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One, a robot may not injure a human being, or through inaction, allow
a human being to come to harm;
Two, a robot must obey the orders given it by human beings except
where such orders would conflict with the First Law;
Three, a robot must protect its own existence as long as such protection
does not conflict with the First or Second Laws.

Isaac Asimov, Laws of Robotics from I. Robot, 1950





Abstract

In the field of robotics, typical, single-robot systems encounter limits when executing
complex tasks. Todays systems often lack flexibility and inter-operability, especially
when interaction between participants is necessary. Nevertheless, well developed
systems for the robotics domain and for the cognitive and distributive domain are
available. What is missing is the common link between these two domains.
This work deals with the foundations and methods of a middle layer that joins a
multi-agent system with a multi-robot system in a generic way. A prototype system
consisting of a multi-agent system, a multi-robot system and a middle layer will
be presented and evaluated. Its purpose is to combine high-level cognitive models
and information distribution with robot-focused abilities, such as navigation and
reactive behavior based artificial intelligence. This enables the assignment of various
scenarios to a team of mobile robots.

Zusammenfassung

In der Robotik stoßen heute konventionelle Systeme, auf der Basis einzelner oder
mehrerer Roboter, bei komplizierten Aufgaben schnell an ihre Grenzen. Speziell
wenn Interaktionen zwischen den Teilnehmern notwendig sind, haben heutige Syste-
me Nachteile hinsichtlich Flexibilität und Interoperabilität. Ungeachtet dessen exis-
tieren bereits weit entwickelte Systeme im Bereich der Robotik sowie der Kognition
und der verteilten Systeme. Was fehlt ist eine generische Verbindung dieser Bereiche.
Die vorliegende Arbeit beschäftiget sich mit den Grundlagen und Methoden eines
Middle-Layers, der genau das tut. Des Weiteren soll anhand einer prototyphaften
Integration in ein Gesamtsystem, bestehend aus einem Multi-Agentensystem, einem
Multi-Robotersystem und des Middle-Layers, die Anwendbarkeit demonstriert und
das Ergebnis evaluiert werden. Der Zweck dieses Systems ist die Verbindung von
abstrakten, kognitiven Modellen und verteilten Systemen mit Roboterfähigkeiten,
wie Navigation und Verhalten. Das ermöglicht, im Rahmen der Arbeit, den Einsatz
verschiedener Szenarios mit einem Team mobiler Roboter.
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Introduction

1
This work was written at the Group of Technical Aspects of Multimodal Systems
(TAMS) at Hamburg University, where the research and education focus is on mul-
timodal sensing and representation, knowledge-based robot control and learning as
well as mobile service-robots. The work was done in close cooperation with the
Group of Distributed Systems and Information Systems (VSIS), which focusses on
distributed systems, service-oriented software architectures and content manage-
ment.

1.1 Motivation

In modern robotics, simple tasks still demand complex solutions. An important
development has been the use of multi-robot systems (MRS) to provide high-level
access to robot hardware. Although such platforms provide transparent access to
sensors and actuators, difficulties still remain. Typical tasks for a mobile robot re-
quire at least some sensors such as a stereo-vision camera, a robot arm or even a
hand. To interconnect these sensors in software in a meaningful way is not trivial, al-
though device access itself might be simple. The execution of even simple commands
such as “grip that trash”, “open that door” or “find the pink ball” can be assumed
to be complex tasks. They can be solved either by one or more sophisticated and
specially adapted robots, or by multiple, relatively simple, robots that coordinate
their activities. There are important advantages in the latter approach, such as task
flexibility, scalability, cost and platform autonomy, which will be expanded upon as
requirements to this project in the next section.
Extensive research and implementation effort has also gone into the area of multi-
agent systems (MAS) in order to assist the development of distributed systems and
of cognitive autonomous agents with learning intelligence.

1.2 Goals

This work describes a platform combining an MRS and a distributed and intelligent
MAS. A stable robot platform will serve as the basis for high-level services. The
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1 Introduction

platform should provide a framework for modeling the objects needed for various
tasks. In addition, the following requirements should be fulfilled.

In order to provide task flexibility the platform should be able to execute tasks of
arbitrary complexity by managing a dynamic and heterogeneous group of robots.
Flexibility in the number of robots taking part in a task is termed scalability. The
platform should perform with an arbitrary number of robots, selected according to
robot availability and task requirements. Preparatory work should be done to facili-
tate future dynamic addition of extra robots and the replacement of malfunctioning
robots. In addition, regarding the cost, this work assumes that a group of small,
heterogeneous robots is cheaper to maintain in the mid- to long-term than a few,
highly specialized ones. Last but not least, the platform should be ready for future
enhancements in the scientific research fields involved. This means that preparations
should be made with regard to the possible exchange of the MRS and MAS with
other potentially better suited systems. This is called platform autonomy.

The main goal of this work is to develop a layer of software between the MAS and
MRS and to integrate a prototype platform that involves these three layers. The
aim is to have real robots cooperating in the TAMS indoor environment.

1.3 Outline

This document is structured as follows.

The chapter 1, Introduction, establishes the topic of the work. Multi-robot systems
are mentioned as advantageous systems in modern robotics. Their use serves as the
motivation for the advanced system presented in this work. The fundamental goals
of the approach are described.

In chapter 2, State of the Art, the basics of multi-robot and multi-agent systems
are described and widely-used systems are discussed. A choice of assorted tools is
made and presented. Preliminary work in the scientific field of mobile robotics is
mentioned and an overview of related work in the field of cooperative robotics is
given. A discussion of the advantages of a combined multi-agent and multi-robot
platform concludes the chapter.

An approach to the development of such a combination is presented in chapter 3,
Approach. The constraints on the approach are elaborated, the robot hardware is
introduced and the requirements are developed. The basic architecture of a new
meta-platform is presented, as is the detailed design of the middle layer between
multi-agent and multi-robot systems.

The use of the meta-platform presented here is described in chapter 4, Scenarios.
Selected scenarios representing use-cases with multiple cooperating robots are im-
plemented and the practical use of the platform is demonstrated. Finally a preview
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1.3 Outline

of possible future enhancements is given and instructions for migration to other
multi-agent and multi-robot systems complete the chapter.
In chapter 5, Conclusion, the technology, scenarios, user interface and performance
of the system are evaluated. The development of multi-robot scenarios is discussed,
as are areas of scientific research that could benefit from the system presented.
Finally the work is summarized and several possible enhancements are discussed.
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2
2.1 Introduction

This chapter summarizes current robot and agent-systems technologies. Dedicated
open-source software for these areas will be introduced and preliminary work and
related research will be mentioned. Finally the advantages of a combined robot and
agent system will be discussed.

2.2 Multi-Robot System

A multi-robot system is described in [GVH03] as a software system providing tools
that simplify controller development, particularly for multiple-robot, distributed-
robot, and sensor network systems. Typically, and especially in this work, various
heterogeneous mobile robots are controlled by a dedicated MRS.

An MRS provides hardware abstraction and driver encapsulation, where a driver is
a control algorithm that supports the underlying hardware. For example, a driver
might control differential drives, ranging sensors or localization.

The two MRS introduced in section 2.2.1 and 2.2.2 also support a level of network
abstraction. These MRS were chosen because they are well established and main-
tained, are widely used and have a large user community. Any robot, sensor or
effector (for example a motor) hereafter referred to as Devices, can be accessed from
anywhere within the network regardless of the client’s1 point of access.

An MRS typically provides tools, drivers and software frameworks for accessing
a range of different robots. Generally, concurrent robot activity and inter-robot
communication are supported. Nevertheless there is currently no framework for
intelligent, networked Device behavior.

The two MRS mentioned provide a basic set of functionality for a lone robot: per-
ception, manipulation and representation of the environment in the form of a map.
In particular any client based on these MRS can rely upon motion control, object

1Client here means some user program
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2 State of the Art

manipulation, such as controlling a robot arm, perception of the environment via
sensors and motion planning towards a specified target. Motion planning includes
the mapping of sensory data to map coordinates (localization) and navigation. The
following systems are open-source tools that are widely used in robotics research.

2.2.1 Player/Stage

In this work, the Player/Stage MRS is used. Player/Stage was developed in 1999
at the USC Robotics Research Lab to address interfacing and simulation for MRS.
Since then it has been modified and extended by researchers and now has an active
support community. It is free and open-source.

Player/Stage provides C and C++ API-libraries with additional bindings for script
languages, such as Ruby and Python. Third-party open-source projects provide fur-
ther client support, currently for Ada, Octave and Java (section 2.2.1). Moreover,
Player/Stage comes with out-of-the-box tools that make testing and debugging eas-
ier. Such tools include graphical interfaces for navigation2 and control as well as for
visualizing sensory data. A well integrated robot simulator is also included. Figure
2.1 depicts the Stage simulation interface.

Stage, originally developed to simulate a two-dimensional world, has evolved into a so
called 2.5D simulator because many (although not all) model aspects are based upon
three dimensions. A pure three-dimensional simulator, called Gazebo, is available
too. This simulator also integrates a physics engine and can be quite demanding in
terms of computing time. Gazebo3 is best suited to small robot populations with
high model fidelity in an outdoor environment, whereas Stage is optimized for a
large robot population with lower accuracy and indoor scenarios.

Javaclient4 is third-party software for the Player/Stage project and provides a Java-
API suitable for any Java client. It uses the socket interface from Player/Stage and
provides a client API in native Java that is functionally similar to the native C/C++
interface of Player/Stage. The socket interface provides platform-independent con-
trol of Player/Stage because socket interfaces are implemented in many program-
ming languages and operating systems. Player/Stage has a client/server infrastruc-
ture. Figure 2.2 depicts Player/Stage socket communication and the client/server
architecture.

Player/Stage is released under the GNU General Public License5, which allows all
code to be used, distributed and modified freely, on the condition that any derived
work be distributed under the same license terms.

2http://playerstage.sourceforge.net/wiki/Robot_Navigation (July 26, 2011)
3http://playerstage.sourceforge.net/gazebo/gazebo.html (July 26, 2011)
4http://java-player.sourceforge.net
5http://www.gnu.org/licenses/gpl.html (July 26, 2011)
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2.2 Multi-Robot System

Fig. 2.1: The Stage (graphical) simulation interface shows in oblique projection a kind
of three dimensional robot environment. The environment itself consists of a floor, a map
and various objects. Here the map is represented by the dark walls. The red objects
represent furniture such as tables, chairs and sideboards. The map actually shows a part
of the TAMS floor and its laboratory. Three simulated robots reside inside the laboratory.
The square green spot on the laboratory floor represents a blob, which can be detected by
any blobfinder device, such as blob-detecting cameras.

2.2.2 ROS

ROS6 stands for Robot Operating System. It provides features similar to the Play-
er/Stage project and uses algorithms from that project and others [QCG+09]. Its
focus is more on dynamic, peer-to-peer communication between robot devices and
on modular design. ROS supports client code in C++, Python, Octave and LISP.
Other language support, such as a Java-API via the Java Native Interface (JNI)7,
is either planned or currently in an early phase of support8.

ROS is released under the Creative Commons Attribution 3.0 license9, which allows
free use, distribution and modification of all code under the condition that derived
works attribute to the work in the manner specified by the original author.

6http://www.ros.org
7http://en.wikipedia.org/wiki/Java_Native_Interface (July 26, 2011)
8http://www.ros.org/wiki/rosjava (July 26, 2011)
9http://creativecommons.org/licenses/by/3.0 (July 26, 2011)
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Fig. 2.2: Here a native Java application calls the MRS. Commands are sent through the
socket interface via a network (LAN or WLAN) to the Player server, which could be run-
ning either locally or remotely. Finally the commands are sent to the locally connected
robot hardware, e.g. the robot wheel motors. Arrows show the call direction. Instead of
using Java, the application could be coded in C++ (or another MRS-supported program-
ming language) and would use the appropriate bindings in the MRS client libraries.

2.2.3 Discussion

Player/Stage provides driver support for the hardware available at the TAMS lab-
oratory. The reliable Pioneer series mobile robot hardware, from the MobileRobots
Inc., is especially well supported. New or unsupported hardware can be integrated
through Player/Stage’s modular plugin-driver architecture and experience and code
can be re-used from earlier research (section 2.4). Probably the most important
current advantage of this MRS is its well supported and functional Java-API. This
API can easily be integrated with multi-agent systems (section 2.3), such as the
Java Agent Development Framework10 (JADE) or Jadex11.
Other programming languages (such as C/C++ or Python, which are used by the
ROS project) can be integrated with Java code via JNI or Java Native Access12

(JNA). Although this augments the variety of usable programming languages, it
still has the disadvantage of being a non-native interface from the client language
perspective. This could introduce constraints on programming flexibility and main-
tainability and could potentially introduce errors.
Both Player/Stage and ROS support distributed Devices interacting within a net-
work, serve as a kind of robot operating system and provide a Hardware Abstraction
Layer (HAL).
10http://jade.tilab.com
11http://sourceforge.net/projects/jadex
12http://en.wikipedia.org/wiki/Java_Native_Access (July 26, 2011)
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2.3 Multi-Agent System

In this work the MRS Player/Stage has been chosen as a result of experience gained
with it during preliminary work and because of its well supported Java-API.

2.3 Multi-Agent System

A multi-agent system is a software system providing a platform to implement, inte-
grate and run agents.

