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We present a self-valuing learning technique which is capable of learning how to grasp un-
familiar objects and generalize the learned abilities. The learning system consists of two com-
ponents which distinguish between local and global quality criteria for grasp points. The local
criteria are not object-specific while the global criteria cover physical properties of each ob-
ject. In this case we present a generalization method of the learning parameters based on a tree
distance model for the medial axis transformations. The system is self-valuing, i.e. it rates its
actions by evaluating sensory information and the usage of image processing techniques. This
learning system has been implemented in a real robot assembly system equipped with hand-
cameras and force/torque sensors. Both the theory and the experiments have shown it ability to
grasp a wide range of objects and to apply pre-learned knowledge to new objects.

1. Introduction

Robot learning is an area of interest to many scientific fields such as robotics, artificial in-
telligence, neural and cognitive science. The challenges of robot learning are to bypass the
problems faced by classical programming techniques leading either to solving of toy problems
(no scale up) or to the pre-wired design of most skills and behaviors without any possibility
to learn from new experiences and to generalize. New applications emerge like service robots,
pet robots or humanoid robots. The success of these new applications will mainly lay in their
ability to learn from their environment and to interact with humans.

While reinforcement learning is usually a time-consuming process, Programming by Demon-
stration provides a straightforward and fast approach to implement sensor-based tasks. For
both approaches, however, the learned skills need appropriate representations for generalization
and possibilities for further improvements by the robot itself. With this background, our work
aims at developing a self-valuing scheme and representation methods in the context of visually
guided grasping.

In a wide range of robotic systems grasping is a basic skill that is crucial to manipulation tasks
and interaction with the environment. In most industrial applications the problem of grasping
is solved via teaching-by-doing or static programs. However, when thinking of recent research
fields, e.g. service robots or humanoids, aspects of sensor-based grasping will play a very
important role. New techniques are required for the robots to operate in uncharted and unknown
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territories. For this purpose, elements of human learning abilities, e.g. the human potential of
generalization, are helpful when constructing a robotic grasping system.

2. Related Research

A lot of work has been done in the field of robot grasping. [1] gives a brief overview of

the field over the last two decades. The commonly used analytical approaches try to compute
optimal grips according to special heuristics (e.g. [2] and [3]). In these cases either a fully spec-
ified model of the object and its mass distribution is known or the center of area of the object,
extracted via image processing, is used to approximate the real center of gravity. The first case
is very difficult to obtain via external sensors and without any a priori knowledge. A complete
3D-representation of the object via image processing is required and additionally features like
the material of the object need to be examined. However, a hidden internal inhomogeneous
mass distribution can never be discovered with such an approach. The latter case of using the
center of the object’s area is certainly only an approximation. This would work if the center of
gravity coincides with the object’s center of area, but would not work in case of inhomogeneity
either.
Among several attempts to handle the problem of learning how to grasp, [4] presents a system
that learns how to grasp objects with a parallel-jaw gripper. Two main subproblems are learned:
to choose grasping points and to predict the quality of a given grasp. The disadvantage of this
system is that only local criteria are used to store grasping configurations. Without global cri-
teria it is for example impossible to learn how to grasp an object whose center of gravity does
not coincide with the center of its image area. Without self-valuing learning techniques it is
impossible to handle the real physical properties of an object. [5] presents a learning system for
visually guided grasping, constructed of two learners. This system is not self-valuing, i.e. the
optimal grasp point has to be given to the learner initially. Therefore, the two learners cannot
adapt to new objects either. In [6] a system is developed that performs skillful grasping with
a dextrous robot hand by emulating infants’ growth processes. [7] described a programming
system by demonstration using the segmentation of breakpoints of the motion observations and
producing the robot commands to replicate the observed task. They did not consider the repre-
sentation of objects to be grasped nor discussed how the learned mappings can be generalized
and adapted to new objects.

3. Learning Scheme

To construct a robotic learning system, it is useful to investigate elements of human learning
abilities. Our work is based on the idea that when intending to grasp an unfamiliar object with
two fingers, one can mainly consider two kinds of quality criteria on how to choose optimal
grasp points. These two kinds are further referred to as local quality criteria and global quality
criteria, or local/global criteria for short. Together they form the design basis for the underlying
learning system.

