed from the real orientation for only about one or two
degrees. This in turn leads to wrong rectification and errors in the disparities of a few pixels.
This may sound not much, but disparity values in this setup for objects that are a 2 meters
away are in the order of 30 pixels1, so a few pixels make a big difference.

An example for this inaccuracy is given in figure 5.1. It shows a rectified stereo image pair.
The disparity of the white cross mark on the floor close to the bottom of the chair is 25 pixels,
which translates to a depth distance of 3.83 meters, but the real distance is only 3 meters. Such
levels of accuracy error are too large for useful obstacle distance measurement. Therefore the
integration of depth information from stereo cameras had to be postponed until the reasons for
the inaccurate calibration data has been identified and eliminated.

Possible factors that may contribute to the inaccuracy of the camera calibration include:

• Inexact placement or measurement of the calibration marks.

• Poor image quality (The right camera always produces slightly blurred images, as can be
seen in figure 5.1).

• Poor working of the camera. If the placement of the CCD sensor is not exactly orthogonal
to the optical axis, the camera model does not fit, and therefore many assumption made
during image processing do not hold.

In a further work this problem could be investigated. It could try to reduce the inaccuracies
by using another calibration setup, a different camera, a larger baseline or another calibration
method. Once this problem is overcome, the results from the stereometry can be integrated into
the navigation system. This would make it possible to verify whether this approach is able to
detect obstacles reliably in an office environment. If so, this would make the navigation system
more robust, as more obstacles could be detected reliably.

1The image size is 640*480 pixels

64

5.2. Obstacle sensing and stereometry

Figure 5.1.: A stereo image pair

65

5. Results and conclusion

66

Bibliography

[AH83] J. R. Andrews and Neville Hogan. Impedance control as a framework for implement-
ing obstacle avoidance in a manipulator. American society of mechanical engineers
winter conference, pages 243–251, November 1983. Reprinted in: Control of Manu-
facturing Processes and Robotic Systems, editors David E. Hardt & Wayne J. Book,
American society of mechanical engineers.

[BA04] Geovany Araujo Borges and Marie-José Aldon. Line extraction in 2D range images
for mobile robotics. Journal of Intelligent Robotics Systems, 40(3):267–297, 2004.

[Bar98] Robert A. Barton. Visual specialization and brain evolution in primates. Proceedings
of the Royal Society B: Biological Sciences, 265(1409):1933–1937, October 1998.
http://www.journals.royalsoc.ac.uk/link.asp?id=mylye2x05ynrem5x.

[Bar04] Robert A. Barton. Binocularity and brain evolution in primates. Proceedings of
the National Academy of Sciences of the United States of America, 101(27):10113–
10115, July 2004. http://www.pnas.org/cgi/reprint/101/27/10113.pdf.

[BWW03] Christian Brenneke, Oliver Wulf, and Bernardo Wagner. Using 3D laser range data
for SLAM in outdoor environments. In Proceedings of the 2003 IEEE International
Conference on Intelligent Robots and Systems, pages 188–194, 2003.

[Can86] John F. Canny. A computational approach to edge detection. IEEE Transaction
on Pattern Analysis and Machine Intelligence, 8(6):679–698, 1986.

[CLH+05] Howie Choset, Kevin M. Lynch, Seth Hutchington, et al. Principles of Robot Motion.
The MIT Press, 2005.

[CT90] B. Caprile and V. Torre. Using vanishing points for camera calibration. International
Journal of Computer Vision, 4(2):127–140, 1990.

[DF95] Frédéric Devernay and Olivier Faugeras. Automatic calibration and removal of
distortion from scenes of structured environments. In Proceedings of the SPIE
Conference on Investigative and Trial Image Processing, volume 2567, San Diego,
California, USA, July 1995. ftp://ftp-sop.inria.fr/robotvis/html/Papers/

devernay-faugeras%3A95b.ps.gz.

[DH72] Richard O. Duda and Peter E. Hart. Use of the Hough transformation to detect
lines and curves in pictures. Communications of the ACM, 15(1):11–15, 1972.

67

Bibliography

[Elf89] Alberto Elfes. Using occupancy grids for mobile robot perception and naviga-
tion. Computer, 22(6):46–57, June 1989. http://eavr.u-strasbg.fr/~bernard/

education/ensps_3a/tmp/elfes.pdf.

[FTV00] Andrea Fusiello, Emanuele Trucco, and Alessandro Verri. A compact algorithm for
rectification of stereo pairs. Machine Vision and Applications, 12:16–22, 2000.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, 3rd edition, October 1996.

[GW03] Rafael C. Gonzales and Richard E. Woods. Digital Image Processing. Prentice Hall,
2003.

