
HANDLE

Developmental pathway towards autonomy 

and dexterity in robot in-hand manipulation

Deliverable 24

Parameterizing and  creating
new actions

    

Due date of deliverable: Month 36
Actual submission date: Month 36

Partner responsible: UHAM

Version 1.1

Classification: PU
Grant Agreement Number: 231640
Contract Start Date: 2009-02-02
Duration: 48 Months
Project Coordinator:  UPMC
Partners:  UPMC, SHADOW, UC3M, FCTUC, KCL, ORU, UHH, CEA, IST 
Project website address: www.handle-project.eu



Revision History

Date Version Change Author

2011.09.14 0.1 created fnh

2011.12.13 0.2 synergies section fnh

2012.01.11 0.3 action-gist material cg

2012.01.21 0.4 IST-object set experiments fnh

2012.01.28 0.5 partner review

2012.02.01 1.0 revision and final version fnh

2012.03.12 1.1 postural synergies analysis alex, fnh

Future Revision
Note: it is planned to revise and extend this report (version 1.2) with additional
experimental data as soon as the tactile-sensing upgrade on the UPMC hand has
been completed and the demonstrator platform is available for experiments.

ii



Contents
1 Abstract 1

2 Experiment setup for recording robot motion 5
2.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Cyberglove calibration . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Calibration Sequence . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Examples from the Grasp Taxonomy . . . . . . . . . . . . . . . . . 16
2.6 In-hand rotation examples . . . . . . . . . . . . . . . . . . . . . . 17

3 Parameterizing grasping motions 19
3.1 The IST benchmark object set . . . . . . . . . . . . . . . . . . . . 22
3.2 Example grasps and parameters . . . . . . . . . . . . . . . . . . . . 24
3.3 Lessons learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Grasp synergies 35
4.1 Grasp planning using the GraspIt! simulator . . . . . . . . . . . . . 35
4.2 Eigengrasps for the Shadow hand . . . . . . . . . . . . . . . . . . . 37
4.3 Grasping complex objects . . . . . . . . . . . . . . . . . . . . . . . 39
4.4 Precision-grasp experiments . . . . . . . . . . . . . . . . . . . . . 40
4.5 Synergies derived from the grasp experiments . . . . . . . . . . . . 40
4.6 Synergies and Object Affordances . . . . . . . . . . . . . . . . . . 44
4.7 Ongoing work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Parameterizing manipulation sequences 47
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Meta Motion Definition . . . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Action Gist from Data-glove . . . . . . . . . . . . . . . . . . . . . 51
5.5 Action Gist Generalization from Demonstration Set . . . . . . . . . 55
5.6 Experiment and Discussion . . . . . . . . . . . . . . . . . . . . . . 56
5.7 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . 62

6 Summary 65
6.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

References 67

iii



List of Figures
1 Hand recording experiment setup . . . . . . . . . . . . . . . . . . . 7
2 Software architecture of the recording tool . . . . . . . . . . . . . . 10
3 User-interface of the recording tool . . . . . . . . . . . . . . . . . . 11
4 Finger movement labeling . . . . . . . . . . . . . . . . . . . . . . 12
5 Cyberglove-II and Shadow Dextrous Hand . . . . . . . . . . . . . . 14
6 User-interface of the glove-calibration tool . . . . . . . . . . . . . . 14
7 Hand poses for the glove calibration sequence . . . . . . . . . . . . 15
8 Example grasps from the grasp taxonomy . . . . . . . . . . . . . . 16
9 In-hand rotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
10 Tool use: scissors . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
11 Global planning strategy . . . . . . . . . . . . . . . . . . . . . . . 20
12 Grasp adaptation and execution . . . . . . . . . . . . . . . . . . . . 21
13 IST object set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
14 Palmar-pinch grasp examples . . . . . . . . . . . . . . . . . . . . . 26
15 Parallel-extension grasp examples . . . . . . . . . . . . . . . . . . 26
16 Grasping the large blue box object . . . . . . . . . . . . . . . . . . 27
17 Palmar-pinch grasps for the IST object set . . . . . . . . . . . . . . 28
18 Tip-pinch grasps for the IST object set . . . . . . . . . . . . . . . . 29
19 Lateral grasps for the IST object set . . . . . . . . . . . . . . . . . 30
20 Writing-tripod grasps for the IST object set . . . . . . . . . . . . . 31
21 Addiction grip and writing tripod . . . . . . . . . . . . . . . . . . . 33
22 GraspIt!-Eigengrasp planner . . . . . . . . . . . . . . . . . . . . . 36
23 First two Eigengrasps for the Shadow Hand . . . . . . . . . . . . . 38
24 Examples of Eigengrasp-planner grasps . . . . . . . . . . . . . . . 39
25 Hand poses for the origins of eigenspace . . . . . . . . . . . . . . . 41
26 Cumulative eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . 41
27 Pose reconstruction errors . . . . . . . . . . . . . . . . . . . . . . . 42
28 Synergies for the writing-tripod grasp . . . . . . . . . . . . . . . . 43
29 Synergies for the parallel-extension grasp . . . . . . . . . . . . . . 43
30 Hand coordinates: opposition, ventral, lateral . . . . . . . . . . . . 45
31 Correlation of synergies with object dimensions . . . . . . . . . . . 45
32 Definition of finger coordinates . . . . . . . . . . . . . . . . . . . . 51
33 Definition of meta-motion . . . . . . . . . . . . . . . . . . . . . . 51
34 Node assignment of the Gaussian MRF . . . . . . . . . . . . . . . 52
35 Glove mapping for the first finger . . . . . . . . . . . . . . . . . . . 53
36 Rotating a star-like block . . . . . . . . . . . . . . . . . . . . . . . 57
37 Action gist of rotating a block . . . . . . . . . . . . . . . . . . . . 58
38 Action gist of rotating a block, σ = 20 . . . . . . . . . . . . . . . . 59
39 Raw glove trajectory for the middle-finger . . . . . . . . . . . . . . 60
40 Action gist of rotating a block when Iji = 1 . . . . . . . . . . . . . 61
41 Raw glove trajectory for the first finger . . . . . . . . . . . . . . . . 62

iv



42 In-hand rotation of a ladle . . . . . . . . . . . . . . . . . . . . . . . 62
43 Action gist of ladle rotation . . . . . . . . . . . . . . . . . . . . . . 63

List of Tables
1 IST object set attributes . . . . . . . . . . . . . . . . . . . . . . . . 23
2 Meta motion condition . . . . . . . . . . . . . . . . . . . . . . . . 54
3 Action gist ranking of star-like block rotation . . . . . . . . . . . . 64
4 Action gist ranking of ladle reconfiguration . . . . . . . . . . . . . 64

v



vi



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

1 Abstract

This report summarizes the current research regarding parameterizing and creat-
ing new actions within the HANDLE project. We describe the methods and al-
gorithms developed in the project (task 3.2) for creating new actions, in particu-
lar the parameterization of action descriptions in action-space metrics. Therefore,
the report is concerned with the behaviour of the Shadow Dextrous Hand and its
motion-primitives, when performing either simple (static) grasps or sequences of
manipulation motions.

In this initial step towards the creating of new actions, the modeling and the ex-
pected effects of using target object affordances plays only a minor role; see [71]
for a review of the work performed so far. The upcoming reports D30 and D31
will provide a much better solution in this regard. For now, we concentrate on the
definition of action space metrics to measure similarity in motor-terms — the mea-
sured joint-angles defining the hand-pose and tactile-sensor readings. However, the
data also includes model-specific data like air-pressure for the Shadow C5-type air-
muscle-hand, or the motor-currents for the C6-type motor-hand and the prototype
of the new CEA hand [76,77,82], where the motor-current is related to joint-torque.
As sketched in the project proposal and technical annex, a clustering in the action
space followed by (where possible, linear) interpolation of the motion-primitives
is used, providing the grasp-planning with a suitable initial solution in the action-
space while also supporting generalization of object properties.

Outline of this report The remainder of this report is structured as follows. While
the database of human grasps recorded and compiled by the project provides a rich
source of information [63, 68], the direct transfer to the Shadow Hand has proven
more difficult than initially expected. Therefore, the project decided to slightly ad-
just and enlarge the scope of work-package WP1 and to also record a database of
grasps performed directly by the Shadow hand — while tele-operated and super-
vised by human experimenters to ensure the most human-like hand poses possible.
Section 2.1 describes the reason behind this, and presents the setup and results of
a first series of grasp experiments. All grasp-classes listed in the grasps taxon-
omy [68] were targeted by those experiments. In order to ensure the most human-
like grasps for the set of target objects, human-teleoperation via the Cyberglove was
used to control the hand, with careful adjustment of the finger-positions. The exper-
iments were repeated by multiple test persons, allowing us to determine and analyse
the “typical” human grasps. The results provide a ground-truth for the later experi-
ments and confirm and extend previous work performed with the Shadow hand [17].
In particular, we demonstrate the ability of the Shadow hand to pick up and grasp a
variety of everyday objects and tools.

Section 3 then concentrates on the parameterization of the basic grasping skills. It
first summarizes the basic grasp-planning algorithms proposed by the project [70],
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and then reviews the concepts from [80] regarding basic skills. Obviously, many
of the grasps from the overall taxonomy, including all power-grasps, leave little
room for finger movements or adjustments once the fingers are closed around the
target object. Therefore, the section concentrates on the grasps we consider essen-
tial for manipulation and tool use, in particular variants of the pinch-grasp (thumb
+ index-finger) and the variants of the tripod-grasp. Again, human-teleoperation
experiments were recorded on the UHAM C5 hand, and results are analysed and
extrapolated to objects of different size and hands of different kinematics and joint-
coupling. The object set was suggested and provided by partner IST and will also
be used for recording similar experiments on the iCub hand. To confirm our analy-
sis, additional experiments and an update of this report are planned, as soon as the
tactile sensing solution [80] has been installed on the Paris C6 demonstrator hand
and is available for recording.

The basic grasps studied in the previous sections cover only a small percentage of
the overall state-space of a dextrous multi-fingered hand. To overcome the curse
of dimensionality — grasping with the Shadow C5/C6 hands or the upcoming CEA
hand involves the control of 20-DOF for the fingers and hand pose alone, in addition
to the 6-DOF inherent to the relative orientation of the hand and a rigid object
— a more radical approach is needed. The role of grasp synergies is well-known
from physiology [20] and forms the topic of section 4. We first summarize the
eigengrasp concept and algorithms available in the GraspIt! simulator [22–24] and
the Columbia Grasp database [25]. Using an empirical mapping from the original
Santello synergies to the Shadow hand, we then show how the Eigengrasp-planner
can also be extended to grasp-planning on the Shadow hand, using arbitrary 3D-
objects and also 3D-obstacles.

Unfortunately, neither the GraspIt! Eigengrasp-planner nor the auto-generated
grasps available in the Columbia Grasp Database consider object affordances or the
context of object manipulation. Instead, the standard goal-function of the Eigen-
grasp-planner is still grasp-stability, so that most grasps recorded in the CGDB are
power-grasps and form-closure grasps with little or no leeway for object manipula-
tion. Apart from isolated attempts [37, 40], no suitable goal-oriented grasp quality-
measures for manipulability are available. Section 4.4 describes our initial attempt
at recording grasp-synergies and movement-skills for the Shadow C5 hand. This
includes the Principal Component Analysis of grasps already described in the pre-
vious section, as well as the modeling of task context. We also propose an algorithm
to modify the finger-pose in order to adapt the basic hand-pose to the given object
and given finger-kinematics based on tactile feedback. The strategy will be tested
and demonstrated on the Shadow C6 hand as soon as possible, proving viability for
generalization to the CEA hand design and future multi-fingered hands.

The last section of this report presents a novel approach for analysis and representa-
tion of finger-gaiting manipulation sequences. As described in [21], human in-hand
manipulation can be reduced to a small number of basic movements. We propose to

2
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use a Gaussian Random Markov Field network to represent the finger-movements
recorded by human-demonstration, and demonstrate the use of the analysis.

The report concludes with a short summary and the list of references.
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2 Experiment setup for recording robot motion

The recording of human grasping and manipulation actions has been the first major
activity of the project, and by now the HANDLE grasp database contains traces for
a large number of experiments [68, 74], ranging from simple pick-and-place tasks
to fully dextrous manipulation. Given the unique multi-sensor setup with its inte-
gration of absolute finger-tip position (Polhemus), relative hand-pose (Cyberglove),
tactile-data (TekScan), and data from instrumented objects (Shadow), the record-
ings provide a rich source of information for learning from human demonstration.
Good progress has been made to annotate the recorded sequences according to the
proposed grasp taxonomy and the Laban motion analysis [18], see deliverable [74]
(chapter 4) for details. Additionally, approaches towards fully- (or at least semi-)
automatic segmentation and annotation of the sequences based on the analysis of
the finger-motions and tactile data have been proposed [19, 74] by the project.

Despite of this, the direct transfer of the human grasping-skills to the Shadow Dex-
trous hand has proven to be more difficult than expected. With 24-DOF overall,
and 20-DOF controllable, the Shadow hand matches the human hand in shape, size,
and finger kinematics. However, a few key differences remain, and several human-
like grasps turned out to be surprisingly difficult to perform with the robot; see
section 3.3 below for a few examples and some comments.

One reason for this is obvious regarding the human recordings: no two human hands
are the same. Of course, the rest position of the experimenters’ hands with the
data-glove and the sensors on the hand have been documented for our experiment
recordings, but despite of this the extraction of the hand kinematics has turned out to
be extremely difficult. For several of our human experiments, the Polhemus tracking
sensors were mounted on top of the TekScan tactile sensor, this in turn on top of
the CyberGlove data-glove, and of course the glove was only worn on the fingers,
not glued or fixed to the hand [63,64]. Even a slight movement of the fingers inside
the glove can shift all of the sensors and might require a lengthy recalibration, or a
very complex estimation of the sensor-positions from the recorded data itself, e.g.
by checking for certain invariants like a known size of the grasped object. Some of
the issues related to the mapping from the human hand to the robot have been noted
in previous deliverables [69, 78].

