A General Learning Approach to Visually Guided 3D-
Positioning and Pose Control of Robot Arms

In “Biologically Inspired Robot Behavior Engineering, edited by R. J. Duro, J. Santos and M. Graiia,

Physica-Verlag, 2008, Chapter 15, pp. 417-438.

Jianwei Zhang and Alois Knoll

Faculty of Technology, University of Bielefeld, 33501 Bielefeld, Germany

Abstract. We describe a general learning approach to fine-positioning
of a robot gripper in three-dimensional workspace using visual sensor
data. This is a two-step approach: a) a hybrid representation for encoding
the robot state perceived by visual sensors; b) partitioning the action
space of the robot to let multiple specialized controllers evolve.

The input encoding consists of representing position by geometric fea-
tures and uniquely describing orientation by combination of principal
components. Such a dimension-reduction procedure is essential to apply
supervised as well as reinforcement learning. A fuzzy controller based on
B-spline models serves as a function approximator using this encoded
input and producing the motion parameters as outputs.

A complex positioning and pose control task is divided into consecu-
tive subtasks. Each subtask is solved by a specialized self-learning con-
troller. The approach has been successfully applied to control 6-axes-
robots translating the gripper in the three-dimensional workspace and
rotating it about the z-axis. Instead of undergoing cumbersome hand-
eye calibration processes, our system lets the controllers evolve using
systematic perturbation motion around the desired position and orien-
tation.

1 Introduction

Fine-positioning is one of the most important and most demanding sensor-based
manipulation skills. Even relatively simple tasks such as grasping rigid objects
with two-fingered grippers based on an image taken by a hand-camera presup-
pose an effective sensorimotor feedback. This entails the implementation of the
whole perception-action cycle including image acquisition with the calibrated
hand-camera, image processing, generation of manipulator actions for approach-
ing the grasping position, etc. Additional levels of complexity are added if the
system is to be designed for working under variable lighting conditions, moving
or occluded objects. It is also desirable that the system be able to control the ma-
nipulator from any location in the vicinity of the object to the optimal grasping
position regardless of perspective distortions (if the object is seen from “remote”
points), specular reflections and the like. Traditional methods of sensor-guided
fine-positioning are based on hand-eye calibration. Normally, such a calibration

procedure is time-consuming and not fault-tolerant. Every time when the hand-
eye configuration is changed, the calibration should be performed. Such methods
can only work well if:
— the hand-eye configuration is strictly fixed and completely known (including
camera parameters) and
— the position/orientation based on these geometric features can be recon-
structed.

We note, however, that even if these conditions are met, the hand-eye cali-
bration matrix cannot be interpreted as an adequate cognitive model of human
grasping (and hence probably never become just as powerful).

An alternative methodology is learning the transformation. Recently, neu-
ral network based learning has also found applications in grasping. The work
in [7,11,3] used geometric features as input to the position controller. Since the
image processing procedures such as segmentation, feature extraction and classi-
fication are not robust in real environments and since these processing algorithms
are computationally expensive, some of the work resorts to marking points on
the objects to be grasped. By contrast, for dealing with the general case of hand-
ling objects whose geometry and features are not precisely modeled or specially
marked, it is desirable that a general control model can be found which, after
an initial learning step, robustly transforms raw image data into effective factors
and then into action values.

In [8] Murase and Nayar used PCA (principal component analysis) for object
classification and for solving a one-dimensional position-reconstruction problem.
In [2] Black and Jepson presented an approach they called eigentracking, which
can be used to track objects in picture sequences. However, the experimental
results did not prove that PCA-based tracking is capable of controlling a robot.

Reinforcement learning enables the trained system not only to be adaptive
in the training phase like supervised learning methods. In fact, no training and
on-line application are differentiated and the system learns life-long [4]. Although
reinforcement learning has been applied to mobile robot systems [10], there are
few applications to sensor-based manipulation tasks.