An agent is anything that can be viewed as perceiving its environment
through sensors and acting upon that environment through effectors. A
human agent has eyes, ears, and other organs for sensors, and hands, legs,
mouth, and other body parts for effectors. A robotic agent substitutes
cameras and infrared range finders for the sensors and various motors
for the effectors. A software agent has encoded bit strings as its percepts
and actions. [RN03]

Of note is the frequent definition of a robot as a physical agent. Thus in related
work a physical robot is often called an agent when it acts autonomously to a certain
degree. That does not necessarily mean that in such scenarios a dedicated MAS has
been integrated.
When it comes to software design, the question of why we use agents and not objects
arises (in the sense of object-oriented programming). Agents can be viewed as an
evolution of programming methodology. Many properties of agents are also associ-
ated with objects such as modularity and code reusability or message passing for
information exchange. Nevertheless agents have some more advanced abilities. For
example they are typically autonomous. Consequently, the mapping from percep-
tions to actions relies not only on pre-defined knowledge but also upon experience.
What is more, agents are normally dynamic: they do not just wait for messages or
method invocations to perform an action but can invoke methods by themselves. In
other words, they have their own thread of execution.
Agents are encapsulated within a software system, here called a platform, that starts,
runs, and stops them and provides network services for distributing work across
multiple computers. A computer, here, can be plain, without special equipment, or
dedicated, having particular attached hardware, such as the embedded computers
integrated within robots. Moreover the development of agents provides an adaptive
system that handles high software complexity, scalability and modularity. Service-
and goal-oriented modeling and flexible deployment are some of its advantages.
Model Driven Architectures (MDA) and declarative programming are commonly
used for MAS applications.
So an MAS consists of a platform and the agent code that together provide out-
of-the-box capabilities for distributed systems. With the ideal agent-system the
developer would just pick the agents needed for a task and the agents would organize
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themselves to achieve the goal. Another ideal approach would be an agent-system
that could be given a task and the necessary agents would be selected automatically.
There are lot of MAS platforms available today13. They can be classified broadly
as either middleware- or reasoning-oriented systems [BPL04]. Beside the functional
focus, other aspects are also important in choosing the right software for a project.
License conditions might enable the use or modification of the software without fees.
Standards compliance, especially for communication protocols or interoperability,
might be important depending upon the project goals. That the software has a
large supporting community or has been integrated in third-party projects gives an
indication of its maturity. Last but not least, project oriented tools already included
might change the selection in favor of other software.
The MAS used in this work combines middleware and a reasoning-oriented layer.
It is open-source and has a large user community. The preference for this software
arises from its standards compliance and its design as an operating system indepen-
dent application. In addition, basic tools for agent-debugging are included and the
available local knowledge of the software provides for fast support.

2.3.1 Jadex

Jadex (JADE Extension) is a MAS that was originally an extension to the widely
used JADE [BPL05]. Although it can still interoperate with JADE [PBL03] it has
been developed into its own MAS. It provides middleware and a reasoning engine
[PBL05]. The Jadex middleware handles interoperability, security and maintainabil-
ity as standardized by the Foundation for Intelligent Physical Agents14 (FIPA), as
well as transparent network communication via the Simple Object Access Protocol
(SOAP) for agent implementations. The reasoning layer deals with rationality and
goal-orientation, exploiting cognitive architectures based on theories of modeling in-
dividual behavior. One important theory used is the Belief-Desire-Intention model
(BDI, section 4.2.1 on page 49).
The latest Jadex architecture benefits from ubiquitous computing and multicore
hardware. It is under active development and implements state-of-the-art program-
ming methodologies in the fields of distribution and concurrency [PB09, PBJ10]. It
is implemented in Java and uses XML definitions and plans for agents [PBWL07].
Jadex was developed in 2003 at the Distributed Systems and Information Systems
Group at the University of Hamburg.
Jadex is released under the GNU Lesser General Public License15, which covers the
same permissions as the GPL but additionally allows proprietary extensions to the
original (unchanged) software or use of the software within closed-source programs.
13http://en.wikipedia.org/wiki/Comparison_of_agent-based_modeling_software (July 26, 2011)
14http://www.fipa.org
15http://www.gnu.org/copyleft/lesser.html (July 26, 2011)
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2.4 Preliminary Work

In an earlier project [RG10] we used Player/Stage to implement a ball-tracking
mobile robot. A Pioneer-2DX robot with on-board sonar, laser and omni-directional
camera served as the hardware (the mobile robot hardware platform can be seen in
figure 3.2 on page 17). With a wall-following exploration algorithm and the sonar,
laser and camera data, its goal was to look for a small pink ball in its environment.
Once detected the robot headed towards the ball while continuously tracking it. The
project provided practical experience with a robot platform and with mobile robot
hardware that will be relied upon by this work.

2.5 Related Work

Multiple robots collectively committed to a task play a more important role in
today’s robot research than in the past. In earlier research one, probably quite
sophisticated, robot was adapted to solve a task very efficiently. There has been
some scientific research into the collaborative effort of multiple robots assigned to a
task.
Robot teams have been applied in various research fields, with the navigation of mul-
tiple robots in a synchronized manner being one of the most active. In [AKBF10]
a team of two hexapod robots collaborate in navigating unknown territory. [SN10]
proposes another architecture for navigation and tracking using multiple robots in
unknown environments. [Cer08] investigates a kind of negotiation protocol between
multiple robots in determining the shortest distance to a target position. The lat-
ter two papers use the JADE MAS for their agents. In [UM09] a team of robots
cooperates to navigate and to organize dynamic formations.
The latter work overlaps another quite active field in robotics, namely research
into formations of multiple robots. [MBF10] researches a grid-based formation and
the synchronization and configuration of agents. Another study [MLW09] discusses
fault-tolerant formations of mobile robots, while in [STSI09] the focus is on stable
and spontaneous self-assembly of an MRS.
Another frequently investigated topic is that of a team of robots building a map.
[KKF+10] shows a ground-mobile robot and a quadrocopter cooperating to build
a three dimensional map. Traditional two dimensional SLAM with multiple robots
in unknown territory, using Pioneer-3DX mobile robots and barcode markers, is
described in [CND+10]. Theoretical algorithms for cooperative, multi-robot, area
exploration are described in [YHTS10]. In contrast to conventional two or three
dimensional grid maps, [CDGU10] solves the problem of an MRS collaboratively
creating a topological map. Another study, focusing on three dimensional, laser-
based modeling with a heterogeneous team of mobile robots combining ICP, SLAM
and GPS in an outdoor scenario can be found in [KNT+09].
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Other areas of research concentrate on the problems of task allocation and sub-
division, which arise when a task is to be split into sub-tasks for each robot. [RAB09]
uses a box pushing scenario in a heterogeneous MRS, while a framework for multi-
robot coordination and task allocation is proposed in [SC09]. Other research sug-
gests another scenario: a number of mobile robots are combined to find, collect and
drop trash into dustbins to clean the floor [MAC97, BBC+95].

An important aspect of concurrent and autonomous software systems (with agents
and robots) is the design of software such that it remains efficient, easy to maintain
and re-usable. [BRA94] investigates how efficient communication in a multi-agent
robotic system can increase overall performance, whereas [TvS10] focuses on modular
and re-usable software in autonomous robot systems. A system with intelligent
power management for teams of robots is introduced in [KDP09].

A traditional Artificial Intelligence (AI) topic, reinforcement learning in cooperative
MRS, is described in [SMKR09]. Finally, an increasing area of motivation and effort,
the field of mixed reality simulation, was studied for mobile robots in [CMW09].

2.6 Advantages of a Combined MAS and MRS Platform

In preceding chapters, a “platform” was introduced as an operating system or a
system providing the framework for specific features. A combination of platforms
leads to a “platform of platforms”. To avoid confusion such a platform should
be called a meta- or combined-platform. Beginning here, the term meta-platform
means the combination of a multi-agent system (MAS, such as Jadex or JADE)
communicating through a middle layer with a multi-robot system (MRS, such as
Player/Stage or ROS). The middleware layer, the agents and their communication
services are new and are implemented as part of this work.

Having more than one robot adds task-flexibility to a platform. Tasks can be solved
more quickly and, in a heterogeneous, multi-robot environment, more effectively. A
platform can use an arbitrary number of robots, selected according to robot avail-
ability and task requirements. Selecting the robot best suited to a given (sub-) task
uses available resources in an efficient manner. Within the platform, malfunctioning
robots can be detected and replaced. Older robots that are otherwise no longer
useful can still contribute as a small part of the whole platform.

As agents must coordinate their actions, a communication network is required. This
network can, as a bonus, be used for additional input and output, such as debugging
and testing and for graphical user interfaces (GUIs).
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2.7 Summary

In this chapter we have defined multi-robot and multi-agent systems and have de-
scribed the features they typically provide. We have discussed commonly used,
open-source software projects providing these features, summarized preliminary and
related work and introduced recent, related, research into this topic. Finally the
advantages of a combined MAS and MRS platform have been presented.
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Approach

3
3.1 Introduction

This chapter describes the core work of this thesis. The platform developed will be
introduced and described in detail. Explanations of the concept, the architecture,
the detailed design and the implementation will shed light on the ideas behind this
work.

3.2 Goals

The goal is to connect existing MRS and MAS using a new middle layer, the Robot
System Abstraction Layer (RSAL), to create a three-layer architecture, as depicted
in figure 3.1.

The introduction of the RSAL alleviates some mutual constraints imposed by the
MAS and MRS. Robot and device actions take significant time to execute (moving
an arm or actuator for example), whereas agent methods must return immediately
or are at least designed for operations separable in small chunks of work. The
middle layer has to manage the transition between a synchronous interface to the
robot hardware and an asynchronous interface provided to the MAS. Therefore it
encapsulates service oriented facilities, such as subscribing to notifications of lower
level device events. Moreover, while MRS APIs differ, it is desirable that the MAS
be independent of the MRS. In summary, an additional middle layer decouples the
MAS and MRS.

3.3 Constraints

This work combines a high-level MAS with an MRS. Current technologies in MAS
and mobile robotics are used to achieve a high degree of task flexibility. Some
specialized algorithms are implemented, such as for robot control, but in general,
out-of-the box drivers and interfaces are used.

15



3 Approach

UI

Control Flow

Driver

Project Scope

Layer

Module

Multi−Agent System

Robot System Abstraction Layer

Multi−Robot System

Fig. 3.1: The overall meta-platform architecture shows three layers. An existing MAS
encapsulates agents and related services. The user has access to the platform using the
MAS user interface through which agents can be started and stopped. Multiple agents
contributing to a task are managed through scenario selection. The MRS layer contains
the robot hardware related code and drivers. The new middle layer, RSAL, negotiates
between these layers, manages functional hardware related code, provides object-oriented
access to robots, their devices and behaviors and thus decouples the MAS and MRS.

An MAS is assumed to provide certain features:
• that a sample task can be described by the MAS tools and that the required
definitions (such as of agents) can be created conveniently within the frame-
work;
• that complex tasks can be divided into sub-tasks and distributed to multiple

agents;
• and that distributed agents can use the MAS network communication layer to

exchange data.
The MRS also has to fulfill some minimal requirements. The most important feature
is path planning, although there might be use-cases where this is not needed. The
literal meaning of this is that the robot is able to move from its current position to a
given target position. Path planning therefore involves several sub-tasks, especially
the ability to localize on a map using sensors, such as laser or sonar rangers. Knowing
its position, the robot should be able to plan a valid trajectory through unoccupied
space (floors and rooms) and not hit anything, including both static objects (those on
the map) and dynamic obstacles (those not on the map, such as people, furniture
or other robots). Last but not least, the MRS has to provide the drivers for all
hardware, such as the robot, sensors and effectors.
Some other constraints also exist, especially to the practical demonstration: the
types and numbers of robot hardware available at the TAMS laboratory are limited,
and as the algorithms used for robot control are part of the MRS, they rely upon
the current driver implementations.
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3.3.1 Robot Hardware

In this work we will use Pioneer robot models 2DX and 3AT with, respectively, 8 and
16 mounted sonar ranger devices. Both are three-wheeled models with differential
drive capabilities and each robot has a laser ranger mounted on top. The ranger is
required for accurate localization on the map, as although it is possible to localize
with sonar rangers alone, this approach does not provide the necessary accuracy.
The Pioneer hardware is depicted in figure 3.2 and 3.3. For some tasks a robot-
attached gripper is required.

A Gripper is a device capable of closing around and carrying an object
of suitable size and shape. On a mobile robot, a gripper is typically
mounted near the floor on the front, or on the end of a robotic limb.
Grippers typically have two “fingers” that close around an object. Some
grippers can detect whether an object is within the gripper (using, for
example, light beams) [quoted from Player/Stage project].

Fig. 3.2: A Pioneer robot used in this work. The mounted laptop runs the control program
and communicates wirelessly. The (dismounted) laser can be seen on top of the robot and
the fixed sonar sensors are visible as circular devices underneath the top board at the
front.
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� �
1 d r i v e r
2 (
3 name "p2os"
4 prov ides [ "odometry:::position2d:0" "sonar:0" "power:0"

"gripper:::gripper:0" "lift:::actarray:0" "dio:0" "audio:0" ]
5 port "/dev/ttyS0"
6 )� �

List. 3.1: This driver configuration for the Player/Stage MRS invokes the built-in p2os
driver. Its purpose is to provide access to the interfaces of the Pioneer robot hardware.
Here for instance, several features of the Pioneer-2DX are provided: the odometer and
motor (both via the position2d interface), sonars, battery power, gripper (if equipped),
the lift to which the optional gripper is attached, digital input and output for optical
gripper sensors and an audio interface.

Fig. 3.3: Three robots used for the real-world demonstration: from left to right, a Pioneer-
2DX, another 2DX with a front-gripper attached and a Pioneer-3AT with an embedded
computer.

3.3.2 MRS Driver

In order to use robot hardware, a device-specific driver must be available to the
MRS. The Pioneer robots are supported by the Player/Stage p2os driver, which
supports the Pioneer robot capabilities, including those of peripheral devices such
as an odometer, gripper or sonar ranger. In listing 3.1 the driver configuration used
for a Pioneer-2DX is shown.