Therefore, we decided to try the obvious alternative, and to also record grasps and
manipulation tasks with the Shadow hand itself. The basic idea is to tele-operate the
Shadow hand under full control of the experimenter, and to only record those grasps
or manipulation sequences where the experimenter accepts them as “human-like”.
As the kinematics of the Shadow hand is known exactly, this approach completely
bypasses any issues of calibration and augments our database with known finger
positions and trajectories. Given a 3D-model of the target object, the known kine-
matics of the hand also allows us to reconstruct the contact points during the whole
manipulation sequence.

5
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Now the new problem arises on how to control the robot so that the resulting finger
movements may be considered human-like. The original plan to provide a tactile-
glove solution on the Shadow-hand has failed and had to be abandoned due to prob-
lems with the TekScan sensor [67]. Instead, we ended up on a rather straightforward
tele-operation setup with the Shadow hand controlled by the CyberGlove sensor.
The overall sensor setup is described in the next subsection 2.1, and some details
about the software-architecture are given in subsection 2.2. The key to operating
the hand under full human control is the mapping from the CyberGlove-II sensors
to the Shadow hand; this is described in subsection 2.3.

This section concludes with the demonstration of a few complex grasps from the
grasp-taxonomy in subsection 2.5 and a demonstration of in-hand manipulation 2.6
using the proposed glove-calibration system.

2.1 Experiment setup

As explained above, the direct analysis of human grasping motion has turned out to
be more difficult than expected, not least of all due to the different hand-shapes of
the different experimenters. One way to bypass this problem is to use the Shadow
hand itself to perform the grasps, and this approach has been tried out during a
recent joint recording campaign in Hamburg.

This subsection first describes the experiment setup currently installed at UHAM,
see figure 1 for a photo. The setup consists of the Shadow C5 (air-muscle) Dextrous
Hand mounted onto a Mitsubishi PA-106C robot arm, with the CyberGlove-II data-
glove used for tele-operation of the hand. Several cameras, the Kinect, and a variety
of other additional sensors are available:

• Shadow C5 air-muscle-hand: This version of the Shadow Dextrous hand
shares the same geometry and kinematics as the C6-type motor hand, but
the tendons are actuated by a pair of McKibben-style air-muscles for each
controllable joint instead of electrical motors. The muscles are elastic and
provide full passive compliance, resulting in good grasp stability for a large
variety of static grasp poses, but the actuation is slower (and more noisy) than
the electric motors on the C6 hand.

For the experiments described in this report, we rely on the basic joint position
control algorithms provided by the Shadow real-time (RTAI) software. In
principle, separate PID-control parameters can be used for the two muscles
in each antagonistic pair, allowing for stiffness control, but this has not been
used so far. Our recording software connects to the Shadow RTAI drivers
and collects the actual joint-angles, target joint-angles for position-control,
available tactile-data, and muscle air-pressure for all joints. Joint-torque data
is not available directly, but for static grasps it may be estimated indirectly for

6
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Figure 1: The experiment setup in Hamburg, with the Shadow air-muscle hand
mounted on the PA-106C robot arm and tele-operated via the CyberGlove-II. The
objects on the table are from the IST object set (compare section 3.1). A Kinect
sensor is mounted below the robot base; the multi-camera system is not shown.
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static grasps from the air-pressure in the muscles, the corresponding elasticity
of the muscle, and the difference between target setpoint and actual joint-
position.

Note that recording of the hand state is possible at full speed, with about
100 Hz sample-rate used for the experiments reported here. However, con-
trolling the hand setpoints had to be slowed down to approximately 10 Hz,
due to intermittent bugs in the Shadow control-software and firmware. Given
the compliance and slow actuation of the air-muscles, this has not been a
major obstacle for the experiments.

• CyberGlove-II: The Immersion CyberGlove-II data-glove is widely consid-
ered the best input-device for recording human hand pose. It provides 22-
DOF, including 2-DOF for the wrist and 4-DOF of the thumb.

• PA10-6C: The Shadow hand is currently mounted onto a standard Mitsubishi
PA10-6C robot arm. The arm has six rotational joints, has a total reach of
approximately one meter, and a nominal payload of 10 kg. We bypass the
Windows-based control-software provided by Mitsubishi and use the open-
source RCCL robot control library [16] for FK/IK and trajectory execution
under Linux. The robot is wall-mounted and has been calibrated to the
workspace with an accuracy of about 1 mm.

• PSeye camera system: The vision system for the experiments consists of a
total of three cameras, in a co-linear orientation which can be used as two
stereo-camera pairs [90]. The Sony PSeye cameras provide RGB images of
640x480 pixels, at frame-rates of up to 60 fps. The price/performance ratio of
these cameras is exceptional, and automatic white-balance and gain-control
work well.

• Kinect: The Kinect sensor from Microsoft/PrimeSense has established itself
as the de-facto standard device for the recording of high-quality 3D point-
clouds, fused point-clouds and color-images, and high-level feature-detection
like skeleting and human pose-detection. Our current setup includes a Kinect
mounted onto the wall just below the base of the robot arm, so that the ex-
periment table is within the best range of the Kinect. However, the arm and
Shadow hand will obviously occlude the sensor during execution of most
grasping task.

Pose reconstruction

The pose of the Shadow-hand in the workspace can be calculated with good accu-
racy from the recorded joint-angles of the robot arm simply by following the known
kinematic chain. The main source of error is the noise and calibration of the wrist
joint-angle sensor of the Shadow hand.

8
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No separate sensor system is available in our setup to track the pose of the target ob-
ject. Instead, we rely on pose-estimation and stereo-reconstruction from the vision
systems. Experiments with marker-based tracking using the three-camera system
have shown a position accuracy of roughly 1 mm after stereo-reconstruction [90].

A number of additional optional sensors are also available for our experiments:

• Force/torque sensor: We recently acquired an ATi Delta-45 force/torque sen-
sor, to be installed between the PA10-6C arm and the base of the Shadow
hand. This will provide force information during object handling and reduce
the risk of collision damage. The sensor was not available in time for the
experiments reported here.

• Shadow Instrumented Object: One instrumented soda can force-sensing ob-
ject [62] has been provided by Shadow. This has not been used in the experi-
ments reported here.

• Wiimote and Nunchuk: The Nintendo Wii remote controller (“Wiimote”) has
been selected as the target object for one of the project scenarios. Its internal
accelerometer provides pose information and may be used to detect finger
contacts and slippage. It will be used as an instrumented object, where the
robot hand grasps, re-grasps, and re-orients the object, and where the thumb
and fingers find and press the buttons.

• Other sensors: Similar to the Wiimote, the (very small) JoyWarrior ac-
celerometer provides pose estimation. It will be used as an instrumented
object for learning in-hand rotation tasks.

2.2 Software

All individual hardware devices from our setup are connected to two computers
running Linux, with the first computer running a real-time kernel for controlling
the Shadow hand, and the second system controlling the sensors and the robot arm.
Most of the sensors use their own proprietary low-level data-format, but the re-
quired device drivers are readily available. The RCCL library for controlling the
arm requires a special kernel module and connects to the robot via an optical Arc-
net interface, but the driver code could be re-used from a previous project.

To simplify the recording of the tele-operation experiments, we developed a special
software tool. It connects to all the sensors, either directly or communicating via
TCP/IP with a corresponding small server, and provides a graphical user-interface
that allows the user to set up, control, and analyse the experiments.

The software architecture of the tool is shown in figure 2, where the basic data-flow
is from the sensors on the left to the actuators on the right. The joint-angle data from

9
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the data-glove is first calibrated and mapped to the kinematics of the Shadow hand.
This data is then sent via TCP/IP to either the GraspIt! simulator for visualization
(top right) or via TCP/IP to the Shadow hand server (middle right), or both. Arm
motion commands are also sent via TCP/IP to the arm-server.

Both the hand server and the arm server send their current state periodically back to
the tool, where the data is timestamped and can be recorded together with the raw
data from the glove and the vision sensors. For best compatibility with the existing
human recordings from WP1, we decided to store all experiment data as XML-files
in the format as specified in D4 [63]. The data corresponding to an experiment is

glove
.xml .xml

hand pa10
.xml

camera*
.jpg/.avi .xml

wiimote
.bag

kinect

PS eye

OpenNI

ROS + rosbag

JNI

libcwiid

V4L2

gstreamerPS eye

robot arm

hand server

GraspIt! TCP/IP

XML formatter and parsers

synchronization and timestamps

PS eye

GraspIt! visualization

Wiimote

Kinect

CyberGlove-II

Shadow Hand

glove calibration joint mapping

user-interface and annotations

arm server

GUI

Figure 2: Software architecture of the recording tool. The main user-interface con-
trols access to all functions and allows the experimenter to either save momenta-
neous snapshots or sequences of sensor-values — including data-glove pose, hand-
state, arm-movements, images-and videos, point-clouds, and the data from a variety
of other sensors. Incoming finger joint-angles from the data-glove are calibrated,
mapped to the Shadow-hand kinematics, and forwarded to both the real Shadow
hand and to the GraspIt! simulator for visualization. Recorded data is stored in
XML-files compatible with the Handle database format [63,68] or as ROSbag files.
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stored as individual files, one per sensor or device, with a header including device
information and all available calibration information, followed by the data section
with the time-stamped raw data. Where required, the low-level drivers of the sensors
were updated to provide their data in this format. Our Java library for analysis of the
human-recordings (hdbt.jar) was updated with the corresponding XML formatters
and parsers. The tool can be used standalone or from Matlab, and complements the
existing tools and parsers from WP1. It is available on the project SVN server.

Figure 3 shows a screenshot of the user-interface. The top row shows the visualiza-
tion of the grasp-class for the current grasp, plus images from the stereo cameras.
The set of buttons below that is used for updating the camera images, taking a snap-
shot (single sample) of the current grasp and sensor data, or recording manipulation
sequences. The recorded data can be plotted and the manipulation sequence can be
played back on the hand immediately. The panel below includes user-controls and
text-fields for annotation of the recorded sequences; the user selection is written
into the metadata section of the recorded hand XML files.

Figure 3: User-interface of the recording tool. The software connects to the Cyber-
glove and the Shadow hand, as well as additional sensors (e.g. robot-arm, instru-
mented objects, Wiimote).
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2.3 Cyberglove calibration

The data-glove is the obvious sensor for recording the human hand posture. How-
ever, as no two human hands are the same, a calibration step is essential for any
quantitative analysis. Even for a single test-person, a slightly different fit of the
glove will result in differing measured joint angles between different experiment
runs.

While an exact calibration might not be necessary for some data-glove applications
like virtual reality, the extra accuracy wanted for robotics and tele-operation appli-
cation has led to several approaches. The most basic algorithm performs a static
mapping from the known range of the glove sensors to the joint-angle limits of the
robot. A slightly better version records the actual minimum and maximum values
of each glove sensor during a quick initial calibration, or updates those minimum
and maximum values at runtime, and then maps to the known and constant joint-
angles from the robot. This approach is currently used in the ROS stack provided
by the Shadow robot company, and has the advantage that each robot joint can be
moved through its full range, independent from the experimenter’s hand shape. On
the other end of the spectrum of available algorithms, very complex mappings with
elaborate training sequences and complex algorithms to remove sensor-crosstalk
have been proposed.

The approach proposed in this work targets the following goals:

• quick and easy calibration procedure
• calibration should not take more than a minute
• good match for several important hand-poses
• mapping the glove abduction sensors to the Shadow hand
• suitable mapping for the thumb to allow precision-grasping
• intuitive control of the hand after calibration

Figure 4: Finger movements: abduction/adduction, flexure/extension (left), Label-
ing of the finger phalanges and joints: metacarpal, proximal, medial, distal (right).
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During calibration, the software developed in this work [89] presents images of a
set of carefully selected hand poses to the user, and optionally demonstrates the
hand poses on the Shadow hand itself. For each shown or demonstrated hand pose,
the user is asked to shape her hand accordingly, and the joint-values from the glove
are sampled and stored. Once all hand poses from the calibration set have been
recorded, the software uses regression to calculate a mapping from the glove to the
robot hand.

Mapping from the CyberGlove to the Shadow Hand

Due to the different sensor locations and sensor resolution, a mapping is required
to translate from the CyberGlove sensor values to the corresponding Shadow hand
joint angles. The goal here is to provide the user with an intuitive control that allows
for the re-creation of important grasp poses with minimal effort and good precision.

The CyberGlove-II used for the experiments provides a total of 22 sensors, with
three flexure sensors per finger, three abduction sensors placed between the fingers,
and one palm-flexure sensor. Four sensors measure the thumb position, and two
sensors are used for the wrist position (figure 5, left).

The kinematics structure of the Shadow hand is based on 24 joints, with four joints
(abduction, proximal, medial, distal) per finger, five joints for the thumb, two de-
grees of freedom for the wrist, and one extra joint near the little finger that mimics
palm-flexure movements. Note that the distal finger joints are underactuated from
their medial joints, resulting in a total of 20 controllable-DOF (figure 5, right). Due
to different designs of the tendon routing, the joint-coupling between the distal and
medial phalanges differs between air-muscle (C5) and motor (C6) variants of the
Shadow hand.

The mapping designed in this work [89] uses both 1:1 and 2:1 functions. The finger
flexure sensors from the CyberGlove are directly translated into the joint-angles of
the corresponding joints of the Shadow hand fingers. For other sensors, in partic-
ular the finger abduction, hand-flexure, and thumb positions, a 2:1 mapping from
CyberGlove values to Shadow hand joints is used.