2 Experimental Setup

Learning of sensor-based elementary operations is motivated by building a demon-
strative robot system for our project SFB-360 “Situated Artificial Communica-
tors” [13]. Our robot system aims at assembling a toy aircraft from basic objects
like screws, ledges or nuts (Fig. 1). Within this scope different tasks have to
be performed: determine which basic objects are needed to be grasped (simply
called objects in the following parts), identify a single object, position the grip-
per above it, grasp it, assemble it with others. The task discussed here is the
fine-positioning of a manipulator after a coarse positioning has been completed.

Each of the manipulators of type Puma 260 is equipped with a parallel jaw
gripper and a hand-camera. The object is visible in the image of a “self-viewing”
eye-in-hand camera (Fig. 2). The aim is to control the robot hand from its current

Fig. 1. The working cell of our robot system. The “Baufix”-parts on the assembly table
are to be grasped by the robot gripper.

position/orientation (called position for short in the following parts) (Fig. 3 left)
to a new position so that the hand-camera image matches the optimal grasping
one (Fig. 3 right). In our setting there are some 20 different objects to be handled.
Some of the objects in the image have the same shape but different colors. It
is therefore mandatory that a general image processing technique be applied,
which needs no specialized algorithm for each object and shows stable behavior
under varying object brightness and color.

3 Problem Description

The vision based 3D positioning and pose control of robot arms is a perception-

action mapping: (21,...,%m) = (tz,ty,t;, 72,7y, 72), Where 21,..., &, are the

input variables as read from the sensing device, ¢;,1t,,t, are the translational

degrees of freedom along z—, y— and z—directions in the tool coordinate system

and 74,7y, T, are the rotational degrees of freedom around z—, y— and z—axes.
Two basic problems arise:

Input space: No universal function approximator models, e.g. RBFN, B-spline
network, can be directly used due to the “curse of dimensionality”. If each
input variable x; is covered with b; basis functions, then the complexity of
the model (number of the hidden nodes, number of rules etc.) is exponential
inm: by X by X -+ X by,

Output space: A six dimensional output space results at least in the following
difficulties for learning:

camera

Fig. 2. The end-effector of the manipulator with a hand-camera (positioned optimally
over the yellow cube).

Fig. 3. A cube viewed from the hand-camera — before and after fine-positioning.

— To construct a monolithic controller using supervised learning, there
exist no methods to find a reasonable number of commonly used input
variables for all six DOFs.

— For reinforcement learning, the number of actions for selection is 3% =
729 (each DOF with +, - or zero changes). The learning time increases
dramatically.

Limited by the technically usable computer memory and available time for
learning, directly applying a monolithic function approximator to this MIMO
for positioning and pose control is not practical. We utilize the following two
strategies to cope with these problems:

In input space: compact coding of robot state (described in section 4, 5) and
In output space: decomposition of the degrees of freedom (described in section 6).

4 Robot State Coding Using Geometric Features

The key step to apply reinforcement learning in manipulation tasks is finding a
compact and unique coding of measurable states of a robot arm. Compactness of

the robot state means that the number of the description parameters should be
as low as possible so that the “curse of dimensionality” problem can be avoided.
Only a unique coding can guarantee that the controller, after learning, works
robustly. In the following sections, the necessary procedures for a general coding
method with hand-camera vision data will be described in detail.

4.1 Extracting the Object in Focus from an RGB Image

The RGB images grabbed by the hand-camera cannot be used directly as the
state vector because a) they contain much irrelevant information, and b) they
consist of too many pixels. Therefore, the camera images are further processed.
Firstly, the irrelevant information is filtered from the original image set. The
result is represented as a binary image. The dimension reduction methods are
used on the relevant information after the preprocessing (see sections 4.2 and 5).

For most of the grasping task it is sufficient if the binary image merely
contains a silhouette of the object. Based on a sequence of preprocessing steps,
the RGB-images from the hand-camera are converted into cleaned binary images.

To eliminate the disturbances in the background, e.g. the granulative struc-
ture in our setup, smoothing filters should be applied. After a comparative study
of the median filter, mean filter and the binomial filter, we chose the mean fil-
tering with the calculation of the new pixel value.