3.4 Requirements

Requirements can be functional or non-functional. Function requirements indicate
essential demands that are specified in detail, such as that the robot shall have a
maximum weight of fifteen kilograms. Non-functional requirements specify prop-
erties that cannot be given accurately, for example that robot control has to be
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performance-optimized. In the following subsections, both requirement types will
be presented, with distinction between those applying to the middle layer and those
for the whole platform.

3.4.1 Functional Requirements

The middle layer RSAL shall be implemented in the Java programming language,
as the layer is closely coupled with the Jadex agent layer which itself uses Java.
Other widely used MAS also support Java and thus the implementation will be easy
to migrate to another MAS. Furthermore a variety of operating systems shall be
supported in order to allow task distribution over many hosts. The Java implemen-
tation benefits from a Java Virtual Machine (JVM, available for various operating
systems1), which allows the compiled byte-code to be downloaded and run directly
on any host.
The meta-platform shall work on:
• the 64-bit Suse Linux desktop computers available in the TAMS laboratory;
• the 32-bit Suse Linux notebooks mounted on top of or integrated into the

robot hardware (Pioneer-2DX and Pioneer-3AT respectively) available in the
TAMS laboratory;
• a 64-bit Mac OS X host.

The MRS components Player, Stage and Javaclient shall be used at their most recent
versions, 3.1, 4.0, and 3.x respectively.
All Player/Stage driver configurations must be set up. A driver here refers to an
available MRS hardware driver or to robot control algorithm support. A driver
configuration adapts the available algorithm to a specific setup. It might consist of
a robot device configuration (listing 3.1) or of algorithm parameters, such as for lo-
calization matching the TAMS floor environment. There are detailed configurations
for the following drivers: Pioneer robots (also includes some peripherals, such as
sonar and gripper), laser ranger, localization, path planner and map. Their driver
configurations are listed in appendix A.
The base platform hardware of the Pioneer robots is similar, with differences only in
the peripherals. All robots use the same types of motors and odometers. Although
all models have similar sonar ranger sensors their number and orientation differs:
one model has only eight front sensors whereas the other also has eight rear sensors.
Thus the driver configuration and code shall be able to support both. Moreover the
detection and appropriate use of the available sensors shall occur at runtime. The
gripper device attached to one robot shall be supported. Furthermore the two laser
range finders (Hokuyo UTM-30LX and URG-04LX) shall be detected and configured

1http://en.wikipedia.org/wiki/List_of_Java_virtual_machines (July 26, 2011)
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at runtime. In order to provide accurate localization, a map of the TAMS floor must
be created with a fidelity of at least 0.05 meters per pixel. Robot navigation requires
that a set of appropriate Player/Stage drivers be set up for localization and for both
local and global navigation. It also requires a map driver that must manage the
TAMS floor grid map.
The task of robot navigation is typically divided into local and global path planning,
as described in the following paragraphs2.

Path planning, sometimes called “Motion Planning”, is the act of finding
a path to go from location A to B. [...] There are many approaches to
solving path planning, but usually it involves a local and global path
planner.
A global path planner usually generates a low-resolution high-level path
from A to B, avoiding large obstacles and dealing with navigation around
the arena. This is analogous to the path Google Maps might give you
from home to a park. Local path planning usually gives a high-resolution
low-level path only over a segment from global path A to B, avoiding
small obstacles and dealing with motion planning: angles of turn, ap-
propriate velocities, etc. This is analogous to choosing how fast to turn
your car when moving around traffic while on your Google Maps path.
Path planning is a major topic in Computer Science, Electrical Engi-
neering, and Mechanical Engineers. Many topics that serve as the basis
for path planning include graph theory, geometric algorithms, potential
fields, etc. Path planning is known to be an algorithmically intensive
problem to solve.

In robotics, the coordinate systems in which positions are defined are called coordi-
nate frames. Frames can relate to each other and coordinate transformations enable
a position defined in one frame to be expressed as coordinates in a different frame.
When referring to a position it is always related to some frame of reference. An
absolute and fixed coordinate system is called the global or world frame.
To elaborate on the requirements for the path planning component, there follows a
short description of how path planning is typically implemented.
A path planner typically accepts a target position specified in global coordinates.
As the robot’s frame of reference typically differ from the global one, the target
coordinates must be transformed to the local frame. Planning is focused on a direct
trajectory from the current position to the target, which is assumed to be in the line
of sight. To avoid dynamic obstacles, an avoidance component is integrated.
In contrast to a local path planner, a global one parses the static map for permanent
obstacles, such as walls and divides the planar space into occupied and free grid cells.

2quoted from http://psurobotics.org/wiki (July 11, 2011)
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Cells that are close to an obstacle are assigned a higher cost than cells in open space.
According to this grid and to additional algorithm parameters, such as the minimal
allowed distance to an obstacle, the final path will be planned.

A successful trajectory consists of a start, a goal, intermediate goals and intermediate
paths. Intermediate goals lie in the line of sight of adjacent ones and are given to
the local path planner. Upon completion of an intermediate goal, the local planner
is assigned the next one and so on. Local and global path planners must be tuned
(by parameter tuning) in order to achieve robust overall performance. For example
this affects (intermediate) goal position deviation. The permitted planar deviation
(from the real position) must always be more restrictive for the local planner than
for the global planner. This avoids a blocking situation where the local planner is
satisfied with the robot position whereas the global planner is waiting endlessly for
a more accurate position to be reached.

A variety of local path planning algorithms is available and each has its advantages.
Their comparison is not in the scope of this work. An overview of planning algo-
rithms can be found in [LaV06, SN04]. Algorithms implemented as Player/Stage
drivers are the Vector Field Histogram (VFH), the Nearness Diagram (ND) and
the Smoothed Nearness Diagram (SND). The VFH algorithm has been chosen for
this work due to its proven practical robustness with the Pioneer robots and its
efficient path planning. A global path planning algorithm has been implemented
with the Wavefront driver, which is delivered with the Player/Stage software and
must be configured to suit the project. The meta-platform shall support all four
path planning drivers.

To efficiently localize the robot within the map the Adaptive Monte Carlo Local-
ization (AMCL) algorithm has to be supported. A maximum deviation of 30 cen-
timeters from the real position compared to the localization hypothesis shall be
achieved. The Monte Carlo algorithm is based on a probabilistic particle filter. It
is capable of using multiple sonar rangers or one laser ranger in combination with
odometer values to calculate the robot’s most probable position. While this position
has the highest probability, other hypotheses are possible and are tracked in par-
allel. After initialization, all particles are randomly distributed with equal weight.
When processing new sensory data, each particle position is matched against the
retrieved sensor data and assigned a new weight according to its probability. The
advantage of the algorithm is its dynamic assignment of particle counts. The more
particles that point to the same hypothesis, the more probable the hypothesis and
the fewer particles are needed. In contrast, if all current hypotheses are improbable,
more particles will be generated and tracked. Once a suitable position estimate has
been found, further position updates take the position history into account. Thus
the algorithm requires very few resources when iteratively updating the position
estimate.
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3.4.2 Non-Functional Requirements

Robot services, such as localization, have to be available early in the start up pro-
cess, so that higher layers can access relevant data. For example, the initial pose
hypothesis is the first estimated position from the localization component. It is
either obtained automatically, by mapping sensor values in a particle-based local-
ization algorithm, or, if that fails, it is set by the user placing an icon on a map-like
interface. This is important, as higher layers might broadcast their initial state to
other participants and rely on early receipt of correct data.
Due to high innovation rates for robot hardware and drivers, the platform shall
allow for the easy configuration of different devices. It must be possible to support
hardware other than that described in this work without major architectural changes
to the concept of a meta-platform.
The platform ensures that operations are started but does not guarantee their com-
pletion (as they might be dependent upon the hardware state). Nevertheless op-
eration failure and success shall be notified to the calling application, typically an
agent.
The user is likely to choose a different MAS and MRS from those described in this
work. Therefore it shall be easy for the user to adapt the meta-platform for their
MAS and MRS of choice.
The platform shall be operating system independent and compatible with today’s
standard PC environments.
Software components shall be designed for re-use in different use-cases.
The platform shall provide a graphical user interface to start, stop and modify
scenarios.
A robot simulator shall be provided to allow the platform to be exercised without
real robot hardware.
The hardware might enter an erroneous state and the software shall therefore provide
error prevention and recovery facilities.
The software shall be adaptable to new robots, devices and behaviors.
As another software layer necessarily introduces more code, it shall introduce the
smallest possible delays and shall be performance optimized. The latter requirement
also applies to all driver configurations.

3.4.3 Performance Requirements

The system shall be optimized for typical use-cases. Furthermore the requirements
for each layer vary. The execution overhead introduced by the MAS layer cannot
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normally be changed. Such overheads include delays introduced by non-user code,
such as agent creation and destruction, task management and distributed commu-
nication. However the performance of agent code implemented by the user varies
according to the task and must be optimized. Agent designs shall follow the design
guidelines given by the multi-agent system (Jadex in this case).

An agent must typically remain responsive to the system at all times and must
therefore split its actual task into small steps of work. In Jadex terminology, an
agent performs tasks in steps called IComponentSteps that are efficiently planned
and executed by the Jadex scheduler. In order to promote responsiveness, tasks
shall be asynchronous wherever possible. Hence an execution step shall either be
very short or it shall be capable of subdivision into smaller steps. Failing that, a
task shall provide a callback or future interface so that an agent can set the task
running asynchronously and receive notification when it finishes. This releases the
agent’s resources for other activities. As the agent will typically use robot services
from the RSAL, these services have to be designed in such a manner.

The RSAL consists mainly of robots, behaviors and devices. Devices are hardware
dependent and thus have to fulfill real-time requirements. A laser ranger may deliver
range values periodically (for example at 10 Hertz) and the appropriate software
device must respond at this rate. Other hardware might require servicing at different
rates. As a robot can have many devices their servicing must be very fast.

As described, requirements differ from top to bottom of the architectural model.
Each layer has to fulfill its own (performance) requirements. Moreover each layer
has to contribute to the overall scalability requirement of the meta-platform, as
defined in section 3.5.

3.5 System Architecture

The meta-platform consists of three layers. The user interacts with the top-most
layer, the MAS. More specifically the GUI is provided by Jadex3, the MAS in the
current implementation. Jadex provides a clear and efficient interface for starting
scenarios and individual agents and for passing the necessary arguments. The argu-
ments differ according to whether an agent or a scenario is started. When starting
an agent, the actual type of agent is also significant. The following arguments are
typically passed when creating an agent via the Jadex GUI:

• Host: The host field is a string specifying the networked computer on which the
Player server is running. It can take a name resolved via the Domain Name
Service (DNS) or an Internet Protocol (IP) address. This field defaults to
localhost and need only be changed when the agent and the robot controlling

3Screenshot at http://jadex-agents.informatik.uni-hamburg.de/xwiki (July 11, 2011)
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computer are at different addresses. For example, this is the case when all
agents run on a central computer rather than on the robot local computer.
• Port: The port field contains the computer port (of integer type) on which

the Player server is listening. It defaults to the Player standard port 6665.
Again, this is only needed when the agent is not running locally on the robot
computer.
• (Robot) Identifier: robId is the network-unique numerical identifier of the

robot. This field is used to distinguish between robots taking part in a scenario
and to map them into a virtual environment.
• (Device) Index: It is possible to have multiple sonar, laser or other devices

on the same host/port combination. In this case the devIndex can be used to
define the appropriate device tuple, where the tuple is a combination of certain
devices provided to the agent. The order of tuple fields must be consistent,
such as sonar first and laser second. This numerical field is only needed when
running multiple agents on a central computer and corresponds to the Device
(class) index field (figure 3.18).
• Initial Position: This x, y and angle tuple, consisting of double-precision val-

ues, optionally specifies the robot’s initial position. The angle field defines
the robot initial (front) orientation. The tuple defaults to (0,0,0) and any
different values (if set) modify the robot localization device accordingly. The
units are: meter (x), meter (y) and degree (angle). When the default value is
kept (the tuple is not set) the robot position will be estimated using the laser
ranger and odometer readings. This tuple typically remains unset and the
localization device automatically estimates the initial position. Nevertheless,
if position estimation repeatedly fails, setting the tuple helps to correct the
robot’s initial position. Moreover setting this field affects the robot proxy in
a virtual environment, if any is available, as it sets the proxy robot directly to
that position.
• Laser: This boolean flag can be used to disable the laser, which is normally

enabled. This affects robot wall-following and obstacle avoidance but does not
affect robot localization.
• Simulation: Another boolean flag that is used to disable automatic searching

for a simulation environment on the network (see section 3.6.2.2 on page 35).
Scenario arguments differ from those of agents. Typically a scenario does not need
to be given an argument as fixed arguments are configured internally for each agent.
Nevertheless a scenario typically has several configurations that can differ in the
number of robots taking part or in the choice of virtual, real or mixed reality envi-
ronments.
Note that although the Player/Stage MRS has a built-in robot navigation GUI that
can observe current plans and waypoints, the typical user interface is the MAS.
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The MAS includes agents that will be started according to the scenario. Additional
agent-related components, such as services, are also included in the MAS layer.
Agents call robot facilities from the RSAL. A robot can be controlled using its
external interface or using interfaces to attached devices, such as a planner device
for navigation.