Software-Architecture and User-Interface

The software consists of several components in a client-server architecture. The
main client module, written in Java, provides the user-interface, the calibration
and mapping routines, and the hardware interface to the Cyberglove via a helper
JNI library [87]. The application can be used in three different modes: standalone
for the glove calibration and the recording of grasp experiments, connected to the
GraspIt! simulator via a TCP interface, and connected to the real Shadow hand for
real-time teleoperation.
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Figure 5: Locations of the 22 sensors on the CyberGlove-II (left), and kinematics
structure of the Shadow Dextrous Hand (right).

Figure 6: The user-interface of the glove-calibration tool; including the buttons for
connecting to GraspIt! and the real robot, and the gain-sliders for online adjustment
of the calibration (left). Hand-Server GUI window with menu, and three columns
showing the target joint-angles, as well as the minimum and maximum angles for
every joint. Joints can be enabled and disabled individually (right).

2.4 Calibration Sequence

The interactive calibration sequence uses a set of carefully selected hand poses,
which are specified as joint-angles in an XML-file (calibration_set.xml). The user
is then shown a picture of the pose, and given a few seconds to shape his hand ac-
cordingly. The resulting finger positions are recorded during an interval of about
one second, averaging over multiple samples for suppression of noise and tiny er-
roneous hand-movements.
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Once all poses have been shown, the software writes another XML-file (cali-
brated_set.xml) with the measured CyberGlove joint angles, and then immediately
calculates the linear-regression coefficients for the mapping.

Note that the default poses include six different thumb orientations which cover
almost the whole workspace of the thumb. Precision-grasps with the middle- and
ring-finger also work well after calibration of the thumb in poses (4) and (6) above.

Figure 7: The seven hand poses currently used for the calibration sequence, as
visualized by the Shadow hand model in GraspIt!. The set includes stretched and
fully flexed fingers, finger abduction, and carefully selected thumb poses. The last
pose is used to calibrate the palm-arch sensor and the extreme range of the thumb.
The same thumb orientation is used in the first two poses to estimate the finger-
flexure crosstalk on the thumb sensors.
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2.5 Examples from the Grasp Taxonomy

To verify the viability of the data-glove calibration, we have first tried to perform all
grasps listed in the GRASP taxonomy, as adopted by the project [74]. For most of
the grasp classes and test objects, the control of the fingers and thumb was straight-
forward, and stable and robust grasps could be performed with the Shadow hand.
However, the fine control of the thumb has room for improvement for some grasps
and the experimenter may have to adjust thumb and fingers until reaching a suitable
pose for the Shadow hand. The figure below shows a few typical examples.

Figure 8: Example grasp-class poses performed under data-glove control: (a) light
tool, (b) power disk, (c) small diameter, (d) writing tripod, (e) parallel extension, (f)
addiction grip, (g) tip pinch, (h) quadpod, (i) ring.
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2.6 In-hand rotation examples

Experience shows that experimenters are able to adapt their thumb movements in
order to reach satisfactory Shadow hand shapes. One trick is to shape the thumb so
as to approximately reach the target position with the robot hand, and then to twist
the glove thumb slightly with the left hand in order to improve the target position.
In any case, using the glove is much faster and much more intuitive than using the
standard joint-sliders user-interface. The following images show a few snapshots
from an in-hand rotation applied to a small wooden block from the toy-sorting box
scenario, and trying to handle scissors.

Figure 9: Examples of the tele-operation using the calibrated data-glove: in-hand
rotation of a wooden block.

Figure 10: Examples of the tele-operation using the calibrated data-glove: scissors.
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3 Parameterizing grasping motions

Grasp-planning for multi-fingered hands has been an area of intensive research ever
since the first demonstration of the Utah hand [8]. The mathematical theory is
well developed by now [3], and several approaches have been proposed [2, 4–6].
An extensive survey of grasp-planning algorithms was included in recent project
deliverable D13 [70].

So far, most research still concentrates on the properties of static grasps, without
consideration of the grasp-context or manipulation sequences. A typical grasp-
planning goal is to find a finger pose and hand/object-contacts so that the stability
of the grasp is maximized against disturbances, e.g. external forces applied to the
grasped object. This criterion immediately leads to the further classification into
form-closure grasps, where the fingers geometrically enclose the object, and force-
closure grasps where contact-forces and friction are included in the calculation.
The latter requires the estimation of the friction parameters between fingers and
objects, and typically involves the calculation of friction-cones and wrenches for
every hand/object contact. The concept of independent contact regions described in
a previous deliverable [69] is one typical representation of this idea.

Not surprisingly, most work has assumed that the hand and fingers as well as the
target objects can be modeled as rigid bodies. In this case, the outer surface of
the hand and fingers can be specified by detailed 3D-meshes, and the position of
the fingers in space can be calculated by following the kinematic chain from the
robot-base through all links to the finger-tips. A similar calculation gives a detailed
3D-surface of the target-object in its current pose, and standard algorithms from
computer graphics are used to find finger/object contact-points or their collisions.
Efficient implementations of those algorithms are available, and several algorithms
can also be performed on current graphics hardware, resulting in very good or even
real-time performance. This approach is currently used in most robot- and hand-
simulators [24, 84, 85].

Unfortunately, while the exact geometry of the robot actuator may be known and
modeled with high accuracy, the target objects to be grasped are typically not known
in advance, neither are their pose and attributes. This is a major drawback for the
methods sketched above, because the search for good (or optimal) contact points
has to be performed anew given only a rough estimate of the object size and shape,
as provided by the robot sensors. Humans are known to perform tactile exploration
of the target scene, and a recent work [91] has indeed coined the term blind grasping
for tasks involving no pre-knowledge nor visual information about the manipulation
object.
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The HANDLE planning strategy

Of course, the scientific approach of project HANDLE has been designed to over-
come this fundamental problem, and the key ideas were summarized in deliverable
D13 [70]. The basic concept relies on and exploits the similarity of the structure
and kinematics between the Shadow Dextrous Hand and the human hand. Given a
human demonstration of any static grasp, there is a high probability of reproducing
this very grasp with the Shadow hand successfully when using a suitable mapping
of the human finger pose to the robot hand. The same holds for manipulation tasks,
provided that every hand pose used by the human demonstrator can be matched to
a corresponding pose of the robot hand.

data base of 
learnt skills

Learning

Recording

planning
Real-time

target
object

constraints
Real-time

motion primitives

Real-time
adaptation

Figure 11: (left) The HANDLE global planning strategy, (right) real-time adapta-
tion of learned skills under task-constraints. Redrawn after [70] (section III.1).

Based on the above assumption, the project proposed the following two-phase ap-
proach to grasp planning for anthropomorphic robot hands, see figure 11 and fig-
ure 12. The first phase involves the off-line learning of human-like grasps for a
set of prototype objects, annotated with the grasp-type from the grasp taxonomy,
task-context and any additional constraints. For every grasp, all relevant hand and
grasp-related data is recorded, including the relative pose of hand and object, the
finger joint-angles, tactile-sensor responses and estimated finger forces and torques.
Additional hand-specific data (e.g. air-pressure on the Shadow C5 muscle-hand, or
motor-torques and -temperatures on the C6 motor-hand) may be also included in
the data when considered appropriate. The raw data-sets are preprocessed to re-
duce noise and eliminate outliers, and are then clustered based on the object and
task-attributes. For the analysis presented in this report, we only consider the basic
object-shape and object-diameter, but we expect to also model and include more
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Figure 12: When facing a new task, the robot looks-up a prototype grasp matching
the approximate object-type and -size, as well as any additional task-constraints.
Initial hand-shape is derived from interpolation of the recorded prototypes, and
grasping is performed using tactile-feedback and local finger-position adaptation
using a suitable goal-function (e.g. independent contact regions).

complex object affordances in the future. Two typical examples would be to model
and memorize the rotation axis of a bottle’s screw cap or the offset from the grip to
the actual tool-tip of a screwdriver.

When facing a new manipulation task, the robot tries to recall and adapt a suitable
grasp from the learned human-like grasps. This involves the sequence of steps
sketched in figure 12. We assume that the instructions given to the robot provide
adequate task-context, and that the sensor information provides at least a rough
estimate of the target objects and environment constraints (e.g., obstacles). The
robot searches its database for grasps matching the estimated object shape, object
size, and task-context and constraints. When several matches are found, the most
suitable grasp-class is selected according to the immediate and future task-context,
or according to user-specified goal-functions like trying to minimize arm and hand
motion to conserve energy.
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When a suitable grasp is found, the relative pose of the hand with respect to the
(learned) prototype object is available. This is then checked with the robot-arm
kinematics and obstacle-maps to execute a suitable reaching motion towards the
target object. As soon as the hand is close to the expected object position, the fingers
are flexed to reach the grasp configuration corresponding to the learned prototype
grasp. In this pre-grasp phase, simple joint-level interpolation will be used to match
the actual target object size as estimated by the sensors to the (known) size of the
closest prototype objects. The actual grasp is then performed under close feedback
from the tactile sensors. Obviously, the robot observes its own actions and will
update its database according to the success (or failure) of the executed motion
primitives.

It should be noted that the previous step is the essential key to reduce the com-
putational complexity of the grasp-planning. Instead of having to fully search a
high-dimensional (say, 30-DOF) space to find contact positions on the target object,
the planner restricts itself to grasps known to be human-like. For the Shadow Hand
grasping a rigid and static object, the full search space includes the extrinsic 6-DOF
of the hand pose in 3D-space with respect to the object, plus the 20-DOF for the
controllable finger joint angles, or 24-DOF when also counting the joint-angles of
the underactuated (distal) finger joints.

The local search and adaptation of a previously learnt grasp reduces the search
space dramatically, especially when also relying on object symmetry (or key axis)
properties to approximate the approach and initial grasp positions. After the initial
grasp, the hand-object contact positions still have to be optimized by a search of the
hand state space, but this search is only local and simple gradient-descent algorithms
can be expected to perform well without being stuck in local minima far from good
global solutions.

3.1 The IST benchmark object set

It is natural to start the search for typical human-grasps with a simplified but typical
set of benchmark objects, representing typical object shapes.

For the recordings reported here, we used a set of twelve prototype objects sug-
gested by IST. See figure 13 for a photo of all objects together and refer to table 1
for the relevant object attributes and dimensions. The objects include three basic
shapes (sphere, cylinder, box), different object diameters matched to typical human
grasping tasks, and different materials (sponge, rubber, wood, metal).

Note that the same object set is used by IST for recording of grasps on the iCub
robot hand. This offers the opportunity to compare the performance of the Shadow
hand with a total of 24-DOF (20-DOF controllable) and the iCub hand with 20-DOF
(9-DOF controllable).
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Figure 13: The set of prototype objects suggested by IST. The objects include three
basic shapes (sphere, cylinder, box), different object diameters matched to typical
human grasping tasks, and different materials (sponge, rubber, wood, metal).

object name and grasp pose width/mm height/mm length/mm material
big green ball 86 86 86 sponge
medium green ball 64 64 64 rubber
small white ball 54 54 54 sponge
big red cylinder, top 64 76 76 metal
big red cylinder, side 64 76 76 metal
medium green cylinder, top 38 38 38 sponge
medium green cylinder, side 38 38 38 sponge
small red cylinder, top 59 27 27 wood
small red cylinder, side 59 27 27 wood
pen, side 150 12 12 metal
small purple cube 30 30 30 wood
large blue box, long side 77 39 39 sponge
large blue box, short side 77 39 39 sponge
medium orange box, long side 60 30 30 wood
medium orange box, short side 60 30 30 wood
small red box, long side 60 14 29 wood
small red box, short side 60 14 29 wood
small red box, medium side 60 14 29 wood
large yellow box, short side 80 80 38 sponge
large yellow box, long side 80 80 38 sponge

Table 1: Attributes of the prototype objects from the IST object set.
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3.2 Example grasps and parameters

During the experiments, the objects were presented to the test-person in a fixed order
(spheres first, then cylinders and boxes), but only for those grasps that were possible
given the hand kinematics, or useful given the task. For example, the writing-tripod
grasps were only recorded for the cylinders, and the addiction grasps only for the
small objects.

For the first round of experiments, example grasps were recorded for eight grasp-
classes:

• LATERAL_TRIPOD
• PALMAR_PINCH
• TIP_PINCH
• LATERAL
• WRITING_TRIPOD
• ADDICTION_GRIP
• PARALLEL_EXTENSION
• TRIPOD

The data shown in the following figures was recorded as soon as the test-person
operating the hand announced that the current hand pose was a suitable grasp pose
for the given object and task. The following figures present a first analysis of the
recorded data, sorted by grasp-classes. A separate plot is shown for each of the fin-
gers and the thumb, with different colors representing the finger-joints and different
markers corresponding to the test-persons. While the joint-angle of the distal (un-
deractuated) finger-joint has been recorded, its value only depends on the joint-angle
of the medial finger-joint, and as such has been omitted from the figures in order to
reduce visual clutter. (For the Shadow C5 muscle-hand, θDIP ≈ θPIP + 10◦). The
abbreviations are the same as used in the Shadow RTAI control software, namely:

• FF first-finger (index-finger)
• MF middle-finger
• RF ring-finger
• LF little-finger (pinkie)
• TH thumb

The color-scheme used is as follows:

• red FFJ2, MFJ2, RFJ2, LFJ2 (medial joint flexure)
• green FFJ3, MFJ3, RFJ3, LFJ3 (proximal joint flexure)
• blue FFJ4, MFJ4, RFJ4, LFJ4 (proximal joint abduction)
• black LFJ5 (palm-flexure)
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Refer to figure 5 on page 14 for the sketch of the Shadow Dextrous Hand kine-
matics. For the thumb, all five joints are recorded, where THJ1 (red) refers to the
distal phalange flexure, THJ2 (green) and THJ3 (blue) define the medial phalange
flexure and abduction, while THJ4 (black) and THJ5 (magenta) represent the thumb
rotation.

Note that the test-persons performed and requested several trials for some grasps; all
raw values recorded are included in the following figures. Where necessary, the data
will be sorted and post-processed manually for best significance of the clustering.
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Figure 14: Examples of palmar pinch-grasps on large, medium, and small objects.