3.1. Local and Global Quality Criteria

Local quality criteria: The local quality criteria are mostly independent of a special shape and
therefore of global aspects like the distribution of an object’s mass. Therefore, they are
valid for any kind of object. Local quality criteria are considered first when one decides



to grasp an unfamiliar object. Such a criterion can be estimated for example by the sliding
friction between an object and the fingers of the gripper.

Global quality criteria: Global quality criteria, by contrast to the local ones, are closely con-
nected to a special object and therefore seldom significant for other objects. They are
applied after the local criteria to find the optimal grasp point. These criteria consider
aspects like the distribution of mass of an object, e.g. the torque at the gripper when
grasping an object.

Technically speaking, the local criteria define a virtual axis on which a possibly good grasp
point may be found with the help of the global criteria. For example, the grasp configuration
computed in Fig. 1(b) could be determined from the search axis proposed by grasp point 3 in
Fig. 1(a). In the learning process these criteria are repeatedly considered one after the other for
a finite number of steps until a good grasp point is found. The number of steps varies with the
skill of the learner and the structure of the object. For a familiar type of object, the global and
local criteria are considered in only one step. In fact, since the same local criteria can be applied
to any kind of object, as mentioned above, they are fully learned prior to the global criteria.

3.2. Optimality Conditions
A grasp point is considered to be optimal, if the local quality criteria are met in the following
fashion:

e the fingers can cover the object at this grasp point, and

e no sliding friction occurs between the fingers and the object.
It is considered to be optimal according to the global quality criteria if:

e no torque occurs between the fingers grasping the object, and

e the grasp is stable, i.e. the object does not slip between or out of the fingers.
Some sample grasp configurations are shown in Fig. 1.

3.3. Higher Level Criteria

An additional and higher level criterion for human grasps is the purpose of the grip, i.e. its
importance for carrying out further operations, e.g. grasping a cup at its bail in order to drink
something or a sledge at its handle to drive a nail into a wall2. Other higher level criteria are
for example the material or surface of an object. To consider these criteria additional sensors or
sophisticated image processing techniques need to be integrated, which is beyond the scope of
this work. Our objective is to emulate the abilities of young children who just wants to learn to
get hold of an object as good as possible.

4. Two-Learner System

The quality criteria mentioned above suggest a system consisting of two learners, one for the
local and the other for the global quality criteria. The states for the first learner only consist

2For this higher level criterion, aspects of optimality like reducing torque must possibly be shelved.
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Figure 1. Optimal grasp points in terms of the local and global quality criteria. (a): some
example grasp configurations which are optimal according to the local quality criteria. (b): the
grasp point is optimal according to both criteria.

of the local features s = (fy,,---, fi,,)- The learner tries to map them to actions consisting
of a rotational component a = ¢. The second learner tries to map states of global features
s = (fg,---, fg,) toactions of translational components: a = (z, y). Because the local criteria

are mainly covered by the relative orientation of the gripper, the responsible learner is called
orientation learner. The global criteria are affected by the position of the grasp point in the
object and therefore the proper learner is further referred to as position learner. These two
learners operate right after each other (Algorithm 1).

Algorithm 1 Algorithm for learning an optimal grasp point
choose an initial grasp point configuration
steps < 0
repeat
steps < steps + 1
repeat
learn with the orientation learner
until [the grasp point is optimal according to orientation OR number of episodes exceeds a given
value]
repeat
learn with the position learner
until [the grasp point is optimal according to the position in the object OR number of episodes
exceeds a given value]
until [the optimal grasp point is found OR steps > stepsmazl

The key element for a good performance of such a learning system is the choice of adequate
features which reflect the local and global quality criteria. The choice depends mainly on the
kind of gripper and other available sensors used in the system. The local and global features
are shown in Fig. 2. The first component of the state vector of the orientation learner is the



length L of the grasp-line. With this feature, good grasp points are distinguished from those
which are inadequate because the gripper cannot cover the object. The remaining features
are the corresponding angles ©4, ..., ©4 between the grasp-line and the flanking straight line
segments gained by a simple contour tracking process. The features for the position learner
are the distance D between the center of the grasp-line and the center of area of the object’s
image as well as the torque 7" around the normal vector 7 of the gripper. Thanks to the learner
separation, the local criteria need not be learned for every new object. Therefore, the orientation
learner is a universal learner, which means that the same learner can be used for every object.
E.qg., this learner can learn to grasp objects at opposite parallel or concave edges.
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Figure 2. State coding for the learners. The orientation learner uses the length L and the angles
01, ...,04 while the position learner integrates the distance D between the center of the grasp-
line and the center of area of the object’s image.