The next important step is to separate the object in focus from the back-
ground. In this work we consider colorful objects and need a method which works
for different colors. It can be observed that the maximal difference between the
RGB values is an indicator for “how colorful” a pixel is. Such a maximal differ-
ence can be used:

fraxpi(r; 9,0) = max (lz —yl) (1)
z,y€{r,g,b}

After the binarization, some remaining disturbances can still be found in the
background of the binary image, especially if the small objects are separated
or the color of the object is dark. Based on the assumption that the objects
are solid and have thus closed segments, a filtering approach is applied again to
eliminate the pixels labeled with 1 which do not have the eight neighborhoods
with value 1.

All these procedures can be summarized in Fig. 4.

smoothed MaxDiff-image binary cleaned
P ®

Fig. 4. Overview of all image processing steps.

RGB-image

4.2 Geometric Features

After a binary image is generated which contains only the silhouette of the
object, geometric features such as area, center of gravity (COG) and, under
certain circumstances, orientation can be computed.

The general definition of moments of order p + g (p, g > 0) is as follows:

Ma(a.9) = [[bay) o v do dy 2)

Height Perception The area of an object in a binary image can be calculated
based on the zero-order moment Moyo(z,y). If the height of the hand/camera
relative to the object changes, the area of the object is the best measure of the
height information. Therefore, the Mgy will be used for coding the height.

Planar Position Assume that (Z,§) describes the COG. Then, they can be
calculated using the zero-order and first-order moments:

Mio(z,y) j= Mo (z,y)
Moo (z,y)’ Moo (z,y)

The computation of COG works for coding the planar position of arbitrary
objects.

T =

3)

Orientation The calculation of the orientation is based on the determination
of an axis along which the spacial expansion is the largest. Since the axis rep-
resenting the orientation we are looking for should intersect the COG, we first
transform the coordinate system to the COG system:

6)-6-0

The orientation # can be defined as the angle between the z—axis and the
axis to be searched. There exists the following relation:

tan 20 = P (5)
where
a = My(z',y') (6)
b=2My(z',y') (7)
c = Mys(z',y") (8)
9)

Thus 6 is derived as:

1 b
0= 5 arctan (a — c) (10)
if it is not the case that b ~ 0 or a ~ c. Otherwise, the object possesses no
distinctive axis, meaning that it is “too round”.

While the COG can be used for describing position of any objects, the ori-
entation computation can be only solved for long objects. In the next section,
we propose an appearance-based, automatic method to encode the orientation
of arbitrary objects.

5 General Automatic Orientation Coding

5.1 PCA Approach

To reconstruct the robot position, methods for computing geometric parameters
can be used directly. For describing the orientation of the object, it is often the
case that no obvious main axes can be found stably if the shape of the object
does not possess a long axis. The following method based on PCA can enable a
general orientation coding using minimal parameters.

This method is based on offline learning. First, a sequence of images of the
object is taken. The object is placed approximately at the same position in
each image but at different orientations. The image lines are concatenated, and
the images are represented as vectors. We consider only the first [principal
components ai,...,a; of these vectors. Because the main difference between
the images lies in the orientation of the object, the first [principal components
contain the orientation information. All images are projected into the Eigenspace
which these [principal components construct. These projections serve as the
candidates for coding of the object’s orientation.

principal component 3

0.4
0.3
0.2
0.1

0
-0.1
-0.2

-0.3
-0.4

0
-0.
e >0 30-Iprincipal component 2
[- -0.3
principal component 1 =% 0.3 g7 70604

Fig. 5. Example of a manifold in the subspace constructed by the first three principal
components which is generated by rotating the object on the left.

Assume that an image series of an object is taken, where the object in each
image is rotated several degrees further and is located in the same starting
orientation at the end. This way, the projections of these images in the eigenspace
form a continuous, closed manifold (Fig. 5). Based on this observation, a correct
coding is achieved.

However, the “wired” spiral structure raises the question here, if these prin-
cipal components are sufficient for a unique coding. Since the approach should
be applied in arbitrary objects, the following question needs to be answered in
general: How many and which principal components are necessary for a unique
coding of the object’s orientation? As stated above, as few principal components
as possible should be used to achieve the most compact coding.