Figure 15: Examples of parallel-extension grasps. Note that the human-like grasps
do not care about the location of the tactile sensors.
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Figure 16: Example grasps performed on the large blue box object: (a) tripod,
long side, (b) tripod, short side, (c) palmar-pinch, long side, (d) palmar-pinch, short
side, (e) lateral, short side, (f) parallel extension, short side, (g) tip-pinch, long side,
(h) lateral-tripod
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Figure 17: Palmar-pinch grasp for the different objects. The diagrams plot the joint-
angles for the first-finger (FF), middle-finger (MF), ring-finger (RF), little-finger
(LF) and thumb (TH). The colors encode the joints: medial (red), proximal (green),
abduction (blue). Different marker symbols correspond to different experimenters.
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Figure 18: Tip-pinch grasp for the different objects. The diagrams plot the joint-
angles for the first-finger (FF), middle-finger (MF), ring-finger (RF), little-finger
(LF) and thumb (TH). The colors encode the joints: medial (red), proximal (green),
abduction (blue). Different marker symbols correspond to different experimenters.
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Figure 19: Lateral grasp for the different objects. The diagrams plot the joint-angles
for the first-finger (FF), middle-finger (MF), ring-finger (RF), little-finger (LF) and
thumb (TH). The colors encode the joints: medial (red), proximal (green), abduction
(blue). Different marker symbols correspond to different experimenters.
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Figure 20: Writing-tripod grasp for the different objects. Note that the grasp is
only useful for the cylinders from the object set. The diagrams plot the joint-angles
for the first-finger (FF), middle-finger (MF), ring-finger (RF), little-finger (LF) and
thumb (TH). The colors encode the joints: medial (red), proximal (green), abduction
(blue). Different marker symbols correspond to different experimenters.
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3.3 Lessons learned

The following list summarizes some of the insights gained during the tele-operation
experiments, including feedback from the experimenters and some issues with the
recording software and hardware. Even after glove-calibration, the mapping of the
thumb movements was found to be acceptable only in parts of the thumb workspace.
A more complex mapping might be required to improve the efficiency of recording
a large number of grasps.

• PST-type tactile sensors: The current generation of PST-type tactile sensors
provided by Shadow worked reliably during the whole recording sessions.
This includes some software fixes required for the muscle-hand, which lim-
ited sensor sensitivity and stability in the previous version. The sensitivity
and dynamics range of the sensors is now matched to typical grasping forces.

However, due to the construction of the PST sensors, only contacts on the
interior part of the fingertip result in a useful signal. For most of the recorded
grasps, the human-like grasps include contacts on either the top or the side of
the fingertips, and no tactile information is available for those contacts.

• Lateral grasps: The lateral- and lateral-tripod grasps were easy to perform,
as the glove calibration worked reasonably well for the required thumb po-
sitions, and those grasps were recorded very quickly. The grasps were also
surprisingly stable, due to the passive compliance of the muscle-hand.

However, the contact points are on the side of the index finger for the lat-
eral grasp, and on the side of the middle finger for the lateral tripod, where
no tactile sensing is available on the muscle-hand. On the motor hand, the
forces might be recorded by the tendon strain-gauges for the abduction joints
(FFJ4 and MFJ4), but it remains to be checked whether the sensitivity is good
enough to detect object contact and perform the grasps autonomously.

For the lateral-tripod, the experimenters preferred a grasp where the object
contact was either on the medial phalange of the middle finger or on the distal
(PIP) finger joint. The grasp would also be stable when resting the object on
the distal phalange of the middle finger, but humans seem to avoid this due
to the extra flexure of the middle finger. For replaying the grasps on the Paris
demonstrator hand, we might want to change the grasp pose to rest the object
on the distal phalange, in order to use the tactile sensor of the middle finger.

• Addiction grip: As mentioned above, addiction grasps were only recorded
with the three cylindrical objects from the IST object set. The Cyberglove
provides three abduction sensors, and the calibration sequence includes a step
to calibrate these. Therefore, it was expected that this grasp would be easy to
perform, and in fact the experimenters reached a suitable initial grasp position
very quickly.
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Figure 21: Addiction grip and writing tripod for the pen object.

However, it turned out to be very difficult to maintain a stable grasp. Lacking
tactile feedback the experimenters had to close the fingers until stabilizing
the target object, resulting in fully pressurized air-muscles for the adduction
joints (FFJ4 and MFJ4). At the same time, the finger flexure was held mostly
constant, and the hand controller had ample time to reach the target position
for those joints, with only partially pressurized muscles for the flexure joints.
In this situation, the proximal joints (FFJ3 and MFJ3) are less stiff than the
adduction joints and tended to give way a bit, resulting in rotation of the
object between the fingers and even losing contact in several trials. As the
Shadow hand uses the same mechanism for the abduction joint on all fingers,
similar results can be expected when performing the addiction grip with the
combination of middle and ring finger, or ring and little finger.

It is expected that the addiction grip will be easier to perform on the Shadow
C6 hand, even without tactile feedback, because the FFJ3 and MFJ3 ext/flex
motions are controlled by a single motor with fixed stiffness.

• Writing tripod: The writing tripod grasp turned out to be surprisingly dif-
ficult for the pen from the object set, despite the rather large diameter of the
pen used (12 mm). The main problem here is the slightly conical form of the
fingertips on the Shadow hand, so that a gap remains between neighboring
fingers even when the fingers are held fully parallel without abduction. Also
the actual tip and the sides of the fingertips provide much less grip than the
(rubberized) interior part with the PST sensor.

The new fingertips on the Paris demonstrator hand use an ellipsoid cover on
top of the ATi force/torque sensor, and as such have a different geometry
than the previous generations of the fingertips. This difference will have little
impact on most of the other grasps, but we plan to re-record the writing-tripod
grasps on the Paris hand with pens of different sizes (including small ones)
and compare the results.
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• Tripod grasps: These grasps took the longest to record, due to two problems.
Firstly, the default mapping of the thumb motion after the glove-calibration
did not work very well, and a manual adjustment of the gain parameters was
needed. Secondly, the experimenters tried to achieve an exact opposition be-
tween the fingers and the thumb, as this is the most human-like way to per-
form the grasp. Unfortunately, this is impossible due to the thumb-kinematics
of the Shadow hand, where the thumb is oriented sideways towards the fin-
gers for the tripod grasp poses. This again poses a problem for the PST-type
tactile sensor, which is not activated on the thumb for the tripod-grasps.
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4 Grasp synergies

The development of control algorithms for grasping and manipulation with com-
plex multi-finger robot hands is still in its infancy, and is considered one of the
hardest problems in robotics due to both the high-dimensionality of the state-space
of the hand itself and the large variety of manipulation tasks. In their first paper
on Eigengrasp planning [22], Ciocarlie et. al. noted that “it would be natural to
draw inspiration not only from the hardware of the human hand, but also from the
software; the way the hand is controlled by the brain”. The authors continue to
explain that the majority of human hand motions do not make use of highly flexible
hand postures as would be possible mechanically, but that most motions indeed lack
individuation in finger movements.

This insight is based on the classical and elegant study [20], where Santello et. al.
asked several test subjects to shape their hands as if to manipulate imaginary ev-
eryday objects, and the hand poses were recorded with a data-glove. The study
demonstrated that the fingers were shaped using certain patterns, despite of inter-
subject variations. A Principal Component Analysis of the recorded data showed
that the two first principal components accounted for more than 80% of the vari-
ance, strongly suggesting that the grasp postures used by the humans could be ap-
proximated by a 2-dimensional basis instead of the 22-dimensional basis required
to describe all 22-DOF typically assigned to the human hand. This fact is also re-
flected in the classical grasp taxonomies [5], where only a handful of different poses
are sufficient to explain the hand motions used by humans for grasping.

In this section we explore the use of grasp-synergies for planning and executing
grasps with the Shadow hand. See the earlier project deliverable D13 [70] (chapter
V) for a full introduction into the concepts including a review of the relevant litera-
ture from neuroscience and robotics. When we started searching for a suitable tool
about two years ago, we decided to use the GraspIt! simulator [24] from Columbia
University in lack of viable alternatives, and subsection 4.1 summarizes the key fea-
tures of the simulator. Next, we sketch the key ideas of the Eigengrasp-planner in
GraspIt! in subsection 4.2 and then show our initial approximation of Eigengrasps
for the Shadow hand. We then demonstrate a few planned grasps for objects of
complex shape and the planning of precision grasps.

Finally, subsection 4.4 shows the initial results of our calculation of the synergy
matrix for the Shadow hand from the experiments reported in the previous section.

4.1 Grasp planning using the GraspIt! simulator

Given the kinematics of a robot hand and polygon models of the hand, fingers, and
grasped objects, it is straightforward to build a simulation of finger and object con-
tacts using basic algorithms developed for 3D computer-graphics. After selection
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Figure 22: The user-interface of the GraspIt! simulator and the Eigengrasp planner.

of the relative pose of the hand and object, the fingers can be moved until making
contact with the object, and the resulting grasp can be analyzed for form-closure.
When friction-parameters are included, it becomes possible to also approximate the
friction-cone for each contact and to derive the force-closure stability of the config-
uration. Developed by Andrew Miller at Columbia University, GraspIt! [24, 83] is
probably the best-known simulator of this kind.

The software is written in C/C++, is readily available to interested parties, and can
be compiled and run on either Windows or Linux. The user-interface provides a 3D-
view of the hand and objects, and can visualize contact-points and friction-cones.
Optionally, the simulator can be controlled via a built-in small TCP/IP server, which
allowed us to integrate it as the visualization component in our recording software
(compare 2.2 above). See figure 22 for a screenshot of the GraspIt! user-interface,
showing the model of the Shadow hand and the star-like wooden block used as a
demonstration object throughout this report.

The simulator is optimized for the simulation of grasps and includes 3D models of
several well-known robotic hands, plus a simulation model of a 20-DOF humanoid
hand. GraspIt! includes evaluation functions to calculate or estimate grasp-stability
and provides several grasp planning algorithms. It also provides support for simu-
lation of underactuated hand mechanisms, which of course is required to model the
distal finger joints of the Shadow hand.

However, it should be noted that GraspIt! does not include a full physics-engine, and
as such cannot simulate any dynamic behaviour during the grasping. All algorithms
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expect that the kinematic chains of the simulated hand start with the palm of the
hand, and it is not possible to include a wrist of a full robot system consisting of
robot arm and hand.

The software distribution of GraspIt! includes several robot models, among them a
simplified Shadow hand. This model corresponds to an older design of the Shadow
hand, and is not suitable for simulation of the current C5/C6 (air-muscle/motor)
Dextrous Hands. We updated the 3D-model and kinematics, and adjusted the range
of the joint-angles to match the limits of the real robot. The sign of the abduction
motion for the ring and little finger is still different between the simulation model
and the real hand, but this is taken care of in our recording software instead. The
figures in this section show different poses of this updated Shadow hand model.

4.2 Eigengrasps for the Shadow hand

For a robot hand with fixed kinematics, any hand pose is fully specified by its joint
values, and can be described as a point in a high-dimensional joint space. For d
dimensions, the hand-pose p is then given by

p = [θ1θ2 . . . θd] ∈ Rd

where θi is the current value of the i-th degree of freedom.

Sampling a large set of suitable (e.g. human-like) hand poses and performing the
principal component analysis, the resulting set of eigenvectors provide a new basis
of the hand joint space. In D13 [70] (section 3.3, equation 1) the set of eigenvectors
is called the synergies matrix.

Each eigenvector, also called an eigengrasp in [22,23]is a d-dimensional vector and
can be thought of as a motion in joint-space. Motion along an eigengrasp direction
will typically imply a motion along all degrees of freedom of the hand in joint-space,

ei = [ei,1ei,2 . . . ei,d]

A linear combination of b eigengrasps with weights {a1, a2, . . . ab} specifies a hand
posture p as a point in the b-dimensional subspace spanned by the selected eigen-
grasps,

p =
b∑
i=1

aiei

Now the key question is how many eigengrasps are needed to closely approximate a
set of target hand poses, the number of effective degrees of freedom. The data from
the original Santello et. al. paper suggests that keeping just the two most important
eigenvectors would be sufficient to approximate about 80% of the grasping poses
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Figure 23: Neutral hand pose and example poses resulting from the first (horizontal)
and second (vertical) Eigengrasps.

for everyday objects. Using additional eigengrasps improves the accuracy of the
grasps and results in acceptable hand-shapes for all the other objects tested in the
study.

The basic idea of grasp-planning based on synergies is to combine a quick search of
the reduced subspace spanned by the relevant eigengrasps with a later adjustment
phase. This can also be thought of as a hierarchical approach, where the synergies
pre-shape the hand with approximate finger positions around the object. The follow-
ing refinement phase closes the fingers until contact with the object is established,
and then adjusts the contact positions and finger-forces to stabilize the object.

This approach has been implemented in the GraspIt! simulator and is called the
Eigengrasp-planner. Here the grasp planning task is mapped to an optimization
problem in the (6+b)-dimensional space spanned by the 6-DOF required to specify
the relative pose between hand (palm) and the target object plus the number b of
eigengrasps included in the search. For best efficiency, b = 2 is recommended and
demonstrated in [22], but it might be necessary to include additional degrees of
freedom to generate specific grasps.

The question now remains on how to establish a suitable set of eigengrasps for the
Shadow hand. The results shown in the next two subsections are based on a very
simple approach: an empirical mapping of the existing eigengrasp vectors available
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in GraspIt! for the model of the 20-DOF humanoid hand. As stated in [22], those
eigengrasps are the result of an empirical mapping of the original Santello data in
turn. See figure 23 for a visualization of the neutral hand pose and two example
poses in each eigengrasp direction.

4.3 Grasping complex objects

As a first test, we have run the Eigengrasp planner on several prototype objects
from the Columbia Grasp Database [25], which includes a large collection of 3D-
objects. Every object is available in four different sizes, where very large or very
small objects have been prescaled additionally to make them graspable.