In principle, a two-learner system design was first introduced in [5]. The new aspect of this
work is a different usage of the two learners. As described above, this design was chosen with
respect to the local and global criteria and their generalization properties.

4.1. Self-Valuation

The presented system is self-valuing, a method to automatically gain an estimation for the
learning algorithms. Self-valuation is done via a force/torque sensor and the hand-camera at the
gripper of the robot. It is important to mention that no optimal grasp point is pre-known and the
system finds its own grasp points taking into account the quality criteria.

4.1.1. Orientation Learner

The best estimation of a good grasp, determined by the orientation learner, is obtained by
the second optimality condition, i.e. no sliding friction at the fingers of the gripper. When an
object slips between or out of the fingers at the moment of closing the gripper, the selected
grasp configuration was not optimal according to the local criteria. Some existing systems (e.g.
[2]) try to determine the friction occurring within the gripper analytically, i.e. by computing
the friction cone via geometrical features. Here, several grasp configurations are tried out with
the real robot that values the success or failure of the performed grasps — like humans who
do not analytically compute their optimal grips, but learn by success and failure. Because the



gripper used in this work does not slip like human fingers over the object’s surface, sliding
friction appears either as a rotation or as a displacement of the object itself. The valuation of
the orientation learner is basically gained by image processing. A penalty for self valuation is
computed as follows:

p_ — (Ot + Dyitr) if the grip was successful
—Peonst otherwise

where Oy IS the angle between the initial and the least inertia axis after the performed grasp,
Dyt the displacement of the center of area and P.¢ a high constant penalty which is greater
than the highest estimated changes in orientation and position together. The first two pictures of
Fig. 3 show a grasp configuration which results in a rotation of the object itself. If a grasp has
totally failed and therefore the first optimality condition cannot be met3, a pre-defined penalty
is given.

4.1.2. Position Learner

While the valuation technique for the orientation learner is primarily based on processing
images from the camera sensors, the self-valuation of the position learner is primarily gained
via a force/torque sensor. The two points for optimality of the global quality criteria, mentioned
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Figure 3. Sample grips that are suboptimal according to the quality criteria.

in Section 3.2, are taken into account for self-valuation in the following fashion:

Stable grasp: A grip is unstable, for example, if the gripper is not strong enough to fix the
object at a given position. Such a situation is shown in Fig. 3(c). This lift-up movement
of the manipulator results in forces shown in Fig. 4(a). Nearly during the whole lift-up
movement, the force in the direction of the approach vector of the gripper is approxi-
mately constant. At the moment when the object loses contact with the table (in this
example at 4s) the force rises to a higher value. These profiles can be analyzed and used
for valuation of the learner, e.g. this situation is valued with a pre-defined high penalty to
express that such grips are not desired.

3This occurs either when the orientation of the gripper does not permit covering the object or the object slips out
of the fingers while closing them.



When an object slips out of the fingers of the gripper the force in the direction of the
approach vector of the gripper suddenly reduces to zero and the grasp can be considered
a failure. Such a grasp is totally undesirable. Therefore, a constant high penalty is given
to prevent the system from effecting such grips in the future.

Reducing torque: The goal of the position learner is to reduce torque within the fingers of
the gripper. Fig. 3(d) shows an example of a grip that produces high torque. The torque
profiles are shown in Fig. 4(b). Immediately after the beginning of the lift-up process,
the torque around the normal vector of the gripper rises to a value considerably bigger
than zero and stays constant while the object is being held. Torques are computed, and
their negative values are directly used in the position learner. Here, no constant penalty
IS given because a grip with large torque is not necessarily bad, i.e. the system must have
the possibility to distinguish between grasp points with different torques and choose the
best among them.
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Figure 4. Force profiles when the grip is not stable as shown in Fig. 3(c) and torque profiles of
the grip in Fig. 3(d).