The interface between the MAS and RSAL layers is asynchronous. It provides call-
back facilities that allow different timing requirements to be accommodated and
that decouple the MAS and MRS. The RSAL robots are device modules that in-
clude calls to the MRS. In the current Player/Stage MRS these calls are passed to
PlayerClients and are synchronous (as supported by the MRS). Thus the device im-
plementation has to decouple these synchronous, blocking calls and its asynchronous
interface. A PlayerClient is, in RSAL terminology, a DeviceNode. A DeviceNode is
a unique access point within the network scope that provides interfaces to a group
of hardware devices (section 3.6.2.3 on page 38). Normally each device has a driver
included in the MRS to access the hardware. For example, the p2os Player/Stage
driver controls the Pioneer motors, whereas another driver (hokuyo_aist from the
GearBox project4) controls the laser ranger hardware. An overview of the archi-
tecture is given in figure 3.4 and 3.5. The latter depicts all three layers as well as
internal modules.

Robot N

Client N

Agent N

DriverClient 2

Robot 2

Agent 2

Driver
Project Scope

Layer

Module

Control Flow

Agent 1

Multi−Agent System

Multi−Robot System

Client 1

Robot 1

Robot System Abstraction Layer

Driver

Fig. 3.4: The user interacts via agent scenarios. An agent might have a dedicated robot
module with specific features. The robot module calls down to the robot hardware client
that has the necessary drivers for interaction with the hardware.

4http://gearbox.sourceforge.net
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Control Flow

Client

Server

Project Scope

Layer

Module

Robot 1

Device BDevice A

Agent 1

Driver

Robot System Abstraction Layer

Multi−Robot System

Service A

Service B

Multi−Agent System

Fig. 3.5: The MAS, here Jadex, is the top layer. The user-invoked agent uses dedicated
services in order to communicate with other agents. The choice of the services selected
depends upon the type of agent and its target. To interact with its environment the
agent controls a robot (class) that interacts via devices with its underlying hardware. The
hardware interface is encapsulated within the MRS, here Player/Stage.
Player/Stage consists of client and server modules that communicate over the network
via sockets. The server receives commands and issues them via its drivers to the (robot)
hardware.

Agents typically use services to perform tasks and for communication throughout the
network (figure 3.6b). These communication services are used to create information
channels to which an agent can subscribe in order to read or publish interesting
information (figure 3.6a). Each agent can subscribe to a different set of services
according to its activities and abilities.
The MRS typically provides another method of remote access to robot hardware,
shown in figure 3.5 as a client/server system. The client is a local proxy for the device
hardware from the caller’s point of view. Any call is transparently transferred by
the client through the network to a server. The server, which normally runs on the
robot-attached host computer, parses messages and controls the hardware via its
drivers.

3.6 Detailed Design

This section will describe all (meta-) platform components showing those of each
layer. Each component will be described in detail. The MAS and MRS layers might
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Agent N

Service N

Agent 2

Service 2

Services

Publish/Subscribe

Agent 1

Service 1

(a)

Services

Service 1

Agent 1 Agent 2

(b)

Fig. 3.6: Agent Services: (a) Agents can subscribe to arbitrary services. The choice of
services depends upon the type of agent (what are its facilities) as well as the information
policy (what information is the agent allowed to send and receive). A message sent through
a service is published to all subscribers. (b) A basic communication sequence between two
agents via a service.

provide further unshown components (depending upon the actual systems used, such
as Jadex, JADE, Player/Stage or ROS), which, while necessary, are not the focus
of this work. Components described in this section are new and created for this
work. The driver configuration handles MRS features that are specifically arranged
to fit the TAMS indoor environment. Figure 3.7 depicts a component overview of
the system.

In the following sections, the individual component designs will be described in
detail. It is worth mentioning that some aspects of the detailed implementation
have been omitted for simplicity. Omissions include method and constructor argu-
ments (if not mentioned within the description), methods with similar functionality
(returning only different data types from the same source, for example), private
methods and getter/setter methods. Typically each class has its own logging facil-
ity through the Java Logger, which is also omitted from the diagrams. To obtain a
comprehensive API specification, refer to the online documentation5.

3.6.1 Agents, Services and Scenarios

The MAS layer contains components related to high-level services that include cog-
nition and distribution. It is implemented in Java and XML. Java is used for agent
definition including initialization, body and de-initialization. XML serves as a sce-
nario container, in which any scenario participants are declared along with related
initialization parameters. A scenario can consist of different configurations, such
as varying numbers of agents from the start. These configurations (in Jadex: Ap-
plications) can be grouped within one scenario (file). The current implementation
prefers the Jadex agent model of MicroAgents over the more complex BDI agents

5http://rockel.cc/master/javadoc (July 26, 2011)
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Test

Java

XML

Java

MRS specific

MRS

RSAL

MAS

Map

Data

Behavior

Agent

Service

Scenario

Robot

Driver Configuration

Simulation

Device

Fig. 3.7: A complete static overview of all components belonging to the meta-platform.
Horizontal layers indicate the component abstraction and show the layer to which they
logically belong. A test component is also included in the platform. As it tests all com-
ponents it is indicated as an orthogonal component. Text on the right of the figure shows
the techniques applied to components in each layer.

for reasons of simplicity and efficiency. Nonetheless, any agent model provided by
the MAS is supported.
An overview of all currently implemented agents is shown in figure 3.8. Each agent
body consists of three methods that model the lifetime of the agent. When the agent
is invoked its agentCreated method is executed to initialize data structures; during
its lifetime all steps implemented in the executeBody method will be started; when it
is terminated the agentKilled method typically performs clean-up operations before
the agent is actually killed. In order to communicate with other agents, each agent
typically has at least one service. Whereas some agents have robots and devices,
some only have a blackboard (see section 3.6.2.1 on page 32), depending on the type
of agent. Moreover the parameters passed to an agent upon its creation also depend
upon agent type. In figure 3.9 some important agent classes are shown.
Present services and their inheritance are shown in figure 3.10. All services inherit
from a basic service class and implement sending and receiving facilities to commu-
nicate with subscribers. A subscriber can filter received messages so that it receives
only those of interest. Each service represents an information channel and follows a
defined (simple) protocol.
Scenarios are groups of agents with pre-defined arguments. Arguments can be set
in the Jadex GUI when starting a scenario and are defined in XML rather than in
Java. The Jadex facilities allow for a mapping between the Java class name and the
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BlobAgent

CollectAgent

ConsoleAgent DispersionAgent

EscapeAgent

ExploreAgent

FollowAgent

MasterAgent

NavAgent

SwarmAgentViewAgent

WallfollowAgent

MicroAgent
(jadex.micro)

Fig. 3.8: The current implementation uses Jadex MicroAgents. All agent classes inherit
from the MicroAgent class. Abstract agent classes such as the MasterAgent and NavAgent
have specialized classes designed for certain tasks.

−deviceNode: DeviceNode

+ agentKilled()

−ps: SendPositionService

−robot: NavRobot

−caughtRobot: boolean

−updateInterval: long

−folRobot: String

FollowAgent

+ agentCreated()

+ executeBody()

Parameters

(a)

−gs: ReceiveNewGoalService

−board: Board

+ agentKilled()

+ pingAllAgents()

−gr: GoalReachedService

−ps: SendPositionService

−hs: HelloService

MasterAgent

+ agentCreated()

+ executeBody()

Parameters

(b)

−gr: GoalReachedService

−hs: HelloService

−gs: ReceiveNewGoalService

−ps: SendPositionService

−deviceNode: DeviceNode

−robot: NavRobot

+ agentKilled()

NavAgent

+ agentCreated()

+ executeBody()

Parameters

(c)

+ agentKilled()

−ps: SendPositionService

−robot: Pioneer

−hs: HelloService

−deviceNode: DeviceNode

+ executeBody()

+ agentCreated()

WallfollowAgent
Parameters

(d)

+ agentKilled()

−dispersionInterval: Integer

−dispersionPoints: Position[]

# requestAllPositions()

DispersionAgent

+ agentCreated()

+ executeBody()

Parameters

(e)

Fig. 3.9: Agent Classes: (a) A FollowAgent subscribes to the SendPositionService and has
a NavRobot to control. The identity of the robot it should follow and the interval at which
it should check for positional changes are passed as parameters. (b) To store information on
scenario participants, a MasterAgent has a blackboard and dedicated service subscriptions.
(c) The basic agent for navigating a robot is a NavAgent. (d) A WallfollowAgent has a
Pioneer robot that is behavior-controlled to follow a wall. (e) To control other agents on
the network a DispersionAgent is capable of organizing swarm formations.
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BasicService
(jadex.commons.service)

GoalReachedService

HelloService

MessageService

ReceiveNewGoalService

SendPositionService

«interface»
IGoalReachedService

«interface»
IHelloService

«interface»
IMessageService

«interface»
IReceiveNewGoalService

«interface»
ISendPositionService

«interface»
IService

(jadex.commons.service)

(a)

#listeners: List

SendPositionService

+ receive()

Agent

+ send()

(b)

Fig. 3.10: (a) All services inherit from BasicService (continuous arrows). Services imple-
ment sending and receiving facilities to communicate with all subscribers. Any subscriber
can filter received messages. Each service represents a dedicated information channel. In-
terface implementations are indicated by dotted arrows. (b) Basic declaration of a service
class.

label in the XML file. In figure 3.11 an example scenario definition is shown. All
demonstration scenarios implemented are described in section 4.2.

3.6.2 RSAL Middle Layer

The RSAL layer embeds data, robot, device and behavior components. Furthermore
it serves as the middle layer between MAS and MRS.

3.6.2.1 Data

The data component contains central data types used throughout other components.
The fundamental type is Position which is depicted in figure 3.12a. The distanceTo
method calculates the Euclidean distance (

√
|x− x′|2 + |y − y′|2) between two posi-

tions. equals returns true if two positions match exactly, false otherwise. isNearTo
returns true if one position is near to another, considering the given acceptable
deviation. An acceptable delta is given in meters for the planar distance and in
radians for the angle. getCartesianCoordinates considers the actual coordinates in
polar form (x takes the range and yaw the angle θ) and returns its transformed
(x = r · cos(θ), y = r · sin(θ), yaw = 0) cartesian coordinates.
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Hunt and Prey Scenario (XML)

Agent

Follow Follow
Agent

Agent

Escape

follow

follow

� �
[ . . . ]

<arguments>
[ . . . ]

4 </ arguments>

<componenttypes>
<componenttype name=" Escape0 " [ . . . ]
<componenttype name=" Follow0 " [ . . . ]

9 </componenttypes>

<a p p l i c a t i o n s>
<a p p l i c a t i o n name="1 Robot , Tams floor , real ">

<components>
14 <component t ype=" Escape0 " name=" Escape0 ">

<arguments>
[ . . . ]

</ arguments>
</component>

19 </ components>
</ a p p l i c a t i o n>

<a p p l i c a t i o n name="3 Robots , Tams floor , real ">
<components>

24 <component t ype=" Escape0 " name=" Escape0 ">
[ . . . ]

<component t ype=" Follow0 " name=" Follow0 ">
[ . . . ]

</ components>
29 </ a p p l i c a t i o n>

</ a p p l i c a t i o n s>� �
Fig. 3.11: Here the XML definition of the Hunt and Prey scenario is shown. On the
left, a schematic of an example configuration is given: Two follow-agents hunt or follow an
escape agent (as long as it is not caught). On the right is an extract from the corresponding
XML application file. A lot of XML-specific lines and other components and parameters
have been removed for simplicity. A scenario can consist of different configurations (called
Applications in the Jadex convention). At the top any global arguments are defined. These
are valid for all available applications and are invoked when an application is started. The
arguments set a default value that can be manually changed when an application is to be
started. Below the arguments, there follows a declaration of all available components, here
agents. The remaining lines define the available applications, each consisting of dedicated
components and their arguments. An application has a literal representation that can
later be selected within the Jadex Control Center (JCC), the graphical user interface. It
can be seen that this XML definition file contains two applications.
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getGlobalCoordinates performs a affine matrix transformation to obtain the position
coordinates in a global coordinate system referenced by the (global) position given.
A homogeneous matrix contains the rotational and translatory transformation as
shown in equation (3.1). A typical use-case for this method would be the trans-
formation of the position coordinates of an object in the robot’s local coordinate
system into global coordinates within the world frame. For example, the camera
mounted on top of the robot detects an object and its image coordinates are trans-
formed into robot-local coordinates; these must then be transformed into the world
coordinates in order to exchange position information with other robots. The robot
frame origin and orientation can typically be obtained by the localization driver (see
section 3.4.1). In order to preserve object orientation in the world frame, normal-
ization of the object’s and robot’s combined orientation is necessary, as shown in
equation (3.2). The normalization is done by the static method getRelativeAngle,
which normalizes the given angle within the range −π to π where π itself is excluded.

xy
1


W

O

=

cos(θR) −sin(θR) xR

sin(θR) cos(θR) yR

0 0 1

 ·
xy

1


R

O

(3.1)

θW
O = norm(θW

R + θR
O) (3.2)

Big letters indicate frames (coordinate systems), such as for the world (W), the robot
(R) and the object (O). A vector can have superscript and subscript frame letters.
If a vector is given with a superscript frame letter it means this vector contains
coordinates relative to that frame origin. In other words, the coordinates are local to
the frame origin. A subscript frame letter means that the vector contains coordinates
of the given frame (origin) relative to another frame (origin). The position class and
frame conversion are depicted in figure 3.12.

Goals within a scenario can be specified by the Goal class (figure 3.13). They are
typically defined by a planar position within the world frame. A Goal is used for
example by the BoardObject of the blackboard implementation.