See figure 24 (upper two rows) for some typical examples. The grasp-planner has
no notion of object affordances and will search the state-space at random, until
converging on one of the best grasps found earlier during its execution. As will
be obvious from the generated grasps, the goal-function used to guide the planning
process strongly favors power-grasps, as they typically also involve form-closure
and provide a high grasp stability.

Figure 24: Examples of running the Eigengrasp planner on complex objects selected
from the Columbia Grasp Database.
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4.4 Precision-grasp experiments

When run with its default parameters, the Eigengrasp-planner is almost certain to
converge onto power-grasps, as these maximize the grasp-stability. Manipulation
tasks, on the other hand, require precision grasps which allow the object to be re-
oriented by the fingers.

To achieve precision grasps with the fingertips only, we used the option to prepare
another configuration file that lists the virtual contact locations on the hand. This
specifies the 3D locations on the hand and fingers that the planner should bring into
contact with the object. Where necessary, we added obstacle objects (the table)
into the simulation to enforce the planner to converge onto precision grasps. See
figure 24 (bottom row) for this approach.

4.5 Synergies derived from the grasp experiments

For the examples presented above, we used the Eigengrasp planner with the em-
pirically mapped set of approximated global synergies from GraspIt!. This works
somehow, but the resulting hand poses don’t fully exploit the range of motions pos-
sible with the Shadow hand. Also note that the original statistical analysis from
Santello et. al. targeted static grasps and was based on a single global set of syner-
gies extracted from many different hand poses.

Therefore, we tried to derive human-like synergies matched to the Shadow hand by
following the approach described in the previous chapter. It is obvious that separate
sets of synergies extracted from hand poses for a specific grasp type will be much
better suited to applications in fine manipulation.

In this section, we present first results of our analysis of the experiments reported
in chapter 3. The analyzed dataset consisted in recordings of the Shadow Hand
joint angles remotely controlled from 4 subjects to execute 8 different grasp types
on 20 different object configurations. A total of 438 samples were acquired (not
all grasp types can be applied to all objects and some subjects missed or repeated
some grasps). These samples were split into data matrices Ai each corresponding
to a different grasp type gi and containing in each row the vector of N joint angles
acquired in each trial.

A Principal Component Analysis was performed on each grasp matrix. The hand
poses corresponding to the origin of the eigenspace for the eight grasp-classes
studied here are shown in figure 25. Those poses represent the mean joint-angles
recorded for the specific grasp-class when grasping all objects compatible with the
grasp-class.

The amount of variance explained by the first N principal components is presented
in figure 26. We can see that most of the variance is concentrated in the first few
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Figure 25: Hand poses corresponding to the origin of the eigenspace (mean-value)
for the eight grasp-classes. From left to right and top to bottom: tripod, palmar
pinch, lateral, writing tripod, parallel extension, addiction, tip pinch, and lateral
tripod.

Figure 26: Cumulative eigenvalues of the synergies for each of the eight grasp-types
studied. Between two and six eigenvalues are required to reach 90% of variance.
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Figure 27: Histogram of pose reconstruction errors. The histograms show the joint-
angle errors for pose reconstruction for the eight grasp-classes when using 1..6 of
the most significant principal components. In each diagram the nine big columns
correspond to error bins of {−20,−15,−10,−5, 0, 5, 10, 15, 20} degrees, and the
errors corresponding to the use of 1..6 principal components are shown as a bar
inside the column. From left to right and top to bottom: tripod, palmar pinch,
lateral, writing tripod, parallel extension, addiction, tip pinch, and lateral tripod.
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Figure 28: Default hand pose and variation due to the first two principal components
for the writing-tripod grasp.

Figure 29: Default hand pose and variation due to the first two principal components
for the parallel-extension grasp.

43



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

synergies. To explain 90% of the variance, and thus achieve mean square approx-
imation errors below 10%, 6 principal components are enough in general. For the
addiction grip type, due to its simplicity, we can achieve the same low approxima-
tion errors with only the first two principal components.

For grasp planning, we are interested in the distribution of joint-angle errors after
reconstruction when using only the first few principal components. Figure 27 shows
the corresponding histograms of joint-angle errors for the eight grasp classes anal-
ysed in our study. While the simple addiction grip is reconstructed almost perfectly,
the more complex and dextrous grasps are also approximated well. We may ob-
serve that in all cases, the use of the 6 principal components concentrates the errors
in the ±5 degree range, with most errors smaller than the position accuracy of the
actuators.

See figure 28 for an example of the derived synergies for the writing-tripod grasp
class. The default hand pose corresponding to the grasp-class is shown in the cen-
ter, and the outer hand poses correspond to parameterization of one synergy each.
Another example is shown in figure 29 for the parallel-extension grasp class. The
video attachment for this report demonstrates the motions corresponding to the first
principal components for the tip-pinch grasp synergies.

4.6 Synergies and Object Affordances

Affordances are object properties that suggest ways to use and act upon them. In
the manipulation context, affordances constrain the way objects are grasped. Here
we have analyzed how the object dimensions along the hand opposition, ventral and
lateral directions (see figure 30) are related to each of the synergy dimensions. We
have computed the Pearson correlation coefficient between the object dimensions
and all the principal components of each trial, at a 0.05 significance level. Strong
positive or negative correlation are useful from the point of view of grasp planning
since they allow to regress object dimensions to hand pre-shapes.

Results are shown in figure 31. As expected, most of the correlations are with re-
spect to the opposition and ventral directions, which are the most related to possible
contacts between hand and object. Parallel Extension shows its biggest correlation
with the first, fourth and fifth principal components. Pinches (Palmar and Tip) show
large correlations first and second principal component. Tripods (Simple, Lateral)
correlate mostly with the third and forth dimensions. The Lateral grip correlates
with the fourth and fifth principal components. Addiction grip and writing tripod
show correlation with principal components of low energy which may be a result
of low signal to noise ratio in these two grasp types—they can only be applied on
a reduced set of objects, which limited their variance and number of trials in the
recording phase.
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Figure 30: Synergy parameters are analyzed with respect to the object dimensions
in the opposition (between contacts), ventral (towards palm) and lateral hand direc-
tions.

Figure 31: Correlation coefficients at a 0.05 significance level for all grasp types
and principal components, with the dimensions of the object in the opposition (top),
ventral (middle) and lateral (bottom) directions.

4.7 Ongoing work

The work reported in this section has only been started and will be continued in
several research directions. First of all, there remains the integration of the synergies
extracted from the robot experiments into the grasp planner, and to check how many
eigenvalues are required to achieve stable grasps on a large variety of test objects.

Next, the existing Eigengrasp planner has no notion of object affordances and con-
siders all parts of the target objects instead of exploiting symmetries or concentrat-
ing on the “useful” parts of an object — either marked explicitly by annotations in
the object models by the user, or derived automatically from features in the geome-
try or recalled from similar objects.
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We expect that the extracted synergies will also form a suitable set of basic skills
for manipulation motions, in particular rolling finger contacts and in-hand rotation.
However, adjusting the fingers to close on the object requires the new tactile sen-
sors and force estimation algorithms [80], and the corresponding experiments will
be performed as soon as the new sensors have been integrated on the Paris demon-
strator platform.
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5 Parameterizing manipulation sequences

This section proposes a new approach to analyse complex manipulation sequences,
including finger gaiting. Our working hypothesis is that the hand movements of
different humans are the same or largely similar when performing the same ma-
nipulation task, despite differences in hand size and shape. We try to extract this
similarity from the sensor-data and call it the action-gist.

The method works in several steps. It starts with the extraction of the meta-motion
by classifying the finger-motions according to carefully selected motion patterns
based on finger flexure and abduction. This is done separately for each finger. To
remove noise and improve the classification, the meta-motions are then processed
by a Gaussian Markov Random Field, and the resulting gist is then presented as a
joint histogram for all fingers and the thumb.

Several examples of the method are presented, and we also discuss an approach to
invert the method to create and adapt finger motions based on the histograms. Cur-
rently, the analysis is based on joint-angle data obtained from CyberGlove record-
ings, but work is underway to include tactile data in the classification.

5.1 Introduction

The word gist means the essential part of an idea or experience. Different from hand
gesture, the in-hand manipulation action gist is a concept with kinetic property.
It represents the key hand motions in the manipulation task and widely adapts to
different hands. The manipulation process is generalized as several compact motion
guidelines. On the one hand, this makes it easy to remember, on the other hand it
can be translated from one entity to another, just as the knowledge passing from the
teacher to the student.

As we know, in the mechanism of the human hand , the motions and forces are
governed by the neuromuscular apparatus, like an overview from [1] described.
The movement of the hand is continuous, but according to human cognition, it can
be classified as infinite types of motions in the brain; for example, as the muscles
tightening up and relaxing, or the fingers closing and opening. Then in the specific
application, the possible solution sequence is recalled and executed. The object
in question is touched and released by the hand components over time. When the
touching motion is executed, an interacting force is generated between the object
and the hand, and the neuromuscular system keeps the hand in a proper force apply-
ing state that does not damage the hand itself but still holds the object firmly. Com-
pared with other robotic humanoid hands, our air muscle hand from the Shadow
Robot Company is more similar to the human hand and better protected against
damage even when overforce is applied.
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With a humanoid hand, a robot can implement much more human-like object ma-
nipulation than before. Because of the high degree-of-freedom, a multi-finger robot
hand can perform more dexterous skills rather than grasping, which only constitutes
translating the object from one place to another. It can rotate or shift objects and
perform other advanced in-hand movement. These manipulation skills depend on
the cooperation of five fingers and the palm, and in the process of in-hand manipula-
tion, the roles are hand and object. The hand plays the role of control, and the object
state is the aim of the manipulation. So here the manipulation process is considered
as a State-Action Model, meaning that the whole process is divided into states which
are changed through actions. The action is equal to hand movement, and the state
is supposed to be the criterion of how the process proceeds. Hand movement can
be considered as a continuous hand joints angle variation, with the countless an-
gle combinations between each joint pair. The movement leads the manipulation
process from one state to another state until the final target of the application is
achieved.

The method is employed by both humans and robots with humanoid hands. How-
ever, it is unrealistic to map the motion exactly as from the demonstrator because
of the different hand sizes. It can be imagined different-sized hands can interact
with the object from different distances. And this can result in different gaps with
the same pose. Actually in developing their hand skills, humans have the ability to
learn from others and to practice by themselves. Nobody can memorize the detailed
joint angles of their hands, but they can remember the key motions which are re-
lated to the moving tendency of each finger. This is defined as in-hand manipulation
action gist.

This study aims at proposing a feasible in-hand manipulation action gist definition
for a robot with an extremely life-like humanoid hand, to enable it to learn in-hand
manipulation with a small amount of nonetheless key information. The action gist
is expected to be universal for all in-hand movements regardless of whether it is
simple (easy manipulation) or complex (finger-gaiting). The structure of this study
is organized into several sections. After the following related work, the definition of
meta motion is given, which is an element of the in-hand manipulation action gist.
Then the modeling and generalization are introduced, and experiments are carried
out to discuss the performance of the algorithms with different parameters. The
final part is the conclusion and future work.

5.2 Related Work

There are multiple ways to generate a manipulation model, but the first point is to
figure out which kind of model it is.

One class is to plan the motion in continuous space including the position and the
speed of each relative component. The major stream is the dynamic movement
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primitive (DMP) framework beginning from [46] and [52], in which the movement
is recorded and represented with a set of differential equations. The position and
the speed is controlled in terms of the immediate position and speed feedback. [49]
expanded the model into a manipulation control application so that the hand can
grasp and place the object in the destined area. To include obstacle avoidance in
this job, an extra item is added in the system equation, which causes the form of the
framework to change with the task. Different from the separate models to deal with
multiple tasks, [43] applied Locally Weighted Regression to generate the move-
ment, and the manipulating process is divided into several steps by the perceptual
input. Rather than generalizing a trajectory in Cartesian or joint angle, [44] consid-
ered the joint velocity space and enables the robot to accomplish similar tasks. As
a result, this method can produce smoother trajectories than others.

Besides DMP, which is in a differential equation form to establish the movement
from the beginning to the end, for instance, [45] applied the GMM method, which
can also act as a learning core to generalize the moving trajectories.

The above framework consists of models depending on precise dataflow perception.
However, for muscle control, it tracks the trajectory related to the moving tendency,
not the position. Therefore, DMP does not offer any significant advantages in this
field.

Another branch but a relatively older one is the generalized motor program (GMP),
see [51] and [53]; here the overall process is guided by invariant features. [48] ex-
tended this model with the symbolic motion structure representation (SMSR) algo-
rithm; the body movement is tracked and segmented according to the joint angles,
and then the values are used to plan a novel similar application. So far as the SMSR
only extracts the body motion into simple joint angle variations such as increasing,
decreasing and stationary, it would have difficulties while dealing with the multiple
links cooperation application because it does not consider this kind of application
so much. Different from simply defining the motion, it is possible to have a related
higher semantic model. [50] applied Fuzzy-Logic Control to execute the motion se-
quence, and this idea was examined in a 2D five-segment body model by simulation.
The above methods suppose that the motion sequence to an application is fixed, but
actually humans can have many ways of completing a specific application. What
we need are the most effective or common methods of the teacher.

[47] indicated that humans learn motion by way of muscle control, not the position
perception, therefore to know the posture variation (joint angle) is more important
than the absolute posture. Thus the motion tendency oriented model is more feasible
than DMP.

When the model is decided on, the next problem is how to sense the movement.
Many studies concentrate on sensing from the robot, the examples can refer to [49],
[43], or [44], but for fingers, it is not convenient to directly move the robotic fingers
to find the result. Another channel is vision, the components are tracked to complete
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the motion behavior model. For example, [54] employed a color pattern on the
demonstrator to track the human motion. It is promising to use vision to analyze
hand motion, but the visual processing itself is a challenging topic which increases
the difficulty of model generation.