5. Implementation of L earning

The learning scheme in our system is based on the Sarsa algorithm [8]. The general update
formula computes the difference between the current and the next prediction of cumulative
reward and updates the action-value function Q by a fraction of this difference as follows:

Q(st,a:) = Q(5¢,a¢) + ¢ [re1 + YQ(Se41, Ge1) — Q(St, )]

As seen above, our system must handle continuous states and actions, i.e. angles, torques, etc.
In such a situation we cannot provide a single value @ for every state-action pair but rather have
to use a function approximator. Such a function approximator is of the form @, (s, a), where



w= (w(1),w(2),...,w(n))T is a set of adjustable weights. The update of the current estimate
of @ is performed by modifying the weights according to the following rule:

(1) Aw=a[rgs +7Qu1 — Q] Vi, Qs

A general advantage of function approximators is that they are able to generalize. The system
is able to estimate the expected return of state-action pairs that were never visited before. Al-
though a function approximator can deal with continuous state and action spaces, it may not be
able to accurately represent @ for the entire state and action space due to its finite resources.
We employ the B-spline function approximator [9] for the @-function which is a natural gener-
alization of coarse coding to continuously-valued features.

5.1. Approximating the Action-Value Function

In the following we define Z as the concatenation of the current state s = (s1, ..., ;) and the
taken action a = (ay, ..., an,), thatis: & = (s1,..., s, a1,...,any). The output for the B-spline
function approximator which is the prediction of () is computed by:

l In j
o = ZhoTho (Civyin Tt N, (25))
_ .

: :
D=1 ZiZ:I H?:l Nijj,kj (z5)

i1=1  im=1 j=1
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Because the introduced weights w of @ here correspond to the control vertices c;, ;, . ;, Of
the B-spline function approximator, the gradient of @ with respect to w from Eqn. (1) is:

Q

Now the learning update from Eqn. (1) turns into the following formula:

VwQ = Vcil’iz
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n
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J
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Based on this, the control vertices are updated online after each grasping trial of the system.

5.2. Accumulating Trails

A practical problem to be considered is that the system will learn a path from an initial state,
i.e initial grasping configuration, up to a final state, i.e. a successful grip. To overcome this side
effect in systems where the goal state itself is the most important outcome and not the path to
the goal state, we propose an approach to increase the performance of such a learning system,
called accumulating trails. When a learning system learns a type of path from an initial state to
a final state, i.e. by applying a set of actions ay, . . .a,, t0 s and its successors, it is sometimes
possible to get to the same goal state by applying a set of actions a; ,,, . @’ to the state s and its
successors, where m < n. That is to say, one would reach the goal state n — m steps earlier.

Let ¢/ denote the function applying an action a to a state s, denoted ¢ : A — (S — §),
where A, S are the total sets of actions and states, respectively. The outcome of this function,
when applied to an action, is a function on the state space S called action execution function.



Using the definition above, each learning episode can be considered as a composition of
functions (A: S — S)

A(s) = 9(an) 0 ¥(an-1) o -+ o Y(ao)(s)

where s is the starting state of the episode and a; is the action applied in time step 7. This
function composition is further referred to as sequence.

A sequence B of action executions v (b,,) o - - - 0 1(by) is called a sub-sequence of sequence
A =y(ay)o---o(ap), iIf A(s) = B(s):

¥(an) 0 -0 Y(a)(s) = ¢(bm) 0 -+ 0 9(bo)(s), m < n

where s is the starting state. Then, sequence A is called substitutable through B. The sub-
sequence B always produces the same resulting state as the sequence A. That means, if we start
in state s it makes no difference whether we “follow” sequence B or sequence A. The state at
the end of the sequence is always the same. If a sequence A is not substitutable by any other
sequence B, it is called final. When the agent’s intention is to reach the goal states as soon as
possible, as for example in this work#, the learning algorithm should converge to a situation of
purely final sequences.

