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Abstract— In this work we ask whether an integrated system
based on the concept of human imagination and realized as a
hyperreal setup can improve system robustness and autonomy.
In particular we focus on how non-nominal failures in a
planning-based system can be detected before actual failure.
To investigate, we integrated a system combining an accurate
physics-based simulation, robust object recognition and a sym-
bolic planner to achieve realistic prediction of robot actions.
A Gazebo simulation was used to reason about and evaluate
situations before and during plan execution. The simulation
enabled re-planning to take place in advance of actual plan
failure. We present a restaurant scenario in which our system
prevents plan failure and successfully lets the robot serve a
drink on a table cluttered with objects. The results give us
confidence in our approach to improving situations where
unavoidable abstractions of robot action planning meet the real
world.

I. INTRODUCTION

This work introduces a novel approach to the prediction
of robot action results based on physical simulation during
plan execution. This makes the scoring of plan operator
parameters possible and allows re-planning. The simulation
is combined with our recently introduced object recognition
method to improve recognition results and add perceived
objects to the simulation.

Since the early days of robotics the fundamental and
interesting question was how robots could adopt human
cognitive processes. In this work we propose a system imple-
menting the cognitive principle of imagination. The approach
combines, in a hyperreal setup, the cognitive concept of
imagination for reasoning and evaluation into one system
(HIRES). It does not rely on traditional spatial reasoning [1]
but instead uses simulation as a tool to enable the testing of
robot execution before actions are actually performed. This
naturally saves robot resources and, when optimized, total
execution time, as well as improving system robustness. Our
approach is inspired by the concept of imagination from [2].
Imagination enables humans to consult rules or principles
but not merely to apply those rules. Instead humans imagine
what the consequences might be if the rules are, or are not,
followed [3]. The author notes that humans constantly use
imaginative projection and that imagination is essential to
human reasoning.

According to Loasby [2] reasoning is expensive in time
and energy and should therefore be used sparingly. Our
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approach is to combine the concept of imagination with
the concept of “Hyperreality” [4]. The term Hyperreality is
based on earlier work from Baudrillard [5]. It originates from
semiotics and postmodern philosophy and is considered the
condition where an agent cannot distinguish reality from a
simulation of reality. Therefore reality and virtual reality can
be considered interchangeable (referred to in our previous
work as Mixed Reality [6], [7]), as can human and artificial
intelligence [4].

The experimental domain is a restaurant-like environment
in which the robot carries out tasks typical for a waiter, such
as serving a beverage to a guest or cleaning a table. Aspects
of these tasks, such as serving coffee to a guest, require
reasoning in order to be performed correctly. For example
to place the mug on the table near to the guest, the robot
must use spatial reasoning to compute a suitable table-top
area in which the mug is to be placed. The appropriate area
might already be occupied by the guest’s belongings, e.g. a
mobile phone or a book, or by normal table decorations such
as a vase or salt and pepper pots. Considering this scene
in a restaurant causes an increase in “reasoning space” as
computations have to consider each object in relation to all
other objects.

Use of the proposed reasoning and evaluation approach
is based upon reliable object recognition. Many different
recognition methods and algorithms have been developed
in recent decades. Nevertheless no available algorithms can
deliver the necessary robustness and success rate. Therefore,
in the work presented, the strategy used is to combine
multiple algorithms (detectors) for different object properties.
Thereby, object recognition is based on the combination of
results from different detectors with varying accuracy.

An exact simulation of the scene is used in order to execute
robot actions (e.g. picking-up the mug from the counter and
placing it in front of the guest) before they are actually
performed. The simulated consequences of the action (e.g.
placing the mug failed) are used to adapt the current plan in
order for the task to succeed.

The approach presented supports the assumption that
applying imagination with the help of a hyperreal system
improves robot autonomy and saves resources. In the next
section we present the HIRES approach to resolving the pro-
posed problem. HIRES is a central component for reasoning
and evaluation of robot behavior and capabilities. Before the
experiments and scenarios are described in Sec. III, the tech-
nical realization - the frameworks used, the adaptations and
implementation details of HIRES and the object recognition
method - is described.
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II. APPROACH

HIRES is based upon the idea that imagination in human
cognition improves human behavior. In computer science and
especially robotics, imagination has received little attention.
In this work we use an accurate and realistic simulation of the
robot and its surroundings (as detailed as possible compared
to the real world) to represent the robot’s physical observa-
tions. This lets the system “imagine” the consequences of
following or not following a plan before actually executing
an action.