Another central type is that of a Board depicted in figure 3.14a, which implements
a blackboard pattern. With this class, memory is provided to store various chunks
of data that would represent notes on a bulletin board in the real world. This
blackboard has several advanced features compared to its real world analogue. Notes
or board objects can be ordered into topics and can have an associated timeout
value. If the timeout occurs, the board object is automatically removed from the
blackboard. Note that every new board object has a default timeout value, which
should be changed. Important considerations in the design of this class are algorithm
efficiency and the minimization of the memory footprint. Consequently, the class
does not have its own execution thread. Activities that might be executed in the
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+ isNearTo()

−y: double

−yaw: double

+ getCartesianCoordinates()

+ getGlobalCoordinates()

+ getRelativeAngle()

−x: double

+ distanceTo()

+ equals()

Position

(a)

y0

x0

θRO
y2
x2

O
y 1 x 1

W

R
θWR

(b)

Fig. 3.12: (a) The Position class represents a two dimensional position. Position objects
are frequently used throughout the system, for example when navigating the robot or
during agent communication. The latter use imposes a footprint constraint on serialized
objects sent through the network. Nevertheless the current design “costs” only 24 bytes, as
planar positions can be represented by three coordinates, each requiring eight bytes. As for
later improvement, another augmented class is necessary to represent a three dimensional
position. (b) The world frame (coordinate system) W, the robot frame R and the object
frame O. Frame transformations are provided by the Position class.

−isObsolete: boolean

Goal

−position: Position

−cost: double

Fig. 3.13: The Goal class consists only of its fields, setters and getters. The cost field is
intended to store the current cost to reach the goal; on reaching the goal, the isObsolete
flag is set to true. When the goal can be found at a specific location the position info
contains the coordinates.

33



3 Approach

+ getTopicList()

+ removeObject()

+ setTimeout()

+ getArrayList()

−objectHm: ConcurrentHashMap

+ getObject()

−timeout: long

+ addObject()

Board

+ clear()

(a)

−timestamp: long

−position: Position

BoardObject

+ getDistanceGoal()

−distanceGoal: double

−isDone: boolean

−timeout: long

−topic: String

−goal: Goal

+ setDone()

+ setTimeout()

+ setPosition()

+ setGoal()

+ setTopic()

in milliseconds

Note:

+ isDone()

+ setDistanceGoal()

+ getTopic()

+ getTimestamp()

+ getPosition()

+ getGoal()

(b)

Fig. 3.14: Flexible information storage is achieved using the blackboard design pattern.
(a) A Board object can store and manage many BoardObjects within an associative mem-
ory type. Objects can be accessed by a topic-sensitive filter. An advanced feature is a
garbage cleaner that efficiently clears expired (too old) board objects. (b) A board object
should be flexible in terms of the information it can contain. The fields are optional and
should be used according to the information being stored by the caller. Unless the caller
specifies its lifespan, a default timeout is set when creating a new object.

background by a class thread, such as removing expired board objects, must be
performed when board methods are externally called, slightly increasing method
latency. Information is provided within a BoardObject.

The type BlobfinderBlob (figure 3.15) is used to store information about colored
areas of an image retrieved by the Blobfinder device.

3.6.2.2 Robot

The Robot component contains a generic Robot class from which currently imple-
mented specialized robots inherit, as depicted in figure 3.16. The Robot base class
represents a mobile robot moving on the ground. The specialized Pioneer robot
adds a behavioral model and states that can be monitored. It can be controlled
either with the setCommand method to give it manual motor commands, or using
the setWallfollow method to activate autonomous wall-following. Both behaviors
apply obstacle avoidance (figure 3.23).

34



3.6 Detailed Design

−discovered: Position

BlobfinderBlob

+ getX()

+ getY()

+ getAngle()

+ getAngle()

−colorhm: HashMap

+ getAngle()

+ getColor()

+ getArea()

Fig. 3.15: This class has a color hash-map that stores key-value pairs of color codes and
their names as well as positional information on where the blob was detected in the world
frame. Methods provide access to the relative image position of the blob.

Specializations of the Pioneer class are the NavRobot and the ExploreRobot classes.
The former overwrites the super class update method (section 3.6.2.3). The Pioneer
update method contains the state-machine (handling) of the implemented subsump-
tion behavior (section 3.6.2.4). In order to avoid unnecessary behavior, a sub-class
must override the update method, for example to let the robot be planner-controlled.
That means this robot can be given a goal position on the map and will follow the
shortest trajectory to the goal while avoiding walls and other obstacles. The Ex-
ploreRobot class extends its super class with additional exploration algorithms.

Creating a Robot object requires a list of devices belonging to the new Robot. At
a minimum, the Robot needs a Position2d and a Ranger device, others, such as a
RangerLaser, Planner and Localize, being optional. With the addition of a special
Simulation device to the device list, the robot becomes aware of the simulation
environment. In this case, the Robot class setPosition method, when executed,
will try to locate the simulated robot by requesting its robotId from the simulation.
If found, the simulated robot can be accessed through the Simulation device. An
optional Simulation device is used to update the simulated robot’s position in the
virtual environment (besides setting the robot’s localization device to update the
odometer, if present).

3.6.2.3 Device

The device class provides the abstract class for all real robot hardware devices, and
for virtual devices such as those of the Blobfinder or Simulation type. Devices can
inherit from each other for specialization, which is the case for the laser ranger and
sonar ranger. These devices both inherit from the type Ranger.

A device is typically active, in the sense of having a dedicated thread that updates
its internal state continuously. This design decision is based upon the advantages of
this approach. As the lowest-level components within the RSAL layer, devices are
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Device
(device)

ExploreRobot

NavRobot

Pioneer

Robot

«interface»
IPioneer

(robot.external)

«interface»
IRobot

(robot.external)

Fig. 3.16: The current implementation provides a Pioneer class, which can be specialized
as exploration and navigation robot classes. As the Pioneer class inherits from Robot,
which itself inherits from Device, it has its own runtime context implemented as a thread.
Internal robot processes, such as dedicated state-machine handling and behavior execution,
benefit from this implementation as well as from optional sensor data processing, such as
parsing of video camera images.

−position: Position

−robotId: String

−turnrate: double

−goal: Position

Robot

+ shutdown()

Note:

in radians per second

−speed: double

robotDevList: Device[]

−Devices*

in meter per second

Note:

+ setPosition()

+ getDevices*

(a)

−timerIsOccured: boolean

−currentState: StateType

−lastPosition: Position

−stuckCounter: int

+ setCommand()

+ setWallfollow()

+ stop()

# update()

Pioneer
roboDevList: Device[]

(b)

Fig. 3.17: (a) The Robot class represents a robot that can move in two dimensions.
It will, if possible, use any devices provided in the given device list. A robot can have
a current location and a goal position (in the global coordinate system). Robot object
creation requires a list of available devices. This list can contain arbitrary devices anywhere
on the network, not necessarily attached to the robot. The robot object will initialize
recognized devices upon creation and store them in a device list, internal to the Robot
object. External entities, such as agents, can request the use of devices belonging to
a Robot. A shutdown method handles robot internal memory-cleaning operations. (b)
The Pioneer class is a specialization from Robot and represents a minimal or standard
configuration of a Pioneer-2DX robot at the TAMS laboratory. Specialized classes can
inherit from the Pioneer class to add new devices. The Pioneer implements a behavioral
model and monitors the model’s states.
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normally heavily dependent on sensory input, such as range values or localization
hypotheses from the underlying drivers and hardware. This imposes strong real-time
constraints on the design (and hardware dependencies).
In the high-level interface provided to a Robot class (or to even more abstract
“users”, such as agents) the requirements are high availability, concurrency and
asynchronism. These can be achieved by using the thread to poll the hardware and
fill internal data structures. Requests for device data can then be provided with the
latest readings without the delays associated with access to the hardware. This is
indicated in figure 3.19. Certain operations can take a long time, such as arriving at
a goal position. Therefore the callback pattern provides the caller with information
only if relevant data is ready, which lets the caller conserve its resources for as long
as possible.
As some devices have other devices attached (logically or physically), objects can be
linked within an ordered hierarchy of devices. For example a robot is represented
as a device and typically has other devices, such as ranger sensors, mounted. This
introduces recursion into the class model. To cope with this requirement, an object
of the Device class has an internal data structure listing other devices.
In order to be able to search for or compare devices at runtime, several related
methods are provided. To check for identical devices the equals method is available.
A similar method matches also compares the given devices but can accept a device
that does not have all information defined. Such a partially defined device can be
viewed as a device template or search mask. The list counterparts of these two
methods, implemented as isInList and matchesList, search the internal device list
with the information provided.
The abstract method update must be implemented by sub-classes. It contains the
periodic task that a device must maintain to remain in sync with its underlying
hardware. This method is called periodically within the Device (thread) context.
Typical update method tasks are reading the most recent values and updating in-
ternal data structures and states. For a gripper device, the periodic task would be
to read the current optical sensor states via the Dio device (page 41), to update the
internal state machine and, if requested, to set a new state. The periodic task is
processed in the run-loop of the device.
After each update cycle, the Device class suspends the device (thread) for the time
set in the class sleeptime field. Upon resuming, the update is repeated. The duration
of the update processing is typically very much smaller than the sleeptime. Unless
the device is shut down, this cycle will repeat forever. There is a trade-off between a
highly responsive device (which has less sleeptime) and a resource efficient one (which
has a higher sleeptime). Whereas some devices, such as grippers or localization
devices, take rather long times to update their internal states, often more than half
a second, there are devices that require small sleep times: for example, less than a
tenth of a second, for a laser ranger device. Typical robot devices work well with a
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sleep time of 100 milliseconds. This is a good trade-off between responsiveness and
resource saving and is the default value if not changed.

A Device object has to be explicitly started by the runThreaded method. This
invokes internal threading and takes care of the startup of internal devices. To
stop a device, the shutdown method must be invoked, which also handles sub-device
shutdown. Both startup and shutdown, where there is a list of internal devices, can
be seen as a recursive cascade that calls all devices in the list. If a new device has
an embedded, dynamic, data structure, it should overwrite the shutdown method.

A special Device class is the DeviceNode. Its purpose is to encapsulate all device
access from the underlying MRS. Different MRS might have similar but nevertheless
slightly different methods to access their devices. A DeviceNode must be created
with a list of hosts and devices, where a host is identified with its name or address
and the port on which a client listens. The device list contains templates of any
combination of id, host, port and index, some of which may be omitted to provide
a device mask matching multiple combinations. Here the id field identifies the type
of device; host and port fields are as described in section 3.5. It is possible to
have multiple devices of the same type (id) on the same host/port combination.
In this case the index can be used to define the exact device. Upon creation of
the DeviceNode object, the given hosts will be searched for devices matching any
templates. When a matching device is found it is added to an internal device list;
when the device is bound to a new PlayerClient (a Player/Stage specific device node,
see section 4.5), the PlayerClient is added to a DeviceNode internal list (which is a
dedicated field of the DeviceNode class). Note that the PlayerClient class is provided
by Player/Stage and, as it introduces a dependency on the MRS, must always be
encapsulated within a DeviceNode.

After initialization, a DeviceNode has a flat list of all sub-devices and DeviceNodes
(this is the list/field inherited from the Device class, figure 3.18a). During runtime,
DeviceNode provides a dynamic interface for managed devices and moreover allows
masked searches for specific devices.

The Localize Device class implements features that locate the robot within a world
frame. It uses the underlying MRS localization driver, currently AMCL, encapsu-
lates any dependencies and provides a consistent interface. Furthermore it decouples
performance constraints from the driver by providing an asynchronous interface. The
user of the class can rely upon the immediate return of the latest position data. The
interface provides a callback notification feature. Any listeners interested in periodic
position updates can subscribe with the addListener method. Clients interested in
current location information use the getPosition method. In the run-loop method
update, the localization device is periodically updated. To allow the position belief
to be explicitly set, the method setPosition is provided. As most localization algo-
rithms keep track of the current position hypotheses with a covariance matrix, the
matrix is contained as a field. This field sets the probability distribution at the start.
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−id: int

−index: int

−host: String

−port: int

−isThreaded: boolean

−isRunning: boolean

−sleeptime: long

−thread: Thread

Device

+ isInList()

+ runThreaded()

+ shutdown()

# update()

−deviceList: ConcurrentLinkedQueue

+ getDevice()

+ getDeviceListArray()

+ matches()

+ matchesList()

+ equals()

subclass

implemented by

Note:

milliseconds

defaults to 100

Note:

(a)

DeviceNode
Host[], Device[]

+ shutdown()

# update()

−PlayerClient: playerClientList

(b)

−deviceNode: DeviceNode

RobotDevice

−device: PlayerDevice

(c)

Fig. 3.18: (a) The Device class holds its optional sub-devices in a linked list. Normally
a device can be identified by its id (type), the host to which it is attached, the port and,
in case there are multiple similar devices, an index. Other fields are related to device
threading. (b) A DeviceNode encapsulates the underlying MRS client to which devices
are connected. It overrides the shutdown and update methods to remain in sync with the
lower layer. (c) Each robot hardware device is a RoboDevice.

:Agent
:Device

loop
issue command

info

notify command [ready|error]

:Device

request info

update()

Fig. 3.19: Devices provide an asynchronous API that returns the latest device state. In-
ternally, each device has its own thread that keeps in synch with the underlying hardware.
The thread periodically executes the update method and “sleeps” in between.
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DeviceNode

0.. ∗ 1.. ∗

Device

meta−device

meta−device

Robot

0..

meta−device

∗

Fig. 3.20: Devices can implement a recursive hierarchy. In this case a device is called
a meta-device, such as a Robot or DeviceNode. Note that Robot and Device can imple-
ment arbitrary devices whereas a DeviceNode binds physically connected devices. Thus a
hardware device requires a DeviceNode but not any other meta-device.