An accumulation function on action executions is defined as: & : (S - S8) x (§ =+ S) —
(§ = 8). Asequence A = 1(a,) o --- o 1(ag) of action executions is accumulatable, if

/d)(an) D w(anfl) b---D w(ao) = B,

where B is the subsequence of A. The accumulation function describes how to combine action
executions to produce shorter sequences. This function has to be defined according to the
learning system one wants to develop. The accumulation is defined for action executions and
not solely for actions, because it depends on the states if such an accumulation can be performed.
In some situations the accumulation function is defined as follows:

) Y(ar) @ Y(ar) = P(ax o ar),

where ¢ isa function¢: A x A — A.

In most situations, the accumulation function must include a kind of model of the environ-
ment and this is only possible by also taking into account the states rather than only the actions
as suggested by Egn. (2). The agent must “know” in which situation it is possible to accumu-
late action executions and in which situation it is not. However, for some tasks Eqn. (2) is an
intuitive and sufficient definition.

As an example, for application within the orientation learner the accumulation function ¢ is
defined as:

ar + a; if —90<ap+a <90
ar o a; = § ai +a; + 180 if ap+a; <—90
ar +a; — 180 if ax+a;>90

assuming that the actions of the orientation learner are rotational movements in the interval
[—90, . ..,90].

41t is desirable to find an optimal grasp point as soon as possible.
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6. Generalization

The orientation learner is fully applicable to any kind of object, i.e. it provides a total gen-
eralization potential. In other work, where the learning process is not divided into two separate
learners, the generalization is only partial. This results in slower learning phases for new ob-
jects. Propositions like “grasping at parallel edges is always good” cannot be made by such
systems at all. Here, once the orientation learner has learned several grasping situations, it can
be used with any kind of new object the robot is faced with.

Figure 5. Different objects, their medial axes and the resulting tree coding. At each node the
length of the branch leading to that node is stored.

By comparison, the position learner is more complicated. Because of different shapes of
objects the global positions of the learned grasp points cannot be applied to every object. In
most cases it is a better choice to initialize the learning parameters by values of a pre-learned
similar object than a random initialization.

Three main subproblems must be solved:

A. In which situation can a pre-learned position learner be fully adopted to a new object?

B. When can a pre-learned position learner be used as a basis for a new object?
C. When must a completely new position learner be initiated?

6.1. TreeDistanceasa Measure
Assuming a distance measure on the objects to grasp, we can improve our initial learning
parameters as follows: Let £, = {(0;,1;)|i = 1...n} be the set of tuples of n pre-stored objects
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o; in tree notation, together with their stored position learners /;, and dist(o;, o) the distance of
the trees according to a distance measure. Then,

A a pre-learned position learner [’ of an object o' can be fully adopted to a new object o, if
V(Oi, lz) € ﬁs\(Ol, ll):

(3) dist(d',0) < dist(0;,0) < Dpin;

B a pre-learned position learner I" of an object o’ can be used as basis for a new object o , if
V(Oi, lz) - ES\(OI, ll):

(4) Dz > dist(0',0) < dist(0;,0) > Duin;

C acompletely new position learner is initiated for a new object o, if V(o;,1;) € L,

(5) dist(0i,0) > Dpmag,

where D,,., and D,,;, are adequate thresholds for accepting and refusing an object to be equal,
respectively.

Simple distances on the objects’ pixel data, like the Hamming Distance, are susceptible to
noisy data and moreover do not consider the object structure. We restrict our observations to
object structures that can be represented as a hierarchical relation. A simple tree encoding is
used for the objects. These are rooted ordered trees, i.e. there exists an ancestor relation of
nodes and the order of sibling nodes matters. In order to obtain a tree out of an object’s image
pixel data a medial axis transformation [10] is performed. The resulting graph is analyzed by
a contour tracking process which transforms the medial axes into the corresponding trees. Fig.
5 gives examples of this process. The nodes of the shown trees contain the length information
about the corresponding parts of the medial axis.

6.2. Computational Results

Distance models on rooted ordered trees based on editing operations are proposed in [11,12].
We used the latter for our experiments. For instance, we learn to grasp the object shown in
Fig. 5(a) without any a priori knowledge. Accordingly, a tree comparison with the object in
Fig. 5(b) leads to Eqn. (4). For the object in Fig. 5(c) no object of sufficient similarity is stored
in the database which leads to Eqn. (5). Finally, Eqn. (4) again suggests to grasp the object in
Fig. 5(d) using the parameters of the object in Fig. 5(c).