On the basis of an accurate and recent simulation, the
borders between simulation (or virtual reality) and reality
fade away. In philosophy and sociology the term Hyperreality
has been established to describe exactly this condition [5].

Lodato [3] describes imagination as being central to hu-
man reasoning in that it allows us to organize and describe
our experiences. And Loasby states that creation of new
patterns rests on imagination, not logic. In this work, robot
imagination enables reasoning about possible robot actions
by inferring from simulation.

HIRES can be used to evaluate components or whole
systems. In this work, it will be demonstrated by means
of object recognition. In simulation many different table-top
scenes with varying numbers and types of objects can be
used to measure the algorithm’s accuracy and performance.

A. Frameworks and Planning

In previous work we developed an ontology-based robot
control architecture to allow robots to learn from experi-
ence [8]. To focus the research on high level tasks such
as learning from experience, as employed in the RACE
project1, it is necessary to be able to take the robustness
and functionality of lower level components for granted.
Our platform provides basic capabilities such as navigation,
manipulation and grasping.

Robots and robot control software become ever more
complex. There is also a tendency to use ever more sensors
and consequently the amount of data to be processed rises.
As the complexity of tasks increases and as tasks are di-
vided into many parts, coherence between capabilities grows
rapidly. For example the PR22 robot produces data at approx.
50 MB/s, not including the RGB-D sensory output.

There are several coherent frameworks, like ROS, that
integrate many different capabilities. One such capability
is navigation, which typically consists of localization, path
planning and robot control. The combination of 2D naviga-
tion and 3D collision avoidance is the state-of-the-art method
in mobile robotics. 2D navigation provides the necessary
performance; 3D collision avoidance the required fidelity.

Other essential capabilities are manipulation and grasping.
For these it is important that a solution for inverse kine-
matics exists, in addition to solutions for the calculation
of possible trajectories and grasps. One difficulty is the
calibration between sensors, the robot and the gripper pose.

1http://www.project-race.eu
2http://www.willowgarage.com/pages/pr2/overview

High grasp accuracy and the coordination of grasping with
the recognition process must be ensured. Generally the
task can be finished successfully only if all components
are successful. If one component fails, the goal cannot be
achieved. Other components, such as the planner, object
recognition and the simulator are indispensable and belong
to the basic capabilities.

Hierarchical Task Network (HTN) planning is one of
the most popular high-level planning strategies for mobile
robotics. In our work we currently use SHOP2 (Simple Hier-
archical Ordered Planner) [9]. A huge advantage of SHOP2
over other HTN planners is its ability to generate partial-
order plans. Unfortunately, HTN planners provide no possi-
bilities for parallelization or re-planning. To compensate for
this here, the planner is extended with a parallelization layer
realized with an execution-based state machine, SMACH
(State Machine) [10]. This allows the use of containers to
assign different tasks to each state and is thereby able to
execute any type of parallelized plan. This early work is
described in [11].

[12] combines geometric and symbolic representations
in an hierarchical planning architecture, called Hierarchical
Planning in the Now, or HPN. Here a system is integrated
to generate behavior in a real robot that robustly achieves
tasks in uncertain domains. Simulation is used to demonstrate
the system but not to exploit physical reasoning capabilities.
[13], [14] define the Diverse Action Manipulation (DAMA)
problem concerning a robot, a set of movable objects and a
set of diverse manipulation actions. The objective is to find
a sequence of actions that moves each of the objects to a
goal configuration. In this work the manipulation problem is
addressed as a multi-modal planning problem and it proposes
a hierarchical algorithm to deal with it. Although the work
addresses similar robot manipulations the authors do not use
physical planning or simulation to improve robot autonomy
or robustness.

B. Simulation

Simulation has become an essential tool in the develop-
ment of complex mobile systems. The availability of physical
robots is limited and researchers often work in separate
physical locations on different system parts. Consequently
whole-system evaluation and testing is often not possible. In
such cases a realistic simulation is indispensable.