A quick way to know the finger movement is using a data-glove, it can sense every
finger joint relation in each data frame. Based on this kind of sensing channel, the
study intends to generate an action gist model to represent human in-hand manipu-
lation behavior.

5.3 Meta Motion Definition

To establish a set of hand motions which presents the hand posture transformation
in in-hand manipulation, we intend to construct the model as follows.

1. It covers all possible movements of a hand

2. Each motion in the set is unambiguous from other motions

3. The motion involves the relative joint angle variation but no absolute position
information

An exception to the above is the idle pose. When the motion remains static for a
while, we have to decide whether it is “move, stop and move again”, or consider
it as moving continuously. Our strategy is to analyze the movement without static
motions first, and in the second loop to find the static section following certain rules.

Supposing that the hand has the form of five fingers and one palm, the palm stays
still, then the movement is equal to the cooperation of the five fingers. The basic
movement of each finger can be classified as open or close, and in terms of the
moving direction at the proximal phalange end related to the palm (Fig.32), every
finger has the same motion definition. Specifically, the coordinate origin of the
thumb is different from the other four fingers because of its diverse position on the
palm.

We project the finger motion into 2-dimensional space because the finger ends are
fixed on the palm. In the X-Y plane, the finger direction is classified as 4 directions
as the 4 quadrants in the Cartesian coordinate; plus with the open, close and the
idle period, each finger has 9 types of meta motions, as shown in Fig.33. To ensure
that the motion model has a uniform form, the X axis and the Y axis in the moving
direction related to the coordinate origin is either parallel or vertical to the palm
plane.

Humans can recognize each meta motion easily, but when one teaches another a
hand skill, it is not by counting the exact sequence, but only by demonstrating the
movement.
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Figure 32: Finger coordinates related to the palm. The thumb in the red coordinate
is different from the other four fingers due to its special location in the hand

Figure 33: Nine types of meta motion in each finger. Two flex/ext-joints are mod-
eled as one parameter as open or close, and the abduction angle cooperates with
the metacarpal-proximal angle to form a 2D projected direction as the finger closes.
The idle motion is specifically set apart and labeled as 9.

5.4 Action Gist from Data-glove

Here the action gist is defined as the key meta motions between two adjacent states.
Guided by the action gist, the object is manipulated from the begin state to the end
state.

The data-glove is a direct way to perceive the hand movement, as the data is mea-
sured by the joint angle value. Therefore, the values from the data-glove become
the source for analyzing the hand movement in in-hand manipulation applications.

Corresponding to the degree of freedom, each finger has several joint values from
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Figure 34: Node relationship according to Gaussian MRF. Supposing each data-
glove value is a node, then each node is related to other nodes in the neighboring
set Neigh(·). With the impact factor obeying Gaussian distribution, the linewidth
indicating the strength of the impact factor, we can see that the closer nodes sit
closer have a stronger impact factor

the data-glove. However, according to the general law, the distal-intermediate and
proximal-intermediate angles increase in close movement, decrease in open move-
ment, and the varieties of metacarpal-proximal and abduction angles indicate the
moving direction in the X-Y plane of the finger.

Different from the ideal environment, the acquired data-glove value cannot be di-
rectly applied in the analysis. One reason for this is the noisy points, another one
is the issue from the human operator, e.g. a hand tremor in slight operation, a short
but unnecessary movement during manipulation, or at the moment the finger starts
to touch the object, the value may be abnormal. Therefore a Gaussian Markov Ran-
dom Field based algorithm is proposed to extract the action gist of each finger. It
can effectively decrease the negative impact from the mentioned issues and provide
a concise meta motion sequence. This algorithm considers each value frame from
the data-glove as a node. Every node can influence the other nodes on which meta
motion they belong to. The nearer nodes have the stronger impacts, the criteria
are based on the single meta motion similarity and the node distance. The node
relationship according to this assumption is illustrated in Fig.34.

The single meta motion similarity of each node can be presented as:

Iji =


∑

k∈Fg

∣∣vki ∣∣+ ε , Cj
k∈Fg

(vki ) = 1

0 , else

(1)

Here Iji is the intensity of node i that is similar to meta motion j, vki is the k-th glove
value difference (current value minus previous value) in node i, the k-th value from
the data-glove sensor should belong to one finger Fg, ε > 0 promises the value of
intensity is always above 0. And C(v) is the condition that the finger joint angle
difference stay in the range of the corresponding meta motion j. Assuming that
there are always four values v1, v2, v3, v4 ∈ v standing for the joint angle variation in
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five fingers (Fig.35), they are mapped correctly with vki . Commonly, v1 is for distal-
intermediate, v2 is for proximal-intermediate, v3 indicates abduction and v4 is for
the metacarpal-proximal angle difference. Specifically, for the thumb values in the
data-glove, in order to have a uniform expression, the rotation angle is considered
as v3. Besides, the abduction value v4 should be adjusted as an identical increasing
direction according to the meta motion definition, then the conditions are listed in
Tab.2. v1 has a less important effect here because when the object is manipulated,
it is easy for the finger tips touching the object to create a contra direction with v2,
but v2 is related stably. Whether the finger is open or close mainly depends on the
movement between the proximal and intermediate joints. In Tab.2, “×” means we
do not need to think about what kind of value v1 is.

Figure 35: An example of the finger joint angle difference in the first finger. v1 is for
distal-intermediate, v2 is for proximal-intermediate, v3 indicates abduction between
the first finger and middle finger, v4 is for metacarpal-proximal

For the data-glove, we have to mention that the abduction angle is not the absolute
angle related to the palm. That means v3 is not working perfectly, but in this study
we do not consider it as a critical problem.

When the single similarities of all nodes are calculated, the influence from other
nodes can be obtained by:

P j
i =

∑
t∈Neigh(i)

IjtG(t, i, σ) (2)

where G(t, i, σ) = 1
σ
√
2π
e−

(t−i)2

2σ2 is the typical Gaussian distribution form,
Neigh(i) is the node set near node i (refer to Fig.34). Because the concerned ac-
tion gist locates between each adjacent state pair, it is actually set as the entire glove
value sequence. And σ is a parameter representing the area one node can primarily
impact with, it also means the shortest single motion execution time corresponding
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Table 2: Meta motion condition
meta motion v1 v2 v3 v4

1
×
< 0

< 0

= 0
> 0 > 0

2
×
< 0

< 0

= 0
6 0 > 0

3
×
< 0

< 0

= 0
6 0 6 0

4
×
< 0

< 0

= 0
> 0 6 0

5
×
> 0

> 0

= 0
> 0 > 0

6
×
> 0

> 0

= 0
6 0 > 0

7
×
> 0

> 0

= 0
6 0 6 0

8
×
> 0

> 0

= 0
> 0 6 0

to the data-glove sensing speed. Then the likelihood of meta motion j at each node
can be compared to find the best meta motion segmentation.

In addition to the action gist analysis, the idle motion is processed independently
from the eight kinetic motions mentioned above. The Gaussian MRF based method
can also be employed here, but according to the experimental experience, to find
a frequent value as high as desired in the sliding window is a better solution. To
realize this method, the first step is also to have the single similarities of each node
to be similar to Eq.1, but the intensity of meta motion 9 at node i becomes I9i = 1
and the condition becomes C(v) = 1 ⇐⇒ v = 0. And then the idle sections can
be determined by the following condition:

∑
t∈Neigh(i)

I9t > threshold (3)

So node i stays idle when the sum of single intensities is larger than threshold.
Here Neigh(i) is set to be at the range of dsw, which is the size of the sliding
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window, then dsw nodes are taken into consideration to find the idle section. In
addition, all adjacent idle nodes are merged as an idle section, but if the length of
an idle section is shorter than a single motion execution time σ, this section should
be considered as not idle.

With the proposed procedure, the action gist can be extracted from the raw data-
glove value.

5.5 Action Gist Generalization from Demonstration Set

To manipulate an object, there are countless methods to handle it. Though the action
gist is the abstract from the floating value sequence, many different solutions still
can be found according to the same application. In this case, to generalize multiple
action gist sequences from human demonstration into a suggestive form is neces-
sary. Generally, in the same application, different persons may behave differently,
but the individual has a limited set of primitive hand motions to complete the task.
So the concerned points in the gist generalization are to rank the popularity of the
action gists obtained from the in-hand manipulation demonstration, including the
operating order and the motion duration.

The operating order in a demonstration section is the meta motion permutation
of five fingers between two adjacent states. Assuming the order sequence is
m = {−→m1,

−→m2,
−→m3, · · · }, each element indicates the finger, the meta motion type,

the normalized beginning, end time and other related information, if τbegin(·) can
extract the begin time of the element and τend(·) for the end time, then the following
conditions must be fulfilled:

τbegin(
−→mi) < τend(

−→mi)

τbegin(
−→mi) 6 τbegin(

−→mj)
i < j (4)

The ranking of order sequence depends on the frequency of different action gists in
the specific manipulation scenario. The simple statistic method that only calculates
the frequency of every action gist is a kind of solution, but if the sort can be related to
every meta motion according to the motion duration, that will be a more composite
evaluation on the entire demonstration set.

Every sample in the demonstration is feasible, no matter how the durations of meta
motions are changed; once the motion order is fixed, this motion set is able to
manipulate the object to the destined state.

Therefore a meta motion occurrence histogram is applied to describe the statistic
feature of the motion order from all demonstrated samples. The principle is, be-
cause the begin time and end time of each meta motion has been normalized as the
range of [0, 1], every motion occupying a time-order-related section increases the
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corresponding area of the histogram with the impact factor, which is assumed to
obey the Gaussian distribution. The process of histogram generation can be written
as a formula as follows:

Ha,r,l =
∑

η(
−→
msi ,a,r,l)=1

G(ψ(
−→
ms
i ), a, σw) (5)

where
−→
ms
i is the element from action gist ms in the demonstration set M, η(·) = 1 if

and only if
−→
ms
i belongs to finger r, labeled as meta motion l, and position a locates

near
−→
ms
i but no other motion on finger r. ψ(

−→
ms
i ) ∈ [0, 1] indicates the normalized

order position when the meta motion begins, and σw is a parameter that controls
the impact factor reduction, it is set as the reciprocal to the length of sequence ms.
Considering the discrete numeric processing, the histogram has a resolution, the
normalized a will finally be scaled as an integer form during calculation.

With the meta motion occurrence histogram, the frequent possible meta motion
takes a higher value in the duration. As a result, even if every action gist is indepen-
dent, it can be evaluated as in the following equation:

Score(ms) = max
seg(ms)

∑
j∈seg(−→msi )

Hj,r,l |
τfinger(

−→
ms
i ) = r

τlabel(
−→
ms
i ) = l

(6)

where seg(ms) is the duration segmentation to action gist ms, it reallocates the
normalized begin and end time of the movement as each segment is marked as
seg(
−→
ms
i ). τfinger indicates which finger is in the meta motion element

−→
ms
i and τlabel

indicates the meta motion type.

This kind of behavior evaluation method can describe the local similarities of the
meta motions, and has already implied the action gist frequency, so the action gist
with the higher score is considered as a more common solution in the specific ma-
nipulation scenario.

5.6 Experiment and Discussion

A cyber-glove and several different kinds of objects are used to examine the pro-
posed method. However, because the state recognition has not been designed yet,
so far the demonstration is semi-supervised in that the begin and end state is defined
manually, and the action gist is extracted from the glove value automatically.
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Action Gist Extraction from Single Demonstration

The first attempt is focusing on star-like block rotation. As Fig.36 shows, the block
is fixed by four fingers (thumb, first, middle and ring finger) pinching the indenta-
tions, and the adjacent states are defined so that the moment that the block looks
stable, each finger reaches the neighbor indentation from the previous one

Figure 36: Rotate a star-like block. Thumb, first, middle and ring finger are used
to rotate the block about 72 degrees. This process is defined as one trial, the hand
pose at the beginning state is quite similar to the end state.

Two subjects take part in this block rotation, each participant rotates the block in 9
trials in the same direction, with a very rough strategy discussed orally. Through
the Gaussian MRF based algorithm, idle section identification and the short segment
filter, we obtain the action gists. Two trials by two persons are shown in Fig.37. The
meta motion is labeled as numbers over time except the possible idle sections are
represented as white transparent medium-high bars. According to the cyber-glove
framerate and the hand speed in this application, the parameters here are ε = 0.05,
σ = 10, threshold = 0.90 and dsw = 20. If a meta motion segment is shorter than
5 frames, it is filtered.

In the four samples we can find similarities, e.g. the motions in the thumb are likely
to be motion 1 after motion 7, the first finger of the 1 person contains motion 8, the
2nd person contains motion 6 and motion 3, the 2nd person uses the middle finger or
ring finger as meta motion “5→ 3”. But generally speaking, because of the limited
trial times, compared with similarities, it is easier to find the difference between two
trials. Several trials do not have similar gists at all. This is because the application
contains many motions between two defined adjacent states, and the participants
are not strictly instructed to execute the movement, so we find many possibilities.