[Har99] Richard I. Hartley. Theory and practice of projective rectification. International
Journal of Computer Vision, 35(2):115–127, 1999. http://users.rsise.anu.edu.
au/~hartley/Papers/joint-epipolar/journal/joint3.pdf.

[HNR68] Peter E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic
determination of minimum cost paths in graphs. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, July 1968.

[Hou62] Paul Hough. Methods and means for recognising complex patterns. United States
Patent 3,069,654, Dec 1962.

[HS01] Scott Husband and Toru Shimizu. Evolution of the avian visual system. In Robert G.
Cook, editor, Avian visual cognition, Tufts University, 2001. Comparative Cognition
Press. http://www.pigeon.psy.tufts.edu/avc/husband/.

[HW86] John E. Hopcroft and Gordon T. Wilfong. Reducing multiple object motion plan-
ning to graph searching. Society for Industrial and Applied Mathematics Journal
on Computing, 15(3):768–785, 1986.

[HY04] Yanrong Hu and Simon X. Yang. A knowledge based genetic algorithm for path
planning of a mobile robot. In Proceedings of the 2004 IEEE International Confer-
ence on Robotics and Automation, pages 4350–4355, 2004.

[Jar73] R. A. Jarvis. On the identification of the convex hull of a finite set of points in the
plane. Information Processing Letters, 2:18–22, 1973.

[Joc06] Sascha Jockel. 3-dimensionale Rekonstruktion einer Tischszene aus monokularen
Handkamera-Bildsequenzen im Kontext autonomer Serviceroboter. Master’s thesis,
Hamburg University, Faculty of Informatics, TAMS research group, Hamburg, Ger-
many, 2006. http://tams-www.informatik.uni-hamburg.de/personal/jockel/

papers/Jockel06Diplomarbeit.pdf.

[Kal60] Rudolph Kalman. A new approach to linear filtering and prediction problems.
Journal of Basic Engineering, 82:35–45, 1960.

[Kha86] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In-
ternational Journal of Robotics Research, 5(1):90–98, 1986.

68

Bibliography

[Kir71] R. A. Kirsch. Computer determination of the constituent structure of biological
images. Computer Biomedical Research, 4(3):315–328, June 1971.

[KM04] M. Kazemi and M. Mehrandezh. Robotic navigation using harmonic function-based
probabilistic roadmaps. In Proceedings of the 2004 IEEE International Conference
on Robotics and Automation, pages 4765–4770, 2004.

[LA92] Y. Liu and S. Arimoto. Path planning using a tangent graph for mobile robots
among polygonal and curved obstacles. International Journal of Robotics and Re-
search, 11(4):376–382, 1992.

[Lat98] Jean-Claude Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, USA, 5th printed edition, 1998.

[LGB02] Jean-Claude Latombe and Héctor H. González-Baños. Navigation strategies for ex-
ploring indoor environments. International Journal of Robotics Research, 21:829–
848, October-November 2002. http://ai.stanford.edu/~latombe/papers/

ijrr-hhg/paper.pdf.

[LH95] Charles L. Lawson and Richard J. Hanson. Solving Least Squares Problems. Society
for Industrial & Applied Mathematics, September 1995.

[Lin04] Frank Lingelbach. Path planning using probabilistic cell decomposition. In Pro-
ceedings of the 2004 IEEE International Conference on Robotics and Automation,
pages 467–472, 2004.

[LPW79] T. Lozano-Perez and M. Wesley. An algorithm for planning collision-free paths
among polyhedral obstacles. Communications of the ACM, 22(10):560–570, October
1979. http://www1.cs.columbia.edu/~allen/F05/vgraph.lozano.pdf.

[ME85] Hans P. Moravec and Alberto E. Elves. High resolution maps from wide angle sonar.
In Proceedings of the 1985 IEEE International Conference on Robotics and Automa-
tion, pages 116–121, St. Louis, Missouri, USA, March 1985. http://www.ri.cmu.

edu/pub_files/pub4/moravec_hans_1985_1/moravec_hans_1985_1.pdf.

[MH80] David Marr and E.C. Hildreth. Theory of edge detection. Proceedings of the Royal
Society of London, B-207(1167):187–217, 1980.

[MJ97] Don Murray and Cullen Jennings. Stereo vision based mapping and navigation
for mobile robots. In Proceedings of the 1997 IEEE International Conference on
Robotics and Automation, pages 1694–1699, 1997.

[MSKS04] Yi Ma, Steffano Soatto, Jana Košecká, and S. Shankar Sastry. An Invitation to 3-D
Vision. Springer, 2004.