Harris et-al., [15] gives a good outline of the available
simulators, frameworks and tool-kits. The authors suggest
that most simulators are not well documented (for anything
but Windows environments), have no sensors, or offer no
possibilities for the integration of new robots, sensors, etc.
Many tools are insufficiently precise, do not include physics
engines or are no longer under active development. However,
according to the authors, ROS has been proven very suitable.
The Gazebo-based simulator provided by ROS integrates
many robots and sensors as well as many libraries and
tools. It also provides a physics engine and delivers accurate
results. Furthermore ROS is designed to be a partially real-
time system according to Harris. This, in addition to very



good PR2 integration, explains why ROS is currently one
of the most popular robotics frameworks. [16] presents a
qualitative evaluation of a number of free, publicly available,
physics engines for simulation systems and game develop-
ment. Among the ten evaluated physics engines, our work
mainly uses ODE3, which is used in the Gazebo simulator at
version 1.0. [17] evaluates the Bullet engine as an ingredient
of physical reasoning. It investigates the prediction accuracy
of a physics engine when simulating a robot arm pushing
flat objects across a table. The authors recommend reasoning
about goals and actions using physics simulations. Successful
reasoning is considered to imply the need for a strong
understanding of dynamics and the effects of actions.

In [18] a system projecting the results of robot actions
in everyday object manipulation (in this case, making a
pancake) is proposed in order to obtain appropriate action
parametrization for successful execution. This task, which for
a robot is complicated, is broken down into simpler actions,
e.g. breaking an egg, pouring the pancake mix etc. A model
integrated with PROLOG allows chronological backtracking
of actions and triggers physical simulations, monitoring
and logging. It translates the logged data into first-order
time-interval-based representations, called timelines. Naive
physics and commonsense reasoning are used to improve the
robot’s manipulation capabilities. The framework includes
the simulator Gazebo, the PROLOG logic programming
language and a parametrizable robot control program. Eval-
uation focuses on qualitative results (e.g. a well broken
egg) related to specific parameters. There is a discussion of
the limitations of today’s symbolic reasoning methods for
drawing inferences about simple physical problems, as the
necessary details of physical properties are abstracted away.
The system presented uses a high-fidelity physics model that
lacks real-time performance and hence must be applied of-
fline (a-priori). This lack of real-time performance means that
its predictions cannot be used for planning during execution.
The work does not use higher level symbolic planning, e.g.
HTN planners or state machines (e.g. SMACH).

In our work, ROS is used as a low-level framework and
its integrated simulator proves to be suitable for research,
testing and evaluation.

C. Object Recognition

Many existing methods for simultaneous object recogni-
tion try to match features using a database [19], [20] and
may also integrate stereo cameras, time of flight cameras,
thermal cameras, etc. [21]. However all of these methods
have limitations. One method, for example, works only with
rotationally symmetrical objects. Other algorithms cannot
handle unknown objects and yet others work only with
unknown objects.

The method presented in [22] is based upon a similar
approach. The authors use two detectors, a combination of
RANSAC and Mean Shift as well as the SIFT algorithm to
recognize objects. Unfortunately the authors evaluate their

3http://www.ode.org

approach only for single objects in the scene. Furthermore
the approach cannot handle partial occlusion.

In [23], point clouds are collected from different perspec-
tives in order to improve clustering before recognition. In this
method, point cloud collection probably takes a relatively
long time and there is no guarantee that the best possible
point cluster will be obtained. Nevertheless, clustering is an
important part of the recognition method and improves their
results.

The approach we presented in [24] extends the existing
state-of-the-art and shows a possible way to improve scene
analysis and to achieve more reliable and accurate object
recognition. In the case of partial occlusion, this works
by simultaneously using different detectors and by active
interference with scene objects. The work goes a step towards
active intelligent perception. In this case, many detectors are
run in parallel, each concentrating on a different feature or
object property. Depending upon the output of the detectors,
an intelligent decision for the next step can be made. So it is
possible to change the view of the sensors in various ways,
for example by moving the robot’s head, its torso or even
the whole platform. The other possibility is to interfere with
a scene, for example to grasp inside the scene or to change
the arrangement of the objects on the table. To show more
evaluation possibilities an object recognition approach based
on [25] was used. Here, object recognition was improved by
the developed detector. Foremost among the improvements
was our implementation and integration of 3D recognition
based upon ICP (Iterative Closest Point). This improved
upon methods integrated into ROS by offering the ability
to compare in three dimensions; in this case the method can
be used for objects that are not rotationally symmetrical.
Another advantage is that the objects need not have known
orientation.