5.2 Implementation of PCA

The PCA is implemented by interpreting each of the k training images as a
vector %, in which the pixel rows are stacked, i.e. stored consecutively. The
covariance matrix Q, however, is not computed explicitly because this would be
completely intractable. In [8] a procedure is described for computing the first
most important eigenvectors and eigenvalues of this covariance matrix without
computing the matrix itself. Of these [eigenvectors corresponding to the [largest
eigenvalues we use only a subset.

Let us assume k sample input vectors x',...,z* with ! = (zi,...,2!)
originating from a pattern-generating process, e.g. the stacked input image vec-
tors. The PCA can be applied to them as follows: First the (approximate) mean
value p and the covariance matrix Q of these vectors are computed according
to

k k
Q= EZ(w — p)(a* —)T, with p= EZ-’D
i=1 i=1
The eigenvectors and eigenvalues can then be computed by solving
Aia; = Qa;

where A; are the m eigenvalues and a; are the m-dimensional eigenvectors of
Q. Since Q is positive definite, all eigenvalues are also positive. Extracting the
most significant structural information from the set of input vectors x* is equal
to isolating those first [(I < m) eigenvectors a; with the largest corresponding
eigenvalues \;. If we now define a transformation matrix

A=(a;...a,)T
we can reduce the dimension of the x* by
p'=A-2% dim(p*) =1

The dimension [should be determined depending on the discrimination accu-
racy needed for further processing steps vs. the computational complexity that
can be afforded.

5.3 Combining Two Principal Components

Firstly, a method can be found to convert the two components of a data point into
a single parameter. Based on the observation that all the points are located on
a circle around a coordinate system, we use the following function to transform
two principal components into a one-dimensional value:

arctan (¥) ifz>0
3 fz=0Ay>0

atan2(y,z) = { —Z ifz=0A y<0 (11)
arctan(%)%—w ifz<0 Ay>0
arctan () —m ifz <0 A y<0

This function maps each point (z,y) on the plane to the angle between the
line through the point and origin, and the positive z—axis. It is obvious that the
desired coding function should fulfill the following conditions:

— It is sufficiently continuous and smooth. Similar data points are mapped to
similar function values.

— It is definite. There are no two different data points which are mapped to
the same function value.

5.4 Search for Principal Component Pairs

To verify the two-to-one mapping from a principal component pair to a unique
atan2 value, we need an algorithm to check how many periods the atan2 graph
possesses.

start data S
passages |\

\
v
\l

A

N

==

‘a]
) /
S W e N R |

zero-passages spﬁ ngs

Fig. 6. Prominent positions in an atan2 graph. Zero-passages are parts where the
function value of the interpolating curve intersects the z—axis in the monotonous di-
rection. Springs divide the monotonous phases. Start data passages are positions where
the graph passes by the atan2 value of the first data point in the monotonous direction.

Firstly, this graph possesses a preferred monotonous direction: if the most
trends from a calculated value to the next step shows upwards, then the monoto-
nous direction is increasing, otherwise it is decreasing. We can observe three types
of prominent parts in the graph (Fig. 6). Based on this, the following key figures
can be identified:

— z: the number of zero-passages,

— s: the number of the springs, and

— t: the number of the passages of the start data point in the monotonous
direction.

Using these three key figures, it can be determined if a circular structure is
observed as well as how many circles there are. These key figures in an arbitrary
graph are uncorrelated. In a graph like in Fig. 6, their differences can be at most
one. If the maximal difference between 2, s and ¢ is larger than one, then no
circular structure is present.

We propose an algorithm to determine the period number using z and s. If
they have the same value, the value can be used. Additionally ¢ should be used
for the final decision. It can be shown that the variable ¢ is always the number
of periods minus one, if s and ¢t are the same. Fig. 7 illustrates the complete
algorithm.

5.5 Selection of Inputs for State Encoding

Here we investigate if sufficient information is available to uniquely encode the
orientation of an object. By the arguments in the above discussions, it can be
shown that this will be the case when we have found a principal component pair
whose atan2 function only possesses a single period, as in Fig. 8. In this case the
orientation can be represented with one parameter.

However, atan2 functions with multiple periods would make the mapping
ambiguous. Different orientations of the object would be encoded by the same
state. Fortunately, we can combine several atan2 functions. By experiments it
can be observed that it is sufficient in many cases to combine two such functions
(if they exist for the object) to find a unique coding.