We apply Gaussian distribution in the node influence because it can reflect the im-
pact importance by distance, and through parameter σ the impact range can be well
represented. It should be set in terms of the motion speed and the cyber-glove per-
formance, Fig.38 is the action gists from the same trials but σ is set as 20. The

57



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

(a) 1st Person Trial 1 (b) 1st Person Trial 2

(c) 2nd Person Trial 1 (d) 2nd Person Trial 2

Figure 37: Action gists of star-like block rotation. Each subfigure is a repetition
like Fig.36. To have the star-like block turn around 72 degrees. Each action gist is
composed of the meta motions of five fingers, each meta motion is represented by
different gray-level rectangles with the corresponding type number, Specifically for
the idle motion, it is represented by the medium-high transparent bars, e.g. in the
first finger of 1st Person Trial 1, a half height transparent bar overlaps meta motion
6, or the middle finger of 1st Person Trial 2, an idle section covers meta motion 3
and 7. The x-axis is a time axis indicating the cyber-glove frame number

sequences become clean but more abstract. Take the middle finger value in the 1st

trial of the 1st person for example, the result when σ = 20 merges the meta motion
sequence “6→ 2→ 8→ 6” when σ = 10 into motion 6. If we analyze it from the
raw value (Fig.39), the result when σ = 20 is not reasonable, there is apparently a
peak around the 70th frame that divides the segments into two meta motions. But
theoretically, three meta motions in one finger should be enough to support a block
rotation (touch the object surface→ leave the object surface→ touch the object sur-
face). So the parameter configuration depends on the usage background, not only
one parameter is tried in the application.
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(a) 1st Person Trial 1 (b) 1st Person Trial 2

(c) 2nd Person Trial 1 (d) 2nd Person Trial 2

Figure 38: Action gists of star-like block rotation when σ = 20. Compared with
Fig.37, the action gist becomes clean but more abstract

Another key control variable in the Gaussian MRF based algorithm is the single
meta motion similarity Iji , in Eq.2 it works as the intensity factor of Gaussian distri-
bution. Let Iji be the sum of the finger joint value is an experience method in order
to emphasize the varying importance of the glove value. We can set it as a fixed
value and take a glance at the result, e.g. Iji = 1, but other parameters stay equal to
the origin including σ = 10. Then we can have a set of result shown in Fig.40, and
only a few diversities are found. Fig.41 illustrates the raw value of the first finger
in the 2nd trial from the 1st participant, there is a peak around the 50th frame in the
glove value, so we had better keep Eq.2 as the original form.

Different from other meta motions, idle motion works as a reference when the finger
keeps silent during the kinetic motions, and because to find a frequent value as high
as desired in the sliding window is easy to understand, the parameter dsw is not
discussed here.

There are many fingers working in block rotation, and then an easier in-hand ma-
nipulation scenario follows. On the table we use a ladle to spoon the soup up, so
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Figure 39: The raw value from the middle finger in the 1st trial of the 1st person. The
time axis indicates the frame order number. There is a peak around the 70th frame
for the MiddleIndexAb; this means the corresponding meta motion classification
when σ = 10 is more reasonable than σ = 20

another experiment is related to ladle reconfiguration (Fig.42). One subject took
part in the task and has 9 trials in which thumb, first and middle finger are applied.
The start state is set as the ladle stomach staying in the low position, and the end
state is when the ladle stomach stays in the high position. The action gists are ob-
tained as Fig.43 shows at the parameter set as ε = 0.05, σ = 20, threshold = 0.90
and dsw = 20.

The result indicates a probable solution to spoon a ladle up, that is meta motion 5
by thumb, motion 5 → 8 by first finger and motion 7 by middle finger. Theoreti-
cally, this result is reasonable, the application requires only a few steps to complete.
Besides, it implies that if the two adjacent states are defined as shorter, the human
demonstrator is more likely to prepare and implement with an identical manipula-
tion method.

Action Gist Generalization from Demonstration Set

When the scale of the demonstration set becomes large, it is important to know
which extracted action gist is popular in the same application by different subjects.
Based on the local similarities calculation, we can give an evaluation of the men-
tioned experiments of star-like block rotation and ladle reconfiguration. According
to Eq.5 with a resolution of 100, the generalization of the demonstration set is cre-
ated, then with Eq.6 the score of each trial in the set can be solved by means of
Dynamic Programming. Here the top 3 action gists are listed in the following tables
when the parameters ε = 0.05, σ = 20, threshold = 0.90, dsw = 20 and σw is set
as MatrixResolution

ActionGistLength
namely 100

ActionGistLength
.
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(a) 1st Person Trial 1 (b) 1st Person Trial 2

(c) 2nd Person Trial 1 (d) 2nd Person Trial 2

Figure 40: Action gists of star-like block rotation when Iji = 1. We can find several
differences compared with Fig.37

Tab.3 is for the star-like block rotation, 18 trials from 2 participants are generalized
in the meta motion occurrence histogram. There is no equal action gist in 18 trials,
but based on the local similarities, each trial has an evaluated score for ranking.

And Tab.4 gives a ranking to the ladle reconfiguration related to 9 trials from 1
participant. 5 action gists are extracted, and the top evaluated action gist is the
shortest but the most common one in all trials.

The meta motion occurrence histogram has the ability of position tolerance via nor-
mal distribution, and it is independently created for five fingers. Each finger has its
own meta motion sequence histogram, so this mechanism is more robust than one
bank representing the five fingers. With the promise that the action gist is general-
ized between two adjacent states, the scale of the meta motions is not large, thus it
is possible to find the similarities through several or dozens of manipulation demon-
strations. Besides global action gist evaluation, it is possible to find more interesting
information from the occurrence histogram in the future.
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Figure 41: The raw value from the first finger in the 2nd trial of the 1st person. There
is a peak around the 50th frame in the MiddleIndexAb, at this point to keep the
single meta motion similarity as a sum is better than as a fixed value

Figure 42: In-hand rotation of a ladle. Thumb, first and middle finger participate in
this scenario, the ladle is moved to a higher position and this process is defined as a
trial

5.7 Conclusion and Future Work

This study concentrates on action modeling and generalization from the demonstra-
tion of in-hand manipulation. Different from the manipulator trajectory planning,
this model works in a fuzzy way to guide the movement. It gives the manipulator a
related loosely explored space to implement the task, and from the view of human
in-hand manipulation, it is more similar to the mechanism of the human hand. In
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(a) Trial 1 (b) Trial 2

(c) Trial 3 (d) Trial 4

Figure 43: Action gists of ladle reconfiguration. With the consideration of idle
motion, we can find the action gists from 4 trials look similar the popular meta
motions are motion 5 in thumb, 5 then 8 in first finger and 7 in middle finger

the future the model will be examined by simulation and real robot tests.

When the action gist is mapped back to robotic hand control, it is supposed to work
as guidelines because it provides the meta motions of each finger. Different-sized
hands apply different joint angles to execute the manipulation, but the meta motion
is always correct to indicate the finger movement direction. In every trial we give
the robot quantized parameters according to a fixed meta motion sequence, and
through iterations the parameters are refined to ensure the correct state transition.
So far the parameter control and the evaluation function in each iteration are being
designed; we are confident that the method will work.

The model currently is built from the value of a data-glove. One disadvantage is
that the human demonstrator wearing the data-glove has a different feeling and ex-
ecutes the movement unnaturally, and difficult manipulation applications are hardly
handled. Another drawback is related to the four abduction angles in the data-glove,
which are angles between two fingers, not the absolute angle related to the palm;
this point makes it impossible to guarantee that the finger movement perception is
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Table 3: Action gist ranking of star-like block rotation

Action Gist – ms Rank

(Thumb,Motion7), (Middle,Motion5), (Ring,Motion6),

(First,Motion6), (Thumb,Motion1), (First,Motion5),

(Middle,Motion8), (Ring,Motion4), (First,Motion8),

(Thumb,Motion4), (Middle,Motion3), (Ring,Motion8)

1

(Thumb,Motion7), (Middle,Motion5), (Ring,Motion6),

(First,Motion6), (First,Motion5), (Ring,Motion4),

(Thumb,Motion1), (Middle,Motion8), (First,Motion8),

(Middle,Motion3), (Thumb,Motion5)

2

(Thumb,Motion7), (First,Motion6), (Middle,Motion5),

(Ring,Motion5), (First,Motion5), (First,Motion8),

(Middle,Motion3), (Ring,Motion2), (Middle,Motion5)

3

Table 4: Action gist ranking of ladle reconfiguration

Action Gist – ms Rank

(Thumb,Motion5), (First,Motion8), (Middle,Motion7) 1

(First,Motion5), (Thumb,Motion5), (Middle,Motion7),

(First,Motion8)
2

(First,Motion8), (First,Motion5), (Thumb,Motion5),

(Middle,Motion7), (First,Motion8)
3

always correct. So to fuse the result from other sensors is another direction for
developing the model further.

As introduced at the beginning, the in-hand manipulation process is considered as
a State-Action Model, this study only discusses the Action generation. Another
important point is that State involves the posture of hand and object, and the contact
state. That part is related to visual, haptic and other perceptual channels. This gap
is going to be filled in the next step.
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6 Summary

The underlying concept of project HANDLE is the recording of human manipula-
tion traces, in order to then derive motion-primitives for manipulation with a multi-
finger robot hand. However, despite the unique multi-sensor setup designed for the
human recordings, and despite the large number of available experiment trials, the
analysis of the traces has proven more complex than anticipated. The direct transfer
of human motor-skills extracted from an experiment to the robot requires a diffi-
cult match from the human hand to the kinematics of the robot, and no two human
hands are the same. On the other hand, traditional grasp planning algorithms for
the Shadow hand must consider the extrinsic 6-DOF for the relative pose of hand
and target object plus the 24-DOF required to specify all finger joint-positions, and
therefore faces all problems related to searching in high-dimensional spaces.

We decided on the straightforward alternative, and simply recorded a new set of
grasps under human demonstration, but using the Shadow hand itself to perform the
grasps. The hand-shape and kinematics is therefore known exactly, and the finger
and arm movements are recorded with high precision. However, the human exper-
imenters are still in full control, and grasps and sequences are only accepted when
the experimenter decides that a grasp-pose is “human-like”. Section 2 motivated
this approach and described the experiment setup and the required data-glove cali-
bration. The recording software generates output files largely compatible with the
format used for the human-recordings [63], and the new traces augment the avail-
able database.

To extract a number of basic grasping skills for the Shadow hand, we then recorded
a number of stable grasp poses for a total of eight different grasp-classes from the
taxonomy, and using objects of different size and shape. This approach has been
detailed in section 3. Clustering the results in joint-space and associating the joint-
angles with object shape and size allows us to play back suitable human-like grasp-
poses instead of performing a full grasp-planning.

To grasp and handle complex objects, the extraction and parametrization of suitable
grasp-synergies provides the most promising way to reduce the curse of dimension-
ality. The current state of this ongoing work has been the topic of section 4. The
first step was based on the GraspIt! simulator, which includes hand-synergies for
a humanoid 17-DOF hand, based on the original synergies from [20]. An empir-
ical mapping of those synergies to the Shadow hand kinematics allows us to run
the Eigengrasp-planner from GraspIt! to generate grasps for arbitrary objects. To
achieve better synergies, we have started the PCA on the grasps recorded with the
Shadow hand itself. We expect that the synergies extracted from the data will also
provide nice motion-primitives for manipulation.

Finally, section 5 has proposed the action gist technique, used to define and rec-
ognize basic manipulation primitives. A manipulation trace, recorded by the data-
glove or other sensors, is first classified locally according to the finger-flexure (idle,
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closing, opening) plus finger-abduction. For better robustness against noise and in-
voluntary finger movements, a Gaussian Markov random field approach is then used
to filter the data. We presented several examples on complex motion-sequences,
also involving finger-gaiting.

6.1 Future work

The work presented in this report is only the first step towards defining suitable
motion-primitives for the Shadow hand. While static grasps work very well with
the hand, the fine control of manipulation movements needs additional work and
would also greatly benefit from better tactile sensing. We plan to record additional
grasps and manipulation sequences on the Paris demonstrator hand as soon as the
newly designed tactile solution is available for experimentation.

66



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

References

[1] C. L. Taylor and R. J. Schwarz. The anatomy and mechanics of the human
hand. Artificial limbs, 2(2):22–35, 1955.

[2] C. Ferrari and J. Canny; Planning Optimal Grasps In Proceedings of the
IEEE Int. Conference on Robotics and Automation, pages 2290–2295, Nice,
France, 1992.

[3] K.B. Shimoga, Robot grasp synthesis algorithms: a survey, International
Journal of Robotics Research, vol.15, 230–266, 1996

[4] A. Bicchi, V. Kumar, Robotic grasping and contact: A review, IEEE Interna-
tional Conference of Robotics and Automation, 348–353, 2000

[5] M.R. Cutkosky, On grasp choice, grasp models, and the design of hands for
manufacturing tasks, IEEE Transactions on Robotics and Automation, vol.5,
269–279, 1989

[6] S. Arimoto, Control Theory of Multi-fingered Hands, Springer 2008

[7] T. Iberall, Human prehension and dexterous robot hands, International Jour-
nal of Robotics Research, vol. 16, 285-–299, 1997.

[8] S.C. Jacobsen, J.E. Wood, D.F. Knutti, and K.B. Biggers, The UTAH/M.I.T.
Dextrous Hand: Work in Progress The International Journal of Robotics Re-
search, Vol.3, 21–50, 1984

[9] M. Kondo, J. Ueda, T. Ogasawara, Recognition of in-hand manipulation us-
ing contact state transition for multifingered robot hand control, Robotics
and Autonomous Systems 56, 66-81, 2008

[10] M. Hüser, T. Baier, J. Zhang; Learning of demonstrated Grasping Skills by
stereoscopic tracking of human hand configuration, IEEE Intl. Conference
on Robotics and Automation, 2795-2800, 2006

[11] H. Kjellström, J. Romero, D. Kragic, Visual Recognition of Grasps for
Human-to-Robot Mapping, Proc. 2008 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 3192–3197, 2008

[12] J. Aleotti, S. Caselli, Grasp Recognition in Virtual Reality for Robot Pre-
grasp Planning by Demonstration, IEEE Intl. Conference on Robotics and
Automation, 2801-2806, 2006

[13] R.S. Dahiya, G. Metta, M. Valle, G. Sandini, Tactile Sensing—From Humans
to Humanoids, IEEE Transactions on Robotics, vol. 26, no.1, 1–20, 2010

67



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[14] K. Matsuo, K. Murakami, T. Hasegawa, K. Tahara, R. Kurazume, Segmen-
tation method of human manipulation task based on measurement of force
imposed by a human hand on a grasped object, Proc. 2009 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 1767–1772, 2009

[15] Shadow Robot Dextrous Hand, www.shadowrobot.com

[16] John Lloyd and Vincent Hayward, Multi-RCCL User’s Guide, McGill
Research Centre for Intelligent Machines, McGill University, Montreal,
Canada, April 1992

[17] F. Röthling, Real Robot Hand Grasping using Simulation-Based Optimisa-
tion of Portable Strategies, Ph.D Thesis, Technische Fakultät, Universität
Bielefeld, 2007

[18] D. Bartenieff and I. Lewis, Body Movement: Coping with the Environment,
Gordon and Breach Science, New York, 1980

[19] N. Hendrich, D. Klimentjew and J. Zhang, Multi-sensor segmentation of hu-
man manipulation tasks, Proc. IEEE MFI-2012, Salt-Lake City, 2012

[20] M. Santello, M. Flanders, J. F. Soechting, Postural hand synergies for tool
use, Journal of Neuroscience, vol. 18 no. 23, pp. 10 105–10 115, 1998.