During experiments it became evident that if the shapes
and curves of objects were similar and objects of different
sizes were compared, the probability of false-positive com-
parison increased rapidly. To compensate for this disadvan-
tage the ICP-based algorithm was improved by dividing the
comparison processing into two steps. In the first step, the
input cloud is compared with a database object; in the next
step the same comparison is performed in reverse order. To
adapt the resulting similarity, the quadratic error of distances
between closest neighbor voxels is calculated for each step.
The similarity is based upon the Euclidean Norm of a 3D
vector. The method developed, dubbed ICP 2, combines
both minimum normalized probabilities and computes a new
probability value.

D. Hyperreality

Hyperreality is based upon a tight relationship between
reality and virtual reality, i.e. the simulation. A fundamental
aspect of the simulation is that it is updated whenever objects
appear or change (in the robot’s view) in reality. In this
work we focus on the entry of new objects and do not
consider changes to existing objects (which involves object
grounding).

http://www.ode.org


Fig. 1: (Table-top) objects recognized in reality are spawned into
simulation concurrently. From left to right: reality, successful object
recognition (RViz), spawned objects in simulation (Gazebo).

In a scenario in which the robot faces a table-top situation,
it either will or will not successfully recognize the objects
on the table. The key aspect of (traditional) 3D object
recognition involves comparing a segmented RGB-D point
cloud against an ideal 3D model stored in a database.
The output of successful object recognition is the object
identifier corresponding to the correct real world object. In
our approach we extended the database with new attributes
that store additional information about objects. This infor-
mation is needed in order to create an instance of the object
in the simulation. Objects in our database are referenced
by their Id and include at least a Label and a Category.
For Gazebo simulation compliance, we added the attributes
3D model and Gazebo description. The 3D model holds
a file name referring to a Collada4 model which is used
for object recognition and for spawning into Gazebo. The
XML (Extensible Markup Language) Gazebo description
represents the model information in either SDF (Simulation
Description Format) or URDF5 (Unified Robot Description
Format) such that it can be spawned into Gazebo.

Successful object recognition provides the object identi-
fier (Id) and also its 3D position (and orientation) which is
transformed into the Gazebo world coordinate system and
used to spawn the object at the correct location. Fig. 1
shows the robot situated in front of a counter recognizing
the two mugs on top; the spawned objects are shown in
the simulation. When re-creating a real situation in the
simulation, the robot’s position is also transformed after it
has been retrieved from the AMCL (adaptive Monte Carlo
localization). Any pose applied from the simulation into
reality is transformed in the opposite direction. The applied
affine transformation is dependent upon the robot’s AMCL
map relation to the Gazebo world and has to be calculated
once for the environment setup in use.

III. SCENARIO AND EXPERIMENTS

In a restaurant a typical task for the waiter might be to
serve a coffee in front of a guest. The setup of the physical
environment is illustrated in Fig. 2. The robot is given the
instruction achieve serve coffee to guest Task guest1 through
its command line interface (CLI). The planner is triggered
and creates the plan shown in Listing 1 according to the
problem description and current knowledge. Each line rep-
resents a plan operator with its arguments. The plan operators

4https://collada.org
5http://wiki.ros.org/urdf

Fig. 2: The environment setup includes the counter, table and
various table-top objects.

correspond to robot capabilities and are bound to the robot.
Arguments are instances from the robots ontology and are
stored in the central component of the RACE architecture,
the Blackboard. The Blackboard collects and distributes
information between different system components. Fig. 4
shows the robot’s environment with respect to its knowledge.

1 !tuck arms armtuckedposture armtuckedposture
2 !move base premanipulationareaeastcounter1
3 !move torso torsoupposture
4 !tuck arms armtuckedposture armuntuckedposture
5 !move arm to side rightarm1
6 !move base blind manipulationareaeastcounter1
7 ! pick up object mug1 rightarm1
8 !move base blind premanipulationareaeastcounter1
9 !move torso torsomiddleposture

10 ! move arms to carryposture
11 !move base premanipulationareasouthtable1
12 !move torso torsoupposture
13 !move arm to side rightarm1
14 !move base blind manipulationareasouthtable1
15 ! place object mug1 rightarm1 placingareawestrighttable1
16 !move base blind premanipulationareasouthtable1

Listing 1: Generated (parallel) plan for serving a coffee.