Consider the following analogy: the function sin(z) has the period 27 and the
function sin(kz) has the period 2. Two functions sin(k;z) and sin(koz) have
the periods i—’; and i—;’ If we combine these two functions, e.g. by adding them,
then the periodicity of the combined function is the smallest common multiple
(SCM) of each periodicity:

2 2w 1 1

(12) is 2, if k; and k2 have no common divisor. This means that although
the periodicities of both single functions can be divided by the factor k; or ko,
the combination of these two functions has the complete periodicity.

To achieve the periodicity 27 by combining three functions, at least two of
the three k; should have no common divisor. Since the combination of these two

z:=0

s:=0

t:=0

for i = 1 to (length(array) — 1)
l := array[i]

r 1= array[i + 1]
if the monotonous direction is “increasing” then
if l>rthens:=s+1
if ({<0)A(r>0)thenz:=2z+1
if (I < array[1]) A (r > array[l]) then¢:=¢t+1
else
if l<rthens:=s+1
if ({>0)A(r<0)thenz:=2+1
if (I > array[1]) A (r < array[l]) thent:=t+1
end if
end for

if max |z —y|>1then
z,y€{2,9,t}

return
else if z # s then
p := max{z, s}
else
pi=t+1
end if

Fig. 7. Algorithm for computing the periodicity of an atan2 mapping of a set of data
points, the array contains the calculated atan2 value of the data points, “return” means
that the data points possess no circular structure.

functions already has the periodicity 27, the third function is redundant. The
same applies if the atan2 functions are used.

To summarize, we propose the following strategy to find the minimal coding
for the orientation of an object:

1. Search for a principal component pair whose atan2 function shows a single
period.

2. If step 1 fails: search for two principal component pairs whose numbers of
period have no common divisor.

3. If step 2 fails again, then use the first [principal component for the state
encoding.

6 Partition of DOF's

Generally, a robot arm needs six DOF's to grasp a object from any orientations
and positions. For clarity, we first show the solution for three DOFs.

03

0.2

0.1

principal component 2
o

-0.1

-0.2

-0.3

-0.3 -0.2 -0..

Fig. 8. The subspace constructed by t
image sequence of a cubic object.

6.1 Three Dimensional Cases

1 0 0.1 0.2 0.3
principal component 1

he first and second principal components of the

To grasp quasi-planar objects, we assume that the gripper is perpendicular to
the table and its height is known. There are still three DOF's to control the robot
arm: motions parallel to the table plane (z, y) and the rotation about the axis

which is perpendicular to the table

(6)-

RGB-Image

¢
;

\ ¢

— Centering

A

/

v
'

coding

Trandlations- Rotations-

coding

Fig. 9. Example of controlling =, y, 6.
tered for the rotation coding.

The pre-processed images are additionally cen-

In order to generate a small action space, learning is divided between two
learners: one for the translational motion on the plane, the other for the rota-

tional motion (Fig. 9). The translation-learner then has four actions to select
(two in z- and two in y-direction). The rotation-learner has two actions to select
(rotation clockwise and counter-clockwise). Such a partition has the following
advantages compared with a monolithic learner:

— The state space is significantly smaller.
— The state coding is so designed that the state vectors merely contain the
relevant information for the corresponding learner.

In practice, the two learners are applied alternately. First, the translation-
learner is applied with long learning steps until it achieves its goal defined with
its state coding. The translation-learner is then replaced by the rotation-learner
which is applied similarly with long learning steps until its goal is achieved. At
this moment it may occur that the translation goal state is disturbed by the
rotation-learner. Therefore, the translation-learner is activated once again. The
procedures are repeated until both learners report that they all arrived the goal
state. This state is thus the common goal state.

6.2 Extension to Six DOFs

To utilize all six DOFs, additional learners should be introduced. Fig. 10 shows
how such a positioning can be realized in four steps.

1. The first learner possesses two DOFs and its task is that the object will be
observed from a certain perspective. Typically for a planar table, this means
to position the gripper perpendicularly to the table surface (a — b).