As time passes and the robot moves, odometer and ranger data changes will lead
the localization device to update the matrix periodically. The matrix consists of
nine elements, since a planar robot position can be defined by three coordinates x, y
and its angle θ. The elements contain all permutations of coordinate pair covariance
to measure to what extent a pair of coordinate directions correlate with respect to
the combined deviation. For example the covariance of the pair x,x indicates the
deviation between the real position and the position belief in x direction, whereas
the covariance of the pair x,y states the deviation in the x and y direction. Since
some permutations contain redundant information, the matrix is symmetric and can
be defined by six elements only (the lower half of the matrix). The covariance ma-
trix implemented is depicted in equation (3.3) and equation (3.4), where ai is a raw
coordinate value, a is the mean of all values and N is the number of all values. The
Localize class declaration is shown in figure 3.21b.

COV 3x3 =

cov(x, x) ... ...
cov(y, x) cov(y, y) ...
cov(θ, x) cov(θ, y) cov(θ, θ)

 (3.3)

cov(a, b) =Σ(ai − a)(bi − b)/N (3.4)

The Planner class provides access to the underlying path planning driver. It encap-
sulates different drivers and specifies a generic interface. Client access typically in-
volves subscribing to the planner for a new goal with the addIsDoneListener method.
The client will then be notified either if a goal set with the setGoal method is in-
valid, or if the planner has aborted, or in the successful case of reaching the target
location. All listeners are managed in an internal list and will be notified of events
accordingly.
It is possible to pause the current plan with the stop method and also to resume.
The update method keeps track of the current plan and its parameters, such as the
waypoint count and the current waypoint. A waypoint is an intermediate goal set
for the local path planner. The Planner declaration is depicted in figure 3.21a.
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Planner

+ addIsDoneListener()

+ setGoal()

+ resume()

+ shutdown()

# update()

+ stop()

+ removeIsDoneListener()

+ isDone()

−isDoneListeners: CopyOnWriteArrayList

−goal: Position

−wayPointCount: int

(a)

Localize

+ shutdown()

+ removeListener()

#cov: double[]

+ getPosition()

+ setPosition()

# update()

−localizeListeners: CopyOnWriteArrayList

−Position*

+ addListener()

(b)

Fig. 3.21: The navigation feature is implemented by the Planner (a) and Localize (b)
classes. Both classes provide asynchronous interfaces with callback notification triggered
by appropriate events. Throughout their simple interface they hide the complexity of the
underlying navigation algorithms and drivers.

The Simulation class provides access to a simulation environment such as that pro-
vided by Stage. Interaction between software clients and the virtual world is pro-
vided so that the position of dynamic objects, such as robots or furniture, can be
changed dynamically. This is currently used to test software units with repeatable
environmental configurations. Moreover this interface is integrated to allow a mixed
reality approach. This means that the positions and orientation of real robots can be
used to place virtual proxies of those robots into a simulation environment. Such a
scenario allows interaction between real and virtual robots. In order to allow access
to the simulation, the method setPositionOf is used. This method takes a Position
object and a string identifier that selects the Stage simulation object.
The Blobfinder class represents a blob finding device, such as a camera capable
of detecting colors in an image. It is used to provide the system with a camera-
like device without actually having such a device. Thus it is to be used within a
simulation environment. The class provides a callback interface to notify clients
upon blob detection and the callback delivers information on the blob count as well
as on the detected blob itself (figure 3.15).
In order to provide access to the robot-attached gripper, the Gripper class has been
added. It provides a callback interface to notify clients when the paddles are opened
or closed, as well as when the paddle lift is raised or released. An internal state
machine keeps track of the hardware. Each of the states can be requested manually
and will be notified individually upon completion or abort. For complete control
of the gripper hardware, other devices might also be necessary. In the current
implementation the Actarry and Dio devices are used: the actuation array interface
(Actarray) provides access to robotic arms, or in this case the gripper, and the
digital input and output interface (Dio) provides access to the photo diodes of the
Pioneer-2DX gripper hardware.
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The Position2d class provides access to the motors of a mobile robot. It allows the
motors to be enabled or disabled, their speed and turn rate to be set or read and the
odometer position estimate to be set. Note that a mobile robot, such as the Pioneer
robot, does not move like a car. Typically a mobile robot uses a differential drive
with at least two wheels, each attached to a dedicated motor. The robot’s speed is
some combination of the individual wheel speeds and the turn rate is derived from
the difference in wheel speeds. This class hides the underlying design from the user.
An overview of all currently implemented devices and their inheritance is depicted
in figure 3.22.

Actarray

Blobfinder

Device

DeviceNode

Dio

Gripper

Localize

Planner

Position2d

Ranger

RangerLaser

RangerSonar

Robot
(robot)

RobotDevice

Simulation

«interface»
IDevice

(device.external)

«interface»
IGripper

(device.external)

«interface»
Runnable
(java.lang)

Fig. 3.22: An automatically generated inheritance diagram. The Device class is a super
class of a variety of specialized devices and meta-devices. It implements the Java Runnable
interface. As all sub-classes inherit this interface, all devices are capable of handling
device related things transparently in their own context, thus increasing responsiveness
and providing an asynchronous interface.

3.6.2.4 Behavior

The Behavior component implements a basic set of behaviors for a mobile robot.
The behaviors are combined in a hierarchical subsumption architecture [Bro86] to
provide robust obstacle avoidance and escape strategies in case the robot becomes
stuck. Sensory input is provided by laser and sonar rangers. These sensor inputs
are combined to allow accurate detection of environmental obstacles and to avoid
weaknesses of standalone sensors: highly reflective or glass walls confuse laser rangers
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Wallfollow Motors

Safe Turnrate

Safe Speed

Escape

Collision Avoidance
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Fig. 3.23: The implemented behavioral model fuses laser and sonar range values. The
minimum of the two values is adopted for reasons of safety. Each (sub) behavior maps the
fused ranges to its internal tables and triggers if a match occurs. If triggered, the motor
control output of the lower priority behavior is overridden. In the figure the lowest-level,
which is the one with the highest priority, is top-most and vice versa.

and soft surfaces confuse sonar rangers. The behaviors are optimized for the Pioneer
robot and work out of the box. Nevertheless they are easily adaptable to other robots
and sensors and can be combined with behaviors at a higher abstraction level than
wall-following (implemented here).

3.7 Integration

In order to create scenarios that work in the environment of the TAMS floor, ad-
ditional MRS-related configuration must be applied. Each device class described
represents a dedicated MRS driver and hardware. Each driver must be setup with
parameters optimized for the environment. Driver configurations can be found in
appendix A.
As described in section 3.4.1 the localization component requires a detailed grid
map of the environment. Such a map is obtained by recording laser ranger values
while the robot explores the TAMS floor. The SLAM algorithm used (pmaptest) is
included in the Player/Stage MRS. The process stages are depicted in figure 3.24.

3.8 Summary

In this chapter we have defined the goals, constraints and requirements of the in-
tended meta-platform. A new software architecture and the detailed design have
been developed, all participating components have been described and the advan-
tages of the implementation have been explained. The result is a software framework
providing customized features for higher level multi-robot scenarios.
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(a)

(b)

Fig. 3.24: (a) A grid-based map created with laser and odometer data serves as the basis
for a map with an accuracy of five centimeters per pixel. The robot recorded its data
while driving along the floor. The SLAM algorithm provided by Player/Stage (pmaptest)
processed the data and created the map. (b) An inaccurate map, which nevertheless
provided the correct topology, was manually mapped to the grid map to obtain an accurate
map of the Tams floor. These stages are necessary to provide the localize and path planning
components with an accurate map with the right proportions. Otherwise the robot’s real
position and its position estimate can deviate by up to a few meters or in the worst case
localization and path planning can fail totally.
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4
In chapter 3 we developed a middle layer to abstract from an MRS and to integrate
an MAS. The MAS provides high-level cognitive features that allow the planning of
complex scenarios in which multiple robots cooperate in order to reach a common
goal. A scenario plan depends strongly upon the specific use-case but should ideally
be suitable for re-use. In this work, sample scenarios were created to demonstrate
the working concept of an integrated middle layer. These scenarios can be reused
in other scenarios.

4.1 Introduction

This chapter describes how the presented middle layer can be used within a meta-
platform that also integrates MAS and MRS. A choice of scenarios serves as a
framework to describe all necessary software modules, techniques and configurations.
In the following section, each scenario is discussed briefly and possible improvements
are suggested. Subsequently, migration to another MAS and MRS is introduced
before a summary closes the chapter.

4.2 Example Scenarios

This section introduces scenarios that demonstrate the basic features of the meta-
platform. The ideas for the Hunt and Prey and Find and Collect scenarios are taken
from the MAS Jadex code examples (comes with Jadex) whereas the 100 Robots and
Swarm Distribution scenarios are new. Together, these scenarios demonstrate the
basic functionality of the platform and provide a code template for other tasks.
In the Hunt and Prey (an extended Hide and Seek) scenario, two or more robots
look for and try to catch a hiding robot. The hunting robots coordinate their search
to increase efficiency.
In the Cleaner World scenario, two or more robots collect trash or specially marked
objects, coordinating their search to cover the work area efficiently. As an extension,
a constraint could be to conserve robot battery life. An example implementation is
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Fig. 4.1: Two mobile robots and the Cleaner World scenario. The robot on the right is
equipped with a camera (Blobfinder) to look for certain colors (Blobs) and the robot on
the left has a gripper to collect objects detected. The robot exploration and blackboard
communication as well as the sensor interpretation algorithms are implemented in Java.
The picture shows the scenario in the multi-robot simulator Stage included in the MRS
Player/Stage.

shown in figure 4.1. The 100 Robots scenario consists of 100 robots, each controlled
by an agent. Robots perform a collective exploration algorithm, sharing their global
positions. This demonstrates the platform scalability.
Finally the Swarm Distribution scenario shows how to distribute multiple robots in
an efficient manner.

4.2.1 Hunt and Prey Scenario

This scenario serves as an example of basic communication between agents and of
hunt and escape behaviors.
A group of prey robots try to escape by avoiding their hunters (if they can sense
them). In “idle” mode the prey execute a standard task, which might be marching
around, wall-following or another behavior involving motion. The part of prey or
escape robots can be arbitrarily extended by implementing more complex behav-
iors, as described in the An Advanced Hunt and Prey Scenario section on page 49.
Another way of augmenting the scenario is to let the robots share knowledge about
their hunters and thus to develop efficient escape strategies.
The hunter robots have the task of catching their prey by approaching close enough,
i.e. the prey is considered to be caught if a single hunter comes within a pre-defined
distance. Task complexity can be increased by allowing the hunters to cooperate
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and share knowledge about their prey. Moreover, a multi-layered behavior model
would allow hunters to react to prey behavior or even to forecast prey behavior
based upon prior experience.

A learning aspect could also be applied to prey robots, and different learning al-
gorithms could be compared. An extension to the scenario would be to allow prey
robots to move into un-blocked space even after the close approach of a hunter.

The demonstration scenario implementation can be run in various configurations.
Although only three physical robots are available, there is no limit to the number of
virtual robots. As a simulated robot can be equipped with virtual hardware devices
similar to those of the physical robot, an agent is not necessarily aware whether
the robot it controls is simulated or real. It is therefore possible to let physical
and virtual robots interact in a mixed reality environment. This is made possible
by a ViewAgent, which subscribes to the SendPositionService and listens to robot
position broadcasts. Knowing robot identifiers and positions, the ViewAgent can
update a simulation in order to position a proxy robot for each existing physical
robot. This use-case can be configured to filter certain robots, as a simulation
environment can host both proxy and simulated robots simultaneously. A proxy
robot is a simulated placeholder for a real world robot. Using proxies, the simulated
and the real environments are normally “identical”. All positional changes of the
real robot are reflected onto its proxy and thus to the simulation state. A proxy
robot is only updated by a ViewAgent and does not have a control component by
itself. In contrast a simulation robot is not controlled by a ViewAgent (although it
can have another proxy robot in another simulation). A simulation robot’s actions
(and sensing) are limited to the simulation and it acts as if the simulation were real.
Proxy robots act and sense in the physical environment and are mapped into the
virtual environment where they can be sensed via sensors, such as laser or sonar, by
simulation robots. In contrast proxy robot have no possibility of sensing simulated
robots via ranger sensors. This is a restriction of the current Player/Stage software
and can be worked around by implementing a driver handling virtual-to-real sensory
mapping, such as is done in [CMW09] (for the Gazebo simulator). However the
meta-platform presented here makes transparent abstract sensing possible between
real and virtual robots (and vice versa). This is possible because each robot can
be localized (whether simulated or real) and positions can be transmitted between
agents (simulated or real).

The use of a mixed reality environment provides certain advantages, in particular
by allowing testing with more robots than are physically available. Moreover, it
enables the use of unavailable or non-existent devices, allowing novel ideas to be
simulated rather than being limited to present reality.