11 !move base premanipulationareanorthtable1
12 !move torso torsoupposture
13 !move arm to side rightarm1
14 !move base blind manipulationareanorthtable1
15 ! place object mug1 rightarm1 placingareawestlefttable1
16 !move base blind premanipulationareanorthtable1

Listing 2: Generated (partial) alternative plan for serving a coffee.
The adapted operator parameters are highlighted.

When the robot approaches the table from the south, as
illustrated in Fig. 2, plan step 15 instructs the robot to place
the mug on the table. This fails because various objects
occupy the placing area and this would cause the complete
plan to fail. HIRES is designed to reason about the next best
action and to prevent the plan from failing. In the scenario
presented, the “place” action is considered crucial and most
likely to fail. Therefor it is chosen to be reasoned about
before it is actually executed in reality.

Upon successfully picking up the mug (plan step 7) HIRES
is started. HIRES uses the post-condition of the 14th plan
step (the robot being at the manipulation area south of the
table) and sets up the simulation accordingly (Fig. 3) in order
to execute the next plan step (place the mug). This fails in the
simulation too but this failure will not affect the original plan.



Fig. 3: The robot reaches the table to place the mug in front of the
guest (omitted here, supposed to sit to the robot’s left side of the
table). As the placing area is occupied by various items the robot
is not able to succeed.

North

Fail
premanipulationarea

northtable1
premanipulationarea

robot

southtable1

table1

counter

Fig. 4: Planning scene consisting of bounding boxes and coordinates
for the table and counter and their approach positions. Labels
correspond to plan operator parameters.

Moreover, it provides the plan with failure information before
actual failure. The failure is detected by the return value of
the “place” action. The planner, in return, is able to repair
the current plan (a.k.a. re-planning) and to produce a (partial)
new plan, as shown in Listing 2. This is possible because the
two different manipulation areas (north and south) are valid
parameters to the move base operator. As this work does
not focus on particular re-planning methods, for the sake of
simplicity the planner creates partial plans before executing
them. This allows re-planning by simply changing the plan
parameter and planning again (partially).

IV. EVALUATION

A. Object Recognition

The authors believe that a comprehensive evaluation of
their approach to 3D recognition against methods that do
not use the same sensor information is not possible. The
strategy established here was to use many different detectors
and various sensor information. The normal evaluation tools,
such as [26] that provide more than 200,000 scans of 300
objects from 51 categories, are unsuitable. Our goal here was
to evaluate object recognition w.r.t. sensors and perspectives.
Both are typically robot platform dependent properties.

At first we evaluated our new object recognition detector
in the simulation with all objects included in the ROS

Fig. 6: Overlay of different poses tested within the simulation before
giving a suggestion for object detection and grasp calculation. This
image shows four tested poses with the robot in front of a table
holding graspable objects.

household database6. We then tried many different evaluation
strategies. For example the available objects were used to
compare recognition results with the real world. A set of
random or significant scenes was also investigated.

The results for mug recognition with our detector using the
household database are presented in Fig. 5. The probability
for the coffee mug is presented in red. The results confirm
our assumptions presented in earlier publications: ICP 2 is
stable and robust. The method first compares two possible
object properties, namely size and volume. In this case the
coffee mug has only the third-highest probability, ranking
after two objects with extremely similar shapes, such as a
glass and a can. The next step was to evaluate the same
detector as part of the whole recognition system in order to
investigate what can be achieved in combination with other
detectors. Note that the position and orientation of the objects
were changed automatically during the evaluation process, so
an evaluation of the whole object recognition system w.r.t.
partial occlusion has also been achieved.

B. Reasoning

One of the recurring tasks in our scenarios was to drive
the robot to the counter, from which the robot picked up
one or more objects. For our experiments we used the PR2
robot which has the ability to change its vertical torso
position. This flexibility suggested two obvious questions
for investigation: how does the robot’s torso position affect
grasping and object recognition and what kind of strategy
gives the best results for both capabilities?

To find the answers, a table-top scene was recognized by
the real robot. With this data, the real scene was replicated
in the simulation. The task of the robot was to recognize the
same scene in the simulation with the position of the sim-
ulated robot (base and torso) changed after each completed
experiment. Fig. 6 visualizes the scenario used as well as the
changes to the robot position.

6http://www.ros.org/wiki/household objects database



Fig. 5: Comparison of the mug with the 323 Objects (object number along the x-axes) of the ROS household database using the ICP 2

algorithm. The probability (y-axes) for the coffee mug is presented in red. The method compared only two possible object properties,
namely size and volume. This was one reason why the coffee mug had only the third-highest probability, after objects with extremely
similar shapes such as a glass and a can.