In this manner one can determine the “most similar” object out of the set of pre-learned
aggregates for a new object. If the similarity is strong enough, i.e. Eqgn. (3) is met, the objects
are treated the same and the same position learner is used.

7. Experiments and Results

The physical set-up of this system consists of the following components:

Main actuator and sensors. In our integrated experimental scenario, a number of assembly
parts must be recognized, manipulated and built together to construct the model aircraft
[13]. In each of these steps, a human communicator instructs the robot, which implies
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that the interaction between them plays an important role in the whole process (Fig. 6(a)).
The 6-DOF PUMA-260 manipulators are installed overhead in a stationary assembly cell.
On the wrist of the manipulator, a robot gripper with integrated force/torque sensor and
“self-viewing” hand-eye system (local sensors) is mounted (Fig. 6(b), (c)). The robot is
controlled by RCCL (Robot Control C Library).

(&) The scenario of program- (b) The robot arm (c) A view of the hand-
ming by gestures and instruc- learning to grasp camera
tions

Figure 6. The experimental setup (a), (b) and a sample view of the hand-camera (c).

Objects: Most kinds of objects are constructed from Baufix elements, wooden toys for children
containing parts like screws, ledges and cubes. Therefore, these objects are also referred
to as aggregates. An advantage of these parts is that one can very quickly construct new
aggregates that can be tested with the system.

To get a uniform and matchable view of the objects the system learns to grasp, the manipula-
tor initially moves over the object so that the z-axis of the camera’s coordinate system appears
parallel to the axis of least inertia of the object and the center of area on the right side of the
image. The center of the object’s bounding box coincides with the center of the image. An
additional tool-transformation is performed so that the camera is moved towards the working
surface. Several objects were used to test the performance of the whole system. Some of them
are shown in Fig. 7. The robot has found a good and stable grasp point for each object that ful-
fills the optimality conditions given above, often near the object’s center of gravity. Two special
results of a grasping operation are shown in Fig. 8. In Fig. 8(a) the manipulator has grasped
the object at a point different from the center of area but near the center of mass of the object.
Fig. 8(b) shows a successful grasp at a convex edge of a different object. To show the general-
ization ability of the orientation learner, it was first applied to a new object for a defined number
of epoches. Thereafter, the same learner was used on a different object to show that the average
steps until the goal state decrease much faster. The result is shown in Fig. 9. In the second
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Figure 7. Sample objects for grasp learning.

Figure 8. Successfully performed grasping operations.

part of the experiment the orientation learner did not start at a value of three where the initially
performed orientation learner ended. This is due to the fact that in the first cycle a simple ledge
was used and the learner still did not converge while in the second cycle a more complex object
was used. However, one can see that in the second cycle the orientation learner was quicker.
Only new states that do not occur on the simple ledge have to be learned additionally.

8. Discussion and Ongoing Work

We presented a self-valuing learning system that is capable of grasping various kinds of
objects. Our system consists of two learners based on local and global quality criteria. While
the orientation learner is applicable to arbitrary objects and therefore fully generalizes between
them, the position learner is mostly dependent on a special object and its physical properties.
The generalization of the position learner is accomplished by a tree distance model on the shape
of the object. The system shows the ability to grasp several kinds of objects and to generalize
the learned faculties to new ones.

In our ongoing work, the system will be extended to handle grips in 3D. Therefore the tree
coding for generalization has to be extended to represent the 3D-structure of an object. With
additional sensors, e.g. a stereo camera vision system, the robot should examine the objects
and place the grips from different orientations in space. We are also adapting the presented
system to a multi-fingered robot hand. In this case a grasp point no longer consists of only two
contact points on the object’s surface. The threefingered hand, as shown in Fig. 10, can e.g.
perform a full 7 point form closure grasp. Furthermore, the possible actions of the learners are
more challenging with a multi-fingered hand. The different fingers can move independently to
a certain extent and apply different forces. However, the basic principle of two learners, based
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Figure 9. Generalization of the orientation learner.

Figure 10. Sample grip with a multi-fingered hand.

on local and global criteria, and the self-valuing approach can be maintained.
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