[21] J.M. Elliott and K.J. Connolly, A classification of manipulative hand move-
ments, Developmental Medicine & Child Neurology, 26: 283-296, 1984.

[22] M. Ciocarlie, C. Goldfeder, P.K. Allen, Dimensionality reduction for hand-
independent dexterous robotic grasping, Proc. 2007 IEEE/RSJ International
Conference on Intelligent Robots and Systems, 3270–3275, 2007

[23] M. Ciocarlie and P.K. Allen, Hand Posture Subspaces for Dexterous Robotic
Grasping, International Journal of Robotics Research, vol. 28, 851–866,
2009

[24] Andrew T. Miller; GraspIt!: A Versatile Simulator for Robotic Grasping.
Ph.D. Thesis, Department of Computer Science, Columbia University, June
2001.

[25] C. Goldfeder, M. Ciocarlie, H. Dang, P.K. Allen, The Columbia Grasp
Databse, IEEE Internatioonal Conference on Robotics and Automation,
1710–1716, 2009

[26] F.Röthling, R.Haschke, J.J.Steil, and H.J.Ritter, Platform Portable Antropo-
morphic Grasping with the Bielefeld 20-DOF Shadow and 9-DOF TUM
Hand, Proc. IROS-2007, 2951-2956, San Diego, 2007

68



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[27] M. Ciocarlie, H. Dang, J. Lukos, M. Santello, P. Allen, Functional Analysis
of Finger Contact Locations during Grasping, Prod. Eurohaptics Conference
and Symposium on Haptic Interface for Virtual Environment and Teleopera-
tor Systems, 401–405, 2009

[28] Ch. Borst, M. Fischer and G. Hirzinger; Calculating Hand Configurations for
Precision and Pinch Grasps. Proceedings of the 2002 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, Lausanne, Switzerland,
2002.

[29] Ch. Borst, M. Fischer and G. Hirzinger; Grasp Planning: How to Choose a
Suitable Task Wrench Space. Proceedings of the IEEE Intl. Conference on
Robotics and Automation (ICRA), New Orleans, USA, 2004.

[30] M. Schöpfer, H. Ritter, G. Heidemann, Acquisition and Application of a Tac-
tile Database, IEEE International Conference on Robotics and Automation,
1517–1522, 2007

[31] D.D. Nguyen, T.C. Phan, J.W. Jeon, Fingertip Detection with Morphology
and Geometric Calculation, Proc. 2009 IEEE/RSJ International Conference
on Intelligent Robots and Systems, 1460–1465, 2009

[32] Y. Sun, J.M. Hollerbach, S.A. Mascaro, Estimation of Fingertip Force Di-
rection With Computer Vision, IEEE Transactions on Robotics, vo. 25, no.6,
1356–1369, 2009

[33] N. S. Pollard; Parallel Algorithms for Synthesis of Whole-Hand Grasps.
Proceedings of the IEEE International Conference on Robotics and Automa-
tion, Albuquerque, NM, 1997.

[34] Y. Lui and M. Lam; Searching 3-D Form Closure Grasps in Discrete Do-
main. In Proceedings IEEE International Conference on Intelligent Robots
and System, Las Vegas, Nevada, October 2003.

[35] L. Han, J. Trinkle, Z. X. Li; Grasp Analysis as Linear matrix Inequality
Problems. IEEE Transactions on Robotics and Automation, vol. 16, no. 6,
pp663-674, 2000.

[36] R. Haschke, J. Steil, I. Steuwer, H. Ritter; Task-Oriented Quality Measures
for Dextrous Grasping, Proc. IEEE Conference on Computational Intelli-
gence in Robotics and Automation, 2005.

[37] A.T. Miller, S. Knoop, H.I. Christensen, P.K. Allen, Automatic grasp plan-
ning using shape primitives, IEEE Internation Conference on Robotics and
Automation, 1824–1829, 2003

69



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[38] J. Zhang, B. Rössler; Self-valuing learning and generalization with applica-
tion in visually guided grasping of complex objects. Journal of Robotics
and Autonomous Systems, 47: 117–127, 2004.

[39] J. Kim, J. Park, Y. Hwang, M. Lee; Advanced Grasp Planning for Handover
Operation Between Human and Robot: Three Handover Methods in Esteem
Etiquettes Using Dual Arms and Hands of Home Service Robot, 2nd Intl.
Conference on Autonomous Robots and Agents, 2004

[40] T. Baier, J. Zhang, Resuability-based Semantics for Grasp Evaluation in
Context of Service Robotics, IEEE International Conference on Robotics and
Biomimetics, 2006

[41] T. Baier, J. Zhang, Learning to Grasp Everyday Objects using Reinforce-
ment-Learning with Automatic Value Cut-Off, IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, 2007

[42] D. R. Faria and J. Dias, 3D Hand Trajectory Segmentation by Curvatures
and Hand Orientation for Classification through a Probabilitistic Approach,
Proc. IEEE/RSJ IROS 2009, 1284-1289

[43] A. Gams and A. Ude. Generalization of example movements with dynamic
systems. In IEEE-RAS International Conference on Humanoid Robots, pages
28–33, 2009.

[44] M.J. Gielniak, C.K. Liu, and A.L. Thomaz. Stylized motion generalization
through adaptation of velocity profiles. In IEEE International Symposium on
Robots and Human Interactive Communications, pages 304–309, sept. 2010.

[45] Elena Gribovskaya, S. M. Khansari-Zadeh, and Aude Billard. Learning non-
linear multivariate dynamics of motion in robotic manipulators. International
Journal of Robotics Research, 30(1):80–117, 2010.

[46] Auke Jan Ijspeert, Jun Nakanishi, and Stefan Schaal. Movement imitation
with nonlinear dynamical systems in humanoid robots. In IEEE International
Conference on Robotics and Automation, pages 1398–1403, 2002.

[47] Christopher D. Mah and Ferdinando A. Mussa-Ivaldi. Generalization of ob-
ject manipulation skills learned without limb motion. The Journal of Neuro-
science, 23(12):4821–4825, 2003.

[48] Woojin Park, Don B. Chaffin, Bernard J. Martin, and Julian J. Faraway.
A computer algorithm for representing spatial-temporal structure of human
motion and a motion generalization method. Journal of Biomechanics,
38(11):2321–2329, 2005.

70



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[49] Peter Pastor, Heiko Hoffmann, Tamim Asfour, and Stefan Schaal. Learn-
ing and generalization of motor skills by learning from demonstration. In
Proceedings of IEEE International Conference on Robotics and Automation,
pages 1293–1298, 2009.

[50] Xingda Qu and M.A. Nussbaum. Simulating human lifting motions using
fuzzy-logic control. IEEE Transactions on Systems, Man and Cybernetics,
Part A: Systems and Humans, 39(1):109–118, 2009bitemRichardA1975225

[51] Richard A. Schmidt. A schema theory of discrete motor skill learning. Psy-
chological Review, 82(4):225–260, 1975.

[52] S. Schaal, A. Ijspeert, and A. Billard. Computational approaches to motor
learning by imitation. Philosophical Transactions of the Royal Society B:
Biological Sciences, 358(1431):537–547, 2003.

[53] R.A. Schmidt and T.D. Lee. Motor control and learning: a behavioral em-
phasis. Human Kinetics, 1999.

[54] M. Riley and G. Cheng. Extracting and generalizing primitive actions from
sparse demonstration. In IEEE-RAS International Conference on Humanoid
Robots, pages 630–635, 2011.

[55] Videre Systems, www.videredesign.com/vision/sth_mdcs3.htm

[56] Polhemus Liberty Electromagnetic Motion Tracking System,
www.polhemus.com/?page=Motion_Liberty

[57] Phasespace Impulse optical tracker,
www.phasespace.com/productsMain.html

[58] Cyberglove systems, www.cyberglovesystems.com

[59] Tekscan Grip, www.tekscan.com/medical/system-grip.html

[60] HANDLE project, D3 — Augmented sensing object,
www.handleproject.eu, 2009

[61] Nintendo Corp., Wiimote, www.nintendo.com/wii/what/controllers

[62] HANDLE project, deliverable D3, Instrumented sensing objects,
www.handleproject.eu, 2009

[63] HANDLE project, deliverable D4, Protocol for the corpus of sensed grasp
and handling data, www.handleproject.eu, 2009

[64] HANDLE project, deliverable D5, Sensor system specification and evalua-
tion of different methods for object recognition, Protocol for the corpus of
sensed grasp and handling data, www.handleproject.eu, 2009

71



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[65] HANDLE project, D6 — Tactile sensing for data-gloves,
www.handleproject.eu, 2009

[66] HANDLE project, deliverable D7, Algorithms for real-time collision avoid-
ance accompanied by a report on existing planning methods,
www.handleproject.eu, 2009

[67] HANDLE project, deliverable D9, Second robot hardware platform,
www.handleproject.eu, 2010

[68] HANDLE project, deliverable D10, Annotated cataloge of grasp and force/-
motion signatures, www.handleproject.eu, 2010

[69] HANDLE project, deliverable D12, Hand-state models of human grasping
and manipulation skills, www.handleproject.eu, 2010

[70] HANDLE project, deliverable D13, Algorithms for planning the grasping
of objects for manipulation and for planning the in-hand manipulation,
www.handleproject.eu, 2011

[71] HANDLE project, deliverable D14, Improving known actions from motor
babbling, www.handleproject.eu, 2011

[72] HANDLE project, deliverable D15, Reports on organised workshops with
generated documentation, www.handleproject.eu, 2011

[73] HANDLE project, deliverable D16, Hand design report,
www.handleproject.eu, 2011

[74] HANDLE project, deliverable D17, Automatic dataset reduction system for
grasp motion data, www.handleproject.eu, 2011

[75] HANDLE project, deliverable D18, Visual and tactile perception algorithms
for grasping, www.handleproject.eu, 2011

[76] HANDLE project, deliverable D19, Embedded electronic design report,
www.handleproject.eu, 2011

[77] HANDLE project, deliverable D20, Skin design report,
www.handleproject.eu, 2011

[78] HANDLE project, deliverable D21, Motion primitives for human-like grasp-
ing and tool use with a robotic hand, www.handleproject.eu, 2012

[79] HANDLE project, deliverable D22, Low-level controllers desgin including
hybrid force/position control and visual servoing, www.handleproject.eu,
2012

72



HANDLE D24 — PARAMETERIZING AND CREATING NEW ACTIONS

[80] HANDLE project, deliverable D23, Visual and tactile perception system
evaluation report, www.handleproject.eu, 2012

[81] HANDLE project, deliverable D24, Parameterizing and creating new ac-
tions, www.handleproject.eu, 2012

[82] HANDLE project, deliverable D25, Complete anthropomorphic hand,
www.handleproject.eu, 2012

[83] Andrew T. Miller, Graspit!: A versatile simulator for robotic grasping, IEEE
Robotics and Automation Magazine, vol. 11, 110–122, 2004

[84] N. Koenig, and A. Howard, Design and use paradigms for gazebo, an open-
source multi-robot simulator, Proc. IROS 2004, 2149–2154

[85] Bullet Physics Library, http://bulletphysics.org/, 2006

[86] JBullet physics engine, http://jbullet.advel.cz, 2008

[87] Hanno Scharfe, Physikbasierter Simulator für Greif- und Manipulationsver-
fahren mit Mehrfinger-Roboterhänden, Diploma thesis, University of Ham-
burg, 2010

[88] H. Scharfe, N. Hendrich, and J. Zhang, Hybrid physics simulation of multi-
fingered hands for dexterous in-hand manipulation, Proc. ICRA 2012, to ap-
pear

[89] Lorenzo Sciuto, Robotic Hand and Sensorized Glove: A Calibration for
Managing Robotic Grasp in Teleoperation, MSc. thesis, University of Siena,
2011

[90] Eugen Richter, Hand pose reconstruction using a three-camera stereo vision
system, diploma-thesis, University of Hamburg, 2011

[91] Hao Dang, Jonathan Weisz, and Peter K. Allen, Blind Grasping: Sta-
ble Robotic Grasping Using Tactile Feedback and Hand Kinematics, Proc.
ICRA-2011, 2011

[92] C. Ott, Cartesian Impedance Control of Redundant and Flexible-Joint
Robots, Springer Tracts in Advanced Robotics 49, Springer 2008

73


	Abstract
	Experiment setup for recording robot motion
	Experiment setup
	Software
	Cyberglove calibration
	Calibration Sequence
	Examples from the Grasp Taxonomy
	In-hand rotation examples

	Parameterizing grasping motions
	The IST benchmark object set
	Example grasps and parameters
	Lessons learned

	Grasp synergies
	Grasp planning using the GraspIt! simulator
	Eigengrasps for the Shadow hand
	Grasping complex objects
	Precision-grasp experiments
	Synergies derived from the grasp experiments
	Synergies and Object Affordances
	Ongoing work

	Parameterizing manipulation sequences
	Introduction
	Related Work
	Meta Motion Definition
	Action Gist from Data-glove
	Action Gist Generalization from Demonstration Set
	Experiment and Discussion
	Conclusion and Future Work

	Summary
	Future work

	References