Fig. 7: Results for object recognition depend upon robot’s torso and
pose. This figure is related to the experiments illustrated in Fig. 6.

One of the first results was that the influence of torso
position on object recognition has a linear character. The
lower the torso position the more significant object voxels
can be seen. Therefore only the “up” and “down” positions
are considered to be relevant. As can be seen in Fig. 7 the
main quality gain was measured when the robot’s torso was
in the down position. Other operators, such as moving the
robot base left, right or back, did not significantly improve
(and sometimes reduced) recognition quality.

The second result was that the number of grasps found
for all torso positions tested was relatively constant. But the
grasp quality increased by 32.5% when the robot’s torso
was driven to the “up” position from the initial pose. The
information about the grasp quality was delivered from ROS’
own grasp planning tool, which uses a simulated annealing
optimization to search for gripper poses relative to the object
or cluster [27]. Changes in the robot’s base position to the
left, right or back did not notably increase the overall grasp
quality in that setup. For confirmation a few significant
situations were reenacted and recognized in reality. The
results confirmed the outcome of the simulation.

According to the experiments, the best resulting strategy
is to use the “down” robot position for object recognition
and to change it to “up” when searching for and calculating
the necessary grasps. Consequently the use of this strategy

move base parameter premanipulationarea premanipulationarea
southtable1 northtable1

Plan fail ok

TABLE I: Qualitative results: serving a coffee.

System Default system + re-planning HIRES

Duration 298 seconds 283 seconds

TABLE II: Averaged quantitative results of five scenario runs.

increases the robustness of both robot capabilities described
below. This result can be used immediately by the planner
or HIRES and influences the next calculated plan.

The scenario, presented in section III, shows a typical plan
failure situation, in which the robot fails to perform a given
task. The question posed is whether robot autonomy can be
improved by HIRES. To compare the results, two runs of the
scenario were performed. The first is executed by following
the original plan but, instead of failing in the “place” task,
re-planning at this point by driving the robot to the North
(opposite) side of the table. The second run employs HIRES
and therefore executes the (repaired) plan. Table I shows the
qualitative results and Table II the quantitative results of the
experiments performed in this scenario.

We increased the simulation time in this scenario by about
20 seconds. Although this is an order of magnitude slower
than symbolic planning it prevents plan failure. Furthermore
it would take approximately the same time to execute the
plan and then re-plan but at the cost of spending robot
resources. Future parallel simulation of additional parameters
will compensate for this extra time cost.

V. CONCLUSIONS AND FUTURE WORK

In this work we introduced a reasoning and evaluation
system based on Hyperreality and Imagination (HIRES). In
order to measure its performance, we assessed the reasoning
and evaluation parts in the context of a plan-based robot



system. We selected typical situations from a coffee serving
scenario, (object recognition, grasping and placing a mug)
for the evaluation of HIRES. Our recently introduced object
recognition method was evaluated with HIRES; the results
presented supported this new method as well as HIRES. We
implemented HIRES and we contributed to improvements in
overall system robustness and autonomy.

The contribution of HIRES was measured qualitatively and
in terms of time costs. Time is a key resource in robotics,
but the robot itself is also considered to be a resource. Our
approach spared the robot from executing the dead-ends in
a (failing) plan and prevented it from harming itself or its
surroundings while acting in its real environment.

As our approach relies on real-time reasoning, it imposes
a real-time requirement onto the simulation, especially by
running multiple simulations in parallel to test different
parametrization. This must be approached in future by
choosing a simplified environment, changing the simulation
engine, distributing the computing load or by interleaving
simulation with execution. Parametrization can be scored
according to the most likely success. We will use additional
scenarios for evaluation, such as the robot carrying a pepper
mill on a tray while parametrizing the driving, velocity,
acceleration etc. A model to represent uncertain propositions,
such as a fuzzy-model, will be evaluated.

Our future work will involve the application of HIRES to
more scenarios and situations. Eventually, flexible integration
with a symbolic planner will allow HIRES to be called from
anywhere during plan execution. Performance issues were
not considered in this work but have to be dealt with in
future. Nevertheless we believe that increasing computing
power will contribute to the targeted real time performance
of HIRES.
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