2. Apply the z/y learner (b — c).

Apply the 0 rotation-learner (¢ — d).

4. The last height-learner will correct the z-coordinate, the height over the
table (d — e).

w

(a) (b) (c) (d) (e)

Fig. 10. Positioning and pose control with 6 DOF's in four steps.

7 The Perception-Action Transformation

7.1 The Neuro-Fuzzy Model

Our experimental results show under the most diverse conditions that we can
extract geometric features based on the calculations of moments to encode the
positioning information and to find non-geometric parameters based on combin-
ing principal components. Therefore, if the input is high-dimensional, an effective
dimension reduction can be achieved by projecting the original input space into
a minimal subspace.

Variables in the subspace can be partitioned by covering them with linguistic
terms (the right part of Fig. 11). In the following implementations fuzzy con-
trollers constructed according to the B-spline model are used [12]. This model
provides an ideal implementation of the CMAC model (cerebellar model artic-
ulation controller) (proposed by Albus [1]). We define linguistic terms for input
variables with B-spline basis functions and for output variables with singletons.
This method requires fewer parameters than other set functions such as trape-
zoid, Gaussian function, etc. The output computation is very simple and the
interpolation process is transparent. We also achieved good approximation ca-
pabilities and rapid convergence of the B-spline controllers.

state pattern rule firing
coding mafching &synthesis
7 N SN
X]
extracting
position
features
X; >
ori%r)’raﬁon t.(t,. 1)
codain
& r.(r,.r)
Xm
input output
vector state variables rules

Fig.11. The task oriented mapping can be interpreted as a neuro-fuzzy model. The
input vector consists of pixels of a binary or grey-scale image.

7.2 Supervised Learning

Since robot manipulators possess a high repeatability, they can be easily pro-
grammed to systematically generate training images as well as training data. If

the hand-eye configuration remains the same, supervised learning is a method
which needs only little training time. The working systems implements two
phases: off-line training and on-line evaluation. In the off-line phase a sequence
between ten and one hundred training images showing the same object in differ-
ent positions is taken automatically, i.e. without human intervention. For each
image the position vector of the manipulator with respect to the optimal grasp
point for the current object is recorded.

In the on-line phase the camera output is transformed into the hybrid state
space based on geometric features and combination/transformation of principal
component pairs. The state variables are then processed by the fuzzy controller.
The controller output is the end-effector’s position and angle correction (Fig. 12).

~sampled
image ‘data RGB {mage
=1 A
k) train images
£ i
<5} .
B image preprocessing 3 image preprocessing
i o : L
S binary images : binary|image
g Y v : v
state _A building A state
coding - eigenspace o coding
position/orientption coding position/ orient%tion coding
Y :

| fuzzy controller training }—~> fuzzy controller

L
translational and
rotational correction

offline phase " online phase

Fig.12. The training and the application of the PCA neuro-fuzzy controller using
supervised learning.

With the z* and the corresponding t,, ty,tz, T2, Ty, Tz, & B-spline fuzzy con-
troller is trained. We use third order splines as membership functions and be-
tween 3 and 5 knot points for each linguistic variable. The distribution of these
points is equidistant and constant throughout the whole learning process. The
coefficients of the B-splines (de Boor points) are initially zero. They are modified
by the rapid gradient descent method during training [12].

7.3 Reinforcement Learning

As described above, supervised learning is based on training examples with sen-
sor input and actuator output. This approach is adaptive only during the training

phase. In the application phase, the system will not react to the changes by itself.
The changes can be the modification of the hand-eye configuration, or the object
should be grasped in another way. In these cases, the controller must be trained
with new examples again. Using reinforcement learning, no differentiation will
be made between the training and application. The system learns continuously.
No training examples are necessary. What is needed is only to give a reward for
a successful grasping, e.g. correct positioning in this work.

During all the motion time, the learner improves its behavior permanently
from the state determination and action execution. The current state is deter-
mined by grabbing an image, preprocessing it and transforming it to a state
vector. This cycle is relatively computationally expensive. Therefore, it is de-
sirable that the learning goal can be achieved with as few camera images as
possible. Thus we propose the variable learning steps: if the robot is far from
the goal, the stepsize is set larger; if the robot is near the goal, the stepsize is
correspondingly reduced.