[NMTS05] Viet Nguyen, Agostino Martinelli, Nicola Tomatis, and Roland Siegwart. A com-
parison of line extraction algorithms using 2D laser rangefinder for indoor mobile
robotics. In Proceedings of the IEEE/RSJ Intenational Conference on Intelligent
Robots and Systems, IROS. IEEE, 2005. http://asl.epfl.ch/aslInternalWeb/

ASL/publications/uploadedFiles/nguyen_2005_a_comparison_of.pdf.

69

Bibliography

[NN04] Hiroshi Noborio and Ryo Nogami. A new sensor-based path-planning algorith whose
path length is shorter on the avarage. In Proceedings of the 2004 IEEE International
Conference on Robotics and Automation, pages 2832–2839, 2004.

[OF05] Guiseppe Oriolo and Luigi Freda. Frontier-based probablistic strategies for sensor-
based exploration. In Proceedings of the 2005 IEEE International Conference on
Robotics and Automation, pages 3892–3898, 2005.

[OVFT04] Guiseppe Oriolo, Marilena Vendittelli, Luigi Freda, and Giulio Troso. The srt
method: Randomized strategies for exploration. In Proceedings of the 2004 IEEE
International Conference on Robotics and Automation, pages 4688–4694, 2004.

[PCGK95] Thomas V. Papathomas, Charles Chubb, Andrei Gorea, and Eileen Kowler. Early
Vision and Beyond. Bradford Book, 1995.

[PG75] J. Packwood and B. Gordon. Stereopsis in normal domestic cat, siamese cat, and
cat raised with alternating monocular occlusion. Journal of Neurophysiolgy, 38,
1975.

[PH74] T. Pavlidis and S. L. Horowitz. Segmentation of plane curves. IEEE Transactions
on Computers, c23(6):860–870, 1974.

[Rob65] Lawrence G. Roberts. Machine perception of three-dimensional solids. In James T.
Tippett, editor, Optical and Electro-optical Information Processing, pages 159–
197, Cambridge, MA, USA, 1965. MIT Press. http://www.packet.cc/files/

mach-per-3D-solids.html.

[Rob96] Luc Robert. Camera calibration without feature extraction. Computer Vision Image
Understanding, 63(2):314–325, 1996.

[Sch05] Oliver Schreer. Stereoanalyse und Bildsynthese. Springer, 2005.

[SE04] Juan Manuel Sáez and Francisco Escolano. A global 3D map-building approach
using stereo vision. In Proceedings of the 2004 IEEE International Conference on
Robotics and Automation, pages 1197–1202, 2004.

[SFG+04] Kohtaro Sabe, Masaki Fukuchi, Jens-Steffen Gutmann, et al. Obstacle avoidance
and path planning for humanoid robots using stereo vision. In Proceedings of the
2004 IEEE International Conference on Robotics and Automation, pages 592–597,
2004.

[Ste94] Anthony Stentz. Optimal and efficient path planning for partially-known envi-
ronments. In Proceedings of the 1994 IEEE International Conference on Robotics
and Automation, pages 3310–3317, 1994. http://www.frc.ri.cmu.edu/~axs/doc/
icra94.pdf.

[Ste95] Anthony Stentz. The focussed D∗ algorithm for real-time replanning. In Proceedings
of the International Joint Conference on Artificial Intelligence, pages 1652–1659,
August 1995. http://www.frc.ri.cmu.edu/~axs/doc/ijcai95.pdf.

70

Bibliography

[SW02] Axel Schneider and Daniel Westhoff. Autonomous navigation and control
of a mobile robot in a cell culture laboratory. Master’s thesis, Univer-
sity of Bielefeld, Faculty of Technology, Technical Computer Science, Biele-
feld, Germany, 2002. http://tams-www.informatik.uni-hamburg.de/personal/
westhoff/publikationen/diploma_thesis.pdf.

[Tsa87] Roger Y. Tsai. A versatile camera calibration technique for high-accuracy 3D ma-
chine vision metrology using off-the-shelf TV cameras and lenses. IEEE Journal of
Robotics and Automation, 3(4):323–344, 1987. http://www.vision.caltech.edu/
bouguetj/calib_doc/papers/Tsai.pdf.

[VVB05] Robert Vogl, Markus Vincze, and Georg Biegelbauer. Finding tables for home
service tasks and safe mobile robot navigation. In Proceedings of the 2005 IEEE
International Conference on Robotics and Automation, pages 3046–3051, 2005.

[WACW04] Oliver Wulf, Kai O. Arras, Henrik I. Christensen, and Bernardo Wagner. 2D map-
ping of cluttered indoor environments by means of 3D perception. In Proceedings
of the 2004 IEEE International Conference on Robotics and Automation, pages
4204–4209, 2004.