The Hunt and Prey scenario can be demonstrated with either a virtual-only con-
figuration or a real-only configuration as well as with a mixed reality configuration.
The environment in either case (simulated and real) does not impose additional
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constraints on the scenario.
The EscapeAgent is derived from the WallfollowAgent class and therefore has access
to the wall-following behavior of the Pioneer robot class (used here), which includes a
robust fusion of sonar and laser ranger sensors, as well as effective obstacle-avoidance
reactive behavior. The EscapeAgent does not need a planner or localization device
because no navigation is required. Instead the Position2d device is used to con-
trol the robot motors directly. Subscribing to the SendPositionService allows the
agent to broadcast its position periodically. This simple and effective communica-
tion strategy could be enhanced by not letting the Pioneer robot announce its own
position information. Instead the hunter robots would detect their prey using an
optical device such as a camera and suitable image processing. The present system
design allows the easy integration of such an approach. A camera driver would give
access to the hardware and an image processing algorithm could be implemented in
an additional camera device class. The existing Blobfinder class could be also used
for its blob-detecting facilities.
The FollowAgent derives from the NavAgent class and provides navigation support
using the NavRobot class. This robot is controlled by giving goal positions to the
planner device and retrieving updates from the localize device. The necessary global
coordinates can be obtained using the Position class facilities (section 3.6.2). In the
demonstration, the coordinates are retrieved by subscribing to the SendPositionSer-
vice. Using coordinates broadcast by prey robots is not a real world example, since
a typical prey would not provide such information. Nevertheless this configuration
allows a working system to be tested and demonstrated. In an augmented scenario
the coordinates should be retrieved by prey-independent information retrieval such
as the camera class mentioned above. This is beyond the scope scope of this work.
When the scenario begins, the escape robot automatically starts wall-following and
continuously updates its position using the localize device. The robot periodically
broadcasts this position (at the configured interval) using the SendPositionService.
Rather than just sending, it also listens to position reports broadcast over this ser-
vice and checks for those near to its position. The distance between hunter and prey
below which the prey is considered captured is specified when an agent is created.
The hunter agent, represented by the FollowAgent class in its task, listens for posi-
tions sent by the prey and updates its goal appropriately. This uses the NavRobot’s
Planner device, setting a new goal whenever a new prey position is known. Each
hunter listens only to updates from its assigned prey. Prey assignment is currently
made at scenario invocation but could be extended. For example, the agent could
hunt its nearest prey (see the An Advanced Hunt and Prey Scenario section). The
hunter measures the distance to the prey using its Localize device. Both, prey and
hunter, follow their primary task (wall-following and hunting, respectively) unless
the given minimum threshold is triggered. In this case the hunter knows that the
prey is trapped in an unescapable situation by its distance. The prey recognizes
that no escape is possible and indicates this by spinning. The scenario sequence is
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:Escape
:Follow

:SendPosition

update pose

update state

[got caught] stop

* [not caught] send position

:Follow

publish position

[caught robot] stop

publish position

update pose

update goal

* [not caught] send position

Fig. 4.2: Here, a simplified Hunt and Prey sequence is presented. The initialization
and registration phases have been omitted. Both the Escape and Follow agents have
subscribed to the SendPosition service in order to exchange information. Initially, all
agents repeatedly update their position using the robot’s localization device. Periodically
all agents publish their positions to the SendPosition service, which broadcasts to all
subscribed participants. The Follow agents update their goals according to newly received
data. As long as the Follow agents have not been triggered by the targeted minimum
distance to the Escape agent and vice-versa, the scenario continues.

indicated in figure 4.2.
This scenario intends to show basic interaction in the completion of a cooperative
task use-case with mobile robots. It is not intended as a comprehensive example of
the widely used Hunt and Prey robot scenario but demonstrates the implementation
of such a scenario with the (meta-) platform of this work. Furthermore a proposal
for an advanced Hunt and Prey scenario will be given. The view of planning activity
during the scenario is given in figure 4.3. A real-world scenario run mapped into the
virtual environment is shown in figure 4.4.

An Advanced Hunt and Prey Scenario

The hunt and prey scenarios presented above can be improved by exploiting the
Jadex BDI model. The BDI model describes the agents cognitive system. There
are goals, plans and sub-plans. The prey agent’s main goal would be exploration; a
second goal might be gathering beneficial objects such as energy stations to regain
battery life. This imposes a multi-layered behavior gained through agent intelligence
instead of the subsumption architecture presented (section 3.6.2.4 on page 42). The
behavior BDI model [PBL05] could also implement other behaviors, such as dedi-
cated escape strategies, which would be triggered by certain relative hunter positions
(in other words, when hunters are close).
On the hunter side, improved cooperation and communication can be applied. In
order to optimize hunting efficiency (time to catch prey), a strategy based upon
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Fig. 4.3: Two robots (the blue and red circles) are collectively hunting one prey robot
(yellow). Each robot follows its optimal path to the goal. The colored lines indicate the
planned trajectory. The small triangles on the trajectory mark temporary waypoints for
the local path planner. The global trajectory goal will be updated according to the prey
robot’s varying position. The robot’s current heading is indicated by the small triangle
within the circle.

prey position relative to the hunter group formation can be applied. The hunters
can decide which team members chase which prey. This approach can increase the
number of prey that can be hunted in parallel. It can also save resources by directing
hunters to the nearest prey. This could be achieved by implementing the FIPA-
Contract-Net protocol [Cer08], in which agents agree prey attribution depending
upon relative distances.

4.2.2 Find and Collect Scenario

The Find and Collect scenario was inspired by the Jadex Cleaner World example
and the trash collecting robots in [MAC97]. The Cleaner World example can be
considered a similar scenario. Two groups of robots participate: collecting robots
and exploration robots.
The collecting robots fetch objects with their attached gripper and bring them back
to their home position. A home position is defined for simplicity as the initial start
position of the robot and can be defined anywhere within the map upon agent cre-
ation. An object can be any movable, physical item in the robot’s environment that
the robot can move (for example, with its gripper). In the scenario implemented,
an object is represented by a little square blob on the floor, a little smaller than the
footprint of the robot itself.
The exploration robots explore unknown territory and can detect interesting ob-
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(a) (b)

(c) (d)

Fig. 4.4: A snapshot during the Hunt and Prey Scenario. Four perspectives of the same
situation are shown. The (start) configuration of the real-world scenario is as follows.
Two Pioneer robots (3AT and 2DX) are hunting a Pioneer-2DX escape robot carrying a
green bin between the gripper paddles. The moment depicted in the pictures shows the
event of the escaper being caught by the fastest hunter, the 3AT model. Although only
real robots take part, the scenario is also mapped into the simulation environment. (a)
The laboratory camera shows a total scene of all three participants (in the top-right area).
The slower hunter is entering one of the two doors to the TAMS laboratory. (Note that
the camera position is in the top-right corner of the laboratory on the map) (b) The first
person view of the escaper in the virtual environment. The hunter robot (with a blue laser
model on top and a gray gripper model at its front) can be seen approaching. Note the
that the paddles in the foreground belong to the robot from which the scene is viewed. (c)
This overview of the scene, created by the (Stage) simulation, is continuously updated.
Additional simulated robots could be added on-the-fly. (d) The planner view (Playernav)
shows the hunters locked on the escape robot.
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jects by their color. In the virtual environment this can be implemented using a
blobfinder device representing a real world camera capable of detecting object colors
or shapes. In the scenario implemented, a wall-following exploration algorithm is
used, but any suitable algorithm can be used. The exploration robot’s main goal is
to keep exploring the environment while reporting newly discovered blobs via the
ReceiveNewGoalService. The collecting robot listens to this service and stores new
blobs in local memory. Both participants use the blackboard implementation to
store their blob information.
The goal of this scenario is to demonstrate communication and cooperation between
two distinct groups of robots. A mixed reality run of the scenario is shown in
figure 4.5 and 4.6.

An Advanced Find and Collect Scenario

An enhanced scenario could be implemented by augmenting the number of partic-
ipants of the individual robot groups, by adding multiple and more sophisticated
behaviors for both groups and by implementing a standardized FIPA Agent Com-
munication Languages (ACL). The latter approach could benefit from the use of
the FIPA-Request-Interaction or Contract-Net protocol. The Request-Interaction
protocol can be used to request support from a nearby collecting robot to collect
detected objects; the Contract-Net protocol can be used by collecting robots to nego-
tiate between themselves, and to agree which is closest to the requesting exploration
robot.
This scenario could also be adapted for a distributed sensory network use-case in
which multiple wall- or ceiling-sensors watch the environment and trigger idle col-
lectors when an appropriate object is detected.

4.2.3 Swarm Scenario

This scenario demonstrates the flexibility and scalability of the meta-platform pre-
sented. It includes 100 robots that spread out from their closely spaced starting po-
sitions and explore the map by wall-following. Low-level obstacle avoidance guides
each robot to avoid collisions.
In order to stress the MAS layer, each robot subscribes to the SendPositionService,
broadcasts its own position and reads other position values. This results in one
hundred simultaneous transmissions and receptions within a fraction of a second.
This scenario also stresses the MRS layer. Each robot integrates a planner and
a localize device running the AMCL, Wavefront and VFH drivers in the robot’s
context. This also shows that the localization driver supports not only the laser
ranger but also the sonar ranger sensor in combination with the odometer. A sample
of the swarm scenario is depicted in figure 4.7.
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(a) (b)

(c) (d)

Fig. 4.5: Several snapshots during the Find and Collect scenario. Four perspectives of
situations during the scenario are shown. The (start) configuration of the mixed reality
scenario is as follows. A virtual Pioneer robot carrying a blobfinder device (a virtual
camera) searching for green blobs (objects) in the (virtual) environment. The presented
wall-following behavior serves as the exploration algorithm. In order to allow real-world
interaction, a green bin is placed at the exact blob position in the TAMS laboratory.
A real robot, the Pioneer-2DX with a gripper attached, waits for blob position targets
in order to approach, grasp the real bin and bring it back to its start position. The
simulation environment is a necessary part of the scenario. (a) The active collector robot
(center) waits for new targets. (b) The green bin target seen from the perspective of the
approaching collector. (c) The collector has grasped the target object and returns home.
(d) The same perspective as in (b) but in the virtual environment.
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(a) (b)

Fig. 4.6: Another event within the same run of the Find and Collect scenario depicted
in figure 4.5. (a) Virtual environment view. The event of the searching robot detecting
a green blob within its field of view (white square in center) is depicted. Communication
regarding the newly found target is triggered. (b) The collector robot listens for such
targets and has planned a path to the target, shown here in the planner view.

Fig. 4.7: The Swarm Scenario consists of 100 Pioneer robots and agents. Each robot has
sixteen sonar ranger sensors to perceive its environment and includes particle localization
and Wavefront path planning algorithms. The robots apply a wall-following subsumption
behavior model. Each robot is controlled by a Jadex agent which also propagates the
robot’s current location to the other agents. The robots start close together in a crowd
from which the implemented behavior distributes them towards a wall. Here different
colors indicate the robots’ recent trajectories. The same color means belonging to the
same group. In order to create space for the robots a map of 128m x 128m has been
created, derived from Player/Stage’s simple.world.
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An Advanced Swarm Scenario

The Swarm scenario is well suited to the exploration of any behavioral model that
consists of multiple, less sophisticated, individual behaviors. An example would be
research into formations. Another would be research into task allocation and sub-
allocation for teams of robots. These teams can be grouped together for individual
(sub-) tasks. Again the BDI model can be applied to divide goals into sub-goals and
to assign goals to an appropriate team.

4.2.4 Distribution Scenario

Rather than being a standalone scenario, this is typically part of another, such as
Hunt and Prey or Find and Collect. It demonstrates the use of a central planning
agent controlling the available agents. The purpose is to dynamically distribute a
group of robots across the traversable environment. This can be helpful in cases
where robots need to be well distributed over the map in order to process a scenario
properly.
The Distribution Scenario adds a new agent class, the DispersionAgent. Other
participating agents, such as navigating agents, are required to subscribe to the
HelloService and the ReceiveNewGoalService in order to communicate with the Dis-
persionAgent, in particular to be assigned distribution goals. The former service is
used to request all available agents to identify themselves (with a unique identifier
and agent information) in order to be classified (such as NavAgent), while the latter
is used to send new goals to agents (a goal instructs an agent to guide a robot to a
given position).
The central planner algorithm is based upon a set of predefined positions within
the environment map. These positions are currently manually defined for optimal
spatial distribution but can be later be found automatically. Positions on the TAMS
floor are chosen to ensure a minimal degree of spatial separation of physical agents.
A sample assignment of initial robot positions is presented in figure 4.8. The central
planning agent, upon invocation, triggers a reply from all other agents by using the
SendPositionService to “ping” all subscribers. Each receiver reacts with a confirma-
tion message containing the requested information. All such responses are parsed
and added to the planner’s local memory (using the blackboard class). In order to
structure the participants taking part in the conversation, each note on the black-
board is given a topic field, for which the class of the responding agent, contained in
the reply, is used. The advantage is the possibility of reacting individually to each
agent according to its type (class). After collecting and structuring the participants
they are listed in arbitrary order. The list is scanned and each entry is assigned
a position. The current allocation is made in order to select the nearest available
position in the remaining set of selected distribution points. Finally each agent is
sent its target position via the ReceiveNewGoalService.
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The advantage of this implementation is its flexible handling of available agents
and robots. Robots not reacting, such as those not supporting the proper services
or malfunctioning robots, will be ignored. This scenario can be combined with
other scenarios that benefit from spatial distribution of participating robots and
can manage both virtual and real-world robots simultaneously, as they are handled
transparently. A real-world run of the scenario is shown in figure 4.9.

Fig. 4.8: A dedicated agent pings all available robots on the network, computes optimal
distribution points on the TAMS floor map and sends individual goals to each robot. Here
three robots are currently active and responsive. Two robots (on the right top) are not
participating as they are assigned to different tasks.

An Advanced Distribution Scenario

The present design depends on a pre-defined set of strategic positions on a pre-
defined map. For added flexibility, a dynamic approach to defining strategic points
within arbitrary maps can be implemented, with map information parsed at runtime.
The retrieved map information can then be used in order to calculate best-suited
positions according to specific needs.

In the distribution case, a spatial distribution with equal, maximized distances is
wanted. For such use-cases an algorithm must find points on the map that are
mutually reachable and not too close to a wall. The algorithm can reach a high level
of sophistication as the environment becomes more complex, such as the TAMS floor
with its single narrow floor and its many rooms, the doors of which are likely to be
closed. The long floor itself is not complex but would lead to a distribution of points
along a straight line, when considered alone. The algorithm must also target rooms
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(a) (b)

Fig. 4.9: A snapshot during the Distribution scenario. Two perspectives of the same
situation are shown. The (start) configuration of the real-world scenario is as follows. A
group of three Pioneer robots (one 3AT and and two 2DX) are distributed amongst the
rooms of the TAMS laboratory, here one to a room. The moment depicted in the pictures
shows the point at which all robots have been assigned a target according to responses by
active robots to the DistributionAgent. Although only real robots take part, this scenario
is also mapped to the simulation environment. Virtual robots could be added on-the-fly.
(a) The three robots follow their path to their target positions. (b) The planner view
depicts the target position assigned to each (active) robot and their intermediate goals.

that are reachable through doors that are wide enough (for the robot to pass), such
as the TAMS laboratory, in order to use the territory efficiently.