The maximal and minimal stepsize are defined and the Euclidean distance of
an arbitrary state to the goal is estimated. The current action step is selected as
proportional to the distance between the current state and the goal. Similar as
the Reward Distance Reduction which assumes that states are so encoded that
similar states have the similar codings. This condition is fulfilled by using the
coding approach described in section 4 and 5.

7.4 Implementation Issues of Reinforcement Learning

The reinforcement learning approach has been implemented as an object hier-
archy (Fig. 13). Each of the components is defined as follows:

qlearner: The class qlearner defines the basic interface for all the learner
classes which employ @Q-Learning. In these modules the stochastic, undirected
action selection (13) can be used:

P(als) = (13)

a'€A

where s is the robot state, a is the action to be executed from the action set A,

Q(s,a) is the estimated @ value using an update rule, and the parameter T is
called exploration temperature.

qlearnerER: The class qlearnerER extends the class glearner to include all
the necessary components for Experience Replay, Reward Distance Reduction
and Backstep Punishment. They contain a memory for experiences and methods
to record and recall of experiences.

| gr asplLear ner Cascade |

* includes severd

| gr aspLear ner |

includes
|q| ear ner ERt abl e2Mbdes |

* includes

| gl earner ERt abl e |

*inheritsfrom

| gl earner ER |

* inherits from

| gl ear ner |

Fig. 13. Hierarchy of the learner objects.

qlearnerERtable: The class qlearnerERtable implements the table of the
Q@-value.

qlearnerERtable2Modes: The class qlearnerERtable2Modes is a container-
class for more gqlearnerERtable objects. For example, one object learns the
translational motion, another learns the rotation.

graspLearner: The class graspLearner includes a qlearnerERtable2Modes
object.

graspLearnerCascade: The class graspLearnerCascade realizes a learner
cascade. It is a container-class for multiple graspLearner objects.

Based on this object hierarchy, grasping experiments with real objects (Fig. 14)
were successfully carried out.

8 A Complete Recognition-Grasping Example

We now show a complete sample run of the hybrid system composed of a recog-
nition subsystem and the learned grasping controllers. For the scene shown in
Fig. 15 all steps are performed in an integrated way: a top view image is taken
(Fig. 15a); the recognition system based on fuzzy invariant indexing (FII) [6]
detects the objects of interest (Fig. 15b); the manipulator moves approximately
above the object; the evaluation of hand-camera images guides the gripper di-
rectly to the grasp position; the object is grasped.

(4]
- 3

(a) Original Image (b) Result

Fig. 15. Test scene (left) and recognized slats (right).

The task to be solved is the grasping of a slat (Fig. 15a). The FII-recognition
system provides all the slats in the image (occluding each other or not), see
Fig. 15b.

As we have not yet implemented heuristics that automatically pick a slat
according to some given criteria, we manually choose the one that is not difficult
to grasp: the 3-hole-slat lying on top of the 7-hole-slat. Figure 16 shows a part
of the image sequence taken by the hand camera; the right row shows the results
with the 7-hole-slat clipped based on the position information obtained by the
FII-recognizer.

Finally, as shown in Fig. 17, the slat is grasped successfully.

9 Conclusions

The innovation of the approach lies in the automatic coding of robot states and
the application in the visually guided grasping. While the representation based
on purely geometric features is suitable for long objects, this approach can be
applied to objects with arbitrary shapes, also when no robust geometric features
can be extracted. Based on this representation, the robot states during the vi-
sually guided motions are represented with the minimal number of parameters.
Supervised as well as reinforcement learning can be therefore put into practice for
a wide range of grasping operations. This approach has the following advantages
over classical approaches:

10:

(a) Original image (b) Result

Fig. 16. Images of the hand camera taken at different time stamps.

Fig.17. Grabbed 3-hole-slat

Calibration-free. The camera need not be calibrated with respect to the
hand/arm.