[WSS+04] Daniel Westhoff, Hagen Stanek, T. Scherer, et al. A flexible framework for taks-
oriented programming of service robots. In Robotik 2004, volume 1841, Munich,
Germany, 2004. VDI/VDE-Gesellschaft Mess- und Automatisierungstechnik, VDI
Berichte. http://tams-www.informatik.uni-hamburg.de/personal/westhoff/

publikationen/robotik2004.pdf.

[Zel92] Alexander Zelinsky. A mobile robot navigation exploration algorithm. IEEE
Transactions of Robotics and Automation, 8(6):707–717, December 1992. http:

//users.rsise.anu.edu.au/~rsl/rsl_papers/IEEE.ps.

71

Bibliography

72

Experimental planning tasks A
The experiments described in section 2.5 are based on seven different planning tasks. The
following figures show the maps with obstacles (black) on which the planing tasks were performed
as well as the specified starting and ending location. The path (blue) shown between these
locations is only for illustration. In every experiment the generated path is a different one,
because the parameters of the planning algorithm were changed.

73

A. Experimental planning tasks

Figure A.1.: Planning tasks 1, 2 and 3

Figure A.2.: Planning tasks 4, 5 and 6

Figure A.3.: Planning task 7

74

Video recording B
A video recording showing the navigation system in practice is available for download at the web-
server of the TAMS research group (http://tams-www.informatik.uni-hamburg.de/research/
robotics/service_robot/videos/index.php). It shows the robot navigating through the
rooms of the TAMS laboratory. The system bases its planning on a static map of the rooms as
well as on data from the laser range finders. The stereo cameras have not been utilized in this
recording. Below a few comments to the scenes on the recording will be stated. They are tagged
with the timestamps of the discussed scenes.

B.1. Scene 1 - The storage room

0:13 - 0:33 The graphical control interface of the navigation system is shown. It displays the
current environment representation (shown as red lines), the position and the orientation
of the robot (blue square), and the planned movement (purple line). Currently, the robot
is ordered to move to the hallway. As the main doors of the room are blocked, the robot
has to move through the cluttered storage room.

0:34 - 1:14 The robot is shown as it moves to the doorway leading to the storage room.

1:15 - 2:41 The robot moves through the doorway and crosses the storage room.

2:42 - 4:39 The robot exits the storage room and then moves down the hallway.

B.2. Scene 2 - Passing a small passage

4:51 - 5:26 The robot passes a narrow doorway with not much free space left to maneuver.
The system is actually capable to move the robot through passages with even slightly less
free space. However, the passage needs to be a few centimeters wider than the robot.
Otherwise the planning software will try to find a way around the passage or will terming
movement execution.

B.3. Scene 3 - Obstacle avoidance

5:36 - 6:24 This scene shows the robot moving towards its destination, when a person steps
into its way. This forces the robot to terminate its movement and plan a different route.

75

B. Video recording

B.4. Scene 4 - Dynamic pathplanning

6:36 - 6:45 The robot is instructed to move into the storage room, similarly like in scene 1.
This time, however, the door to the storage room is closed. The robot cannot realize this
from its initial position.

6:46 - 7:51 The robot approaches the closed door. When the data from the laser range finder
(shown on the right hand screen) indicates that the door is closed, it turns around and
tries to enter the storage room from the other doorway.

7:53 - 9:44 Here the robot is ordered to move back into the lab. Like before, the doorway will
be blocked by a person, forcing the robot to take the other doorway.

B.5. Scene 4 - Dynamic obstacle avoidance in a cluttered
environment

9:57 - 14:22 Many different obstacles are put into the robot’s way. It navigates around them
and adopts a new plan when the obstacles are moved. The swivel chair is of special interest:
The laser range finders can sense only its central stand, thus its outline in the environment
representation of planning software is much smaller than it should be. Therefore the robot
comes very close to the chair and even touches it slightly (at 11:55 and 12:47). For this
kind of situation the stereo camera approach was intended to detect the real size of the
obstacle.

76

Erklärung / Statement C
C.1. Deutsch

Ich versichere, dass ich die vorstehende Arbeit selbstständig und ohne fremde Hilfe angefertigt
und mich anderer als der im beigefügten Verzeichnis angegebenen Hilfsmittel nicht bedient habe.
Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen wurden, sind als
solche kenntlich gemacht.

Ich bin mit einer Einstellung in den Bestand der Bibliothek des Fachbereiches einverstanden.

David Melnychuk

C.2. English

I confirm that I made the preceding work independently and without foreign help, and that I
did not use other resources than stated in the bibliography. All parts that have been taken from
publications, literally or by meaning, have been marked as such.

I agree that this work will be added to the inventory of the department’s library.

David Melnychuk

77