Minimal state coding. Three geometric features from the camera images
are suggested for representing the 3D position of the robot-object relation. The
method using combination of principal components and transformation to an
atan2 function value is universal for arbitrary object shapes. The minimal num-
ber of orientation state coding can be found by our algorithm.

Model-free. No model for recognizing an object is needed. Thus, it is no
longer necessary to implement special algorithms for each object.

Robust. The appearance-based approach is robust even when the camera
focus is not correctly adjusted or objects are soiled.

Our current work aims at introducing a hierarchy to automatically divide a
complex image sequence into local “situations”. A local controller for one situa-
tion should contain a limited number of output-related features and at the same
time minimize the learning error. To enhance each local controller in diverse
complex environments, we are also working on adding further components to
the input vector, like redundant camera data, as well as some robust, easily ex-
tractable features because the proposed neuro-fuzzy model intrinsically possesses
the capability of integrating multiple sensors and multiple representations.

In the future, the complete quality of a grasping trial will be automatically
evaluated by active cameras and active test motions. After the grasping, other
cameras which have good viewing points can take images which are further
processed to estimate the grasping quality. As grasping with a human hand, an
optically correct positioning over an object does not guarantee a stable grasping.
Test motions can be programmed for the grasping hand, e.g. along the normal,
orientation and approach vectors. The cameras should monitor the grasp fin-
gers and the object continuously. By using visual monitoring and force-guarded
motion, the grasping hand can actively place the object on the table. The slip
motion between the object and the hand can be detected by evaluating the
force/torque sensors. The possible large position changes can be found by the
hand-camera.

References

1. J. S. Albus. A new approach to manipulator control: The Cerebellar Model Artic-
ulation Contorller (CMAC). Transactions of ASME, Journal of Dynamic Systems
Measurement and Control, 97:220-227, 1975.

2. M.J. Black and Allan D. Jepson. “EigenTracking: Robust Matching and Tracking
of Articulated Objects Using a View-Based Representation,” Proceedings of the
ECCV’96, Cambridge, pp. 329-342, 1996.

3. I. Kamon, T. Flash, and S. Edelman. Learning to grasp using visual information.
In Proceedings of the IEEE International Conference on Robotics and Automation,
pages 2470-2476, 1996.

4. Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research, 4:237-285, Mai
1996.

10.

11.

12.

13.

I. Kamon, T. Flash, and S. Edelman. Learning visually guided grasping: A test case
in sensorimotor learning. IEEE Transactions on System, Man and Cybernetics,
28(3):266-276, May 1998.

A. Knoll, J. Zhang, T. Graf and A. Wolfram. Recognition of Occluded Objects
and Visual Servoing: Two Case Studies of Emplying Fuzzy Techniques in Robot
Vision. In “Fuzzy Techniques in Image Processing”, edited by E.E. Kerre and M.
Nachtegael, Springer Verlag, 2000.

W. T. Miller. Real-time application of neural networks for sensor-based control of
robots with vision. IEEE Transactions on System, Man and Cybernetics, 19:825—
831, 1989.

S. K. Nayar, H. Murase, and S. A. Nene. “Learning, positioning, and tracking
visual appearance,” Proceedings of the IEEFE International Conference on Robotics
and Automation, pp. 3237-3244, 1994.

T. Sanger. An optimality principle for unsupervised learning. Advances in neural
information processing systems 1. D. S. Touretzky (ed.), Morgan Kaufmann, San
Mateo, CA, 1989.

Sebastian Thrun and Anton Schwartz. Finding Structure in Reinforcement Learn-
ing. In Advances in Neural Information Processing Systems 7, pages 385-392,
1995.

G.-Q. Wei, G. Hirzinger, and B. Brunner. Sensorimotion coordination and sen-
sor fusion by neural networks. In Proc. IEEE Int. Conf. Neural Networks, San
Francisco, pages 150-155, 1993.

J. Zhang, A. Knoll, Constructing fuzzy controllers with B-spline models — principles
and applications, International Journal of Intelligent Systems, 13(2/3):257-285,
Feb/Mar, 1998.

J. Zhang, Y. von Collani, and A. Knoll. Interactive assembly by a two-arm robot
agent. Journal of Robotics and Autonomous Systems, 29:91-100, 1999.