4.3 Mixed Reality

Some of the scenarios presented in this chapter run in a mixed reality environment.
The difference between this and purely real environments is as follows. In a purely
real environment robots can sense only physical objects present in their environment.
In contrast, in an augmented real environment physical robots interact with virtual
objects, such as simulated robots.

The Hunt and Prey scenario can be run in either real-only, virtual-only or mixed
reality configuration. For the MAS and RSAL layer components this distinction
is not present as device access is encapsulated transparently within the MRS. One
exception might be that a robot can be aware of a simulation environment when
passing an appropriate simulation device to it (section 3.6.2.2 on page 35). Thus it
is possible that real robots hunt a virtual robot, virtual hunters follow a real prey
or a team consists of both types. In either case there is interaction between virtual
and real agents/robots. In the Find and Collect scenario interaction in the mixed
reality configuration has been demonstrated.
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A big advantage in such a configuration is the possibility of simulating (robot) hard-
ware that is not present in reality, for example where the required number of robots
(section 4.2.3) or the required device type (section 4.2.2) is not available. Another
advantage is the abstraction from hardware problems. Often an algorithm has been
designed and needs to be tested. Typically a simulation environment is chosen for
initial testing. Later on, the algorithm is tested on the real hardware. In the lat-
ter step, unexpected difficulties often arise as hardware introduces other possible
errors. In preliminary work (section 2.4) a wall-following algorithm performed well
in the simulation and performed poor in reality (in early development state). In
order to focus the research effort on the main goal such problems can be avoided by
running a stable mixed reality environment having only components in reality that
are mature enough. A step-wise approach to migrating each component to reality is
transparently possible. Research can focus on the global problem instead of dealing
with low-level (hardware) issues.

4.4 Adoption of another MAS

In order to replace the current MAS with another, the system design allows for
seamless migration. Only the top MAS layer within the three layer approach must
be changed, with changes to the agent implementation and the agent services. As it
is unlikely that another MAS supports currently implemented agents, agent bodies
must be adapted in order to conform to the new system. Furthermore the interaction
between the agents is crucial to the whole platform and has to be adapted as well.
If the new MAS supports the Java language, migration should be straightforward.
For a different language the JNI must be used to provide a native language interface
to the Java middle layer. This JNI wrapper must be provided by the user.

4.5 Adoption of another MRS

The replacement of the MRS affects the bottom layer of the three layer system.
Special attention must be focussed on the driver components. The use of ROS
as the new MRS would lead to minor changes in this area. Since most drivers
from Player/Stage are also supported and integrated in ROS, no major changes are
necessary. To use the same driver configurations as before, the configurations must
be converted between Player/Stage and ROS (XML) formats.
As components of the middle layer rely upon the MRS interface, these components
have to be adapted. The RSAL classes affected are those derived from Device, ex-
cept for the Robot class. Within these classes the MRS calls are encapsulated and
must be replaced by the appropriate ones from the new system. The concept of
a DeviceNode is abstract and typically does not need adaption, although it might
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have less significance; in Player/Stage, devices are bound to a specific node (a Play-
erClient), but this need not be so in other MRS. In systems that are completely
peer-to-peer based, such as ROS, the grouping of devices might be optional and
arbitrary.

4.6 Summary

In this chapter, selected cooperative scenarios are described. The chapter is based
on common scenarios in robotic research. Here they are integrated into the meta-
platform and demonstrate its maturity. Finally a discussion about the applied mixed
reality mode is followed by a description of the process of migration to another MAS
or MRS.
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5
The meta-platform developed here provides multi-agent facilities to a group of mo-
bile robots. These robots can interoperate within a mixed reality environment and
the platform allows efficient integration of new robots and behaviors. How does this
approach perform in an objective evaluation?

5.1 Introduction

This chapter evaluates the meta-platform and key aspects of the platform will be
highlighted and discussed. General enhancements that can, in the future, improve
the implementation are mentioned. Finally an outlook to possible use-cases of the
presented work is given.

5.2 Evaluation

In this section the demonstration example is evaluated according to various criteria,
namely the technology used, the scenarios demonstrated, the user interface and the
performance. Both initial requirements and new features are discussed.

5.2.1 Technology

The technologies used include recent developments in the areas of multi-agent sys-
tems (Jadex) and multi-robot systems (Player/Stage). Jadex is a proven, reliable
and efficient system for research and industrial purposes1. The Player/Stage project
has been used by many problem-solving activities in robotics world-wide2. Based
upon these major systems, the implemented abstraction layer (RSAL) benefits from
stability and flexibility. RSAL is implemented in Java, which supports state-of-the-
art object-oriented software development. In particular, the RSAL implementation

1http://jadex-agents.informatik.uni-hamburg.de/xwiki/bin/view/Usages/Projects
2http://playerstage.sourceforge.net/wiki/PlayerUsers (July 11, 2011)
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is heavily threaded: each robot and device runs in its own thread, handles syn-
chronization and provides an asynchronous interface. This approach dynamically
de-couples platform components and also benefits from current and future multi-
core computers.
In addition to the major components described above, other implementation aspects
are noteworthy:
• Current classes for real-world robots, devices and agents facilitate software

re-use within extended or alternative scenarios;
• The callback mechanism in use provides for easy, event-driven, access to RSAL

services by any client;
• The blackboard pattern allows easy object storage and retrieval and provides

basic features for a robot-learning architecture. The lightweight implementa-
tion does not degrade performance, allowing components, such as agents, to
have their own “memory” in addition to memory distributed across a network
of participants. This could be achieved by a dedicated central agent, without
physical representation, concentrating on message exchange between agents,
such as the MasterAgent and DispersionAgent (section 3.6.1).

The use of different robot types, or even of similar robots with different device
configurations, often introduces a high platform configuration effort. The presented
implementation allows for automatic robot device detection. This feature focusses
on a tree-node approach where devices are connected to a root node, the DeviceNode.
Dynamic retrieval of currently active devices is provided and includes the recognition
of devices that malfunction and can no longer be used. This approach adds a layer of
abstraction above the robot hardware and allows agent design to focus on cognitive
features.
The mixed reality configuration presented has been implemented using pre-existing
components of the platform. These include a device handling a simulation interface
and an agent that listens on active services to retrieve the information needed to
update the simulation. This feature benefits from software reuse and provides a
completely new facility. The mixed reality approach is currently an active field
of robot research. It provides facilities for a graphical user interface, enabling it
to display virtual and real robots simultaneously within a simulation environment.
The approach can be extended.

5.2.2 Scenarios

The scenarios presented in chapter 4 provide an overview of basic platform features.
All scenarios runnable with real robots such as Hunt and Prey, or Find and Collect,
demonstrate successful integration of the robot hardware in use. Navigation, as im-
plemented, allowed accurate localization within the TAMS laboratory and the whole
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floor. The planner worked well with the configuration and hardware. Additional
devices such as a gripper and robot-mounted laser ranger finder were integrated
successfully.

The integration of the MAS demonstrated the seamless coexistence of MAS and
MRS platforms. All features of the agent system worked successfully.

The Hunt and Prey scenario shows inter-agent communication as well as basic co-
operation. Interaction happens in a dynamic environment applying multiple, state-
of-the-art, robotic features such as wall-following, sensor fusion and a subsumption
behavior architecture. This software performs well, is robust in the case of hard-
ware errors (such as erroneous laser readings and hardware defects), and successfully
handles different hardware configurations.

Whereas the Hunt and Prey scenario focuses on a simple behavioral model of partici-
pating agents, in which the behavior of each agent/robot does not change during the
scenario, the Find and Collect scenario implements a two-step interaction. The col-
lector agents are triggered only upon receipt, via the agent services, of information
describing an “interesting” object. Both finders and collectors use local memory that
implements the blackboard model, thus allowing them to represent an autonomous
model of the real or simulated world.

The Swarm scenario demonstrates the scalability and stability of the platform on
a single host. Each robot consists of an agent component that communicates via
services, a robot model that uses its own devices and finally the localization and
navigation component of the MRS. This single-robot model is replicated 100 times.
In addition, this scenario provides a starting point from which to explore and im-
plement dedicated robot swarm behaviors.

5.2.3 User Interface

The user interface provides a multi-window and component focused surface. The
Jadex Control Center provides a well arranged user interface to start/stop agents
and scenarios. Runtime parameters can be changed and passed to agents and sophis-
ticated agent debugging features can be applied. An optional Java console supports
information display and error localization. This is the main interface, as the user
typically interacts at agent/scenario level. Each MAS typically provides its own,
optimized interface.

For a more robot-centric view of a scenario, an MRS typically provides a variety
of tools. For watching current robot localizations and planned trajectories, Play-
er/Stage provides the Playernav utility. This provides an easy overview of all par-
ticipating robots and their goals. Other MRS, such as ROS, provide their own tools
for visualization, such as the RVIZ utility.

63



5 Conclusion

When working with simulated environments instead of real ones or when applying
a mixed world scenario, the Stage simulator provides a convenient, almost three-
dimensional, interface and allows robot data to be visualized. ROS also integrates
the Stage simulation.

5.2.4 Performance

Overall performance depends upon the applied scenario. In general, total process-
ing delays are the sum of delays in the MAS, RSAL and MRS layers. The threaded
design of the RSAL and the flat, optimized, call hierarchy are apparent in the low
overall impact of the RSAL on total delays. MAS and MRS delays vary according
to the current state of a scenario. The MAS can produce significant startup delays.
However, by creating many services when starting, it can reduce its impact on the
overall delays within a running scenario. The major impact comes from localization
components: calculation of initial pose estimates at startup takes a long time, as
no previous positions are known (unless positions are exactly predefined) and many
particles have to be processed by the localization component. With the currently
implemented and optimized configuration, this delay is minimized. Moreover the de-
lay is not recognizable during the main scenario processing. The AMCL algorithm
used needs very few resources once it has a position estimate, as further updates
take the previous position into account. Nevertheless, the localization and navi-
gation components limit overall system responsiveness when many robots operate
simultaneously, such as in the swarm scenario.

5.3 General Remarks

When multiple agents cooperate to solve a task, several key issues have to be consid-
ered. The meta-platform provides the basic infrastructure for nearly any task-solving
strategy and there are usually many possible configurations, each with advantages
and disadvantages. A suitable system configuration is the key to the effective solu-
tion of a given problem. The key issues to be considered are highlighted in [Bek05]
and are discussed below.
When approaching a task, one must consider the jobs each robot has to handle.
Can all sub-tasks be managed by the same robot type or are robots with differing
capabilities required? The answers to this question constrain the scenario configu-
ration. If all robots are the same, they can be seen transparently, as the physical
representation of an agent that can manage any task. In this case, the selection
of a robot for a task depends only upon robot location. In contrast, where robots
of differing capabilities are used, the selection of a robot for a task depends upon
both robot type and location. Heterogeneous robot teams require additional inter-
action and communication effort, which has to be considered in the scenario design.
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Homogeneous robot teams require coordination, but are more flexible in terms of
the specific robot assigned a task. In the scenarios presented, this differentiation
can be understood. The Hunt and Prey and the Swarm scenario are based upon
homogenous robots, whereas the Find and Collect scenario directs a heterogeneous
group consisting of explorer and collector robots with differing hardware that no-
tably changes their use and behavior. Whereas in the homogenous cases the role of
each participant can be chosen arbitrarily, this is not true in the heterogeneous case.
Here the role of each robot type is distinct in terms of its basic usage. The explorer
has a blob-detecting device and no effector to collect anything. Therefore it has to
interact with a supporting collector robot that does not have an optical detection
device but instead has a gripper, allowing it to grip, move and release objects. The
two groups need each other to complete the task of searching and collecting ob-
jects in their environment. The implemented scenario handles this by interactively
triggering events on the appropriate agent communication channels (services).
Another key aspect of cooperative task solving is the control of distributed
robots. Whereas centralized control over multiple participants allows efficient and
redundancy-free management, distributed or autonomous control of each robot in-
troduces another level of robustness. The central control approach implements a
dedicated planner that communicates with scenario participants in a peer-to-peer
manner. Information retrieval in this case is simple for the planner, as it processes
all data anyway. It can collect data and make decisions from experience in order
to control other robots. This design can be exploited for complex scenarios where
a lot of information from different sources must be processed in order to make rea-
sonable and time-critical decisions. In contrast, a decentralized design introduces
more responsibilities to individual robots. Each robot has its own goal, resources
and plans. Coordination is achieved by each robot solving its individual task. This
approach requires less complexity from each individual participant than a central
planner, which reduces the risk of design or implementation failures. Nevertheless
this comes at the cost of adjusting each component in order to integrate a team for
cooperative task solving. The implementation introduces a central planner, such as
the distribution agent, which triggers and receives robot data and controls their for-
mation according to the number of robots and their positions. A practical scenario
would most likely benefit from a mixed control design.
When formations are required for a task, the design has to focus on the question of
loosely or tight-coupled robot teams. Although in the presented scenarios almost
no relative robot positions were important, in other scenarios, robots might operate
as a group and therefore have to dynamically coordinate relative positions.
Environmental and task requirements can introduce constraints on communication
links. Whereas in some scenarios it is possible to share all robot information, for ex-
ample by broadcasting, in other scenarios such sharing is not allowed or is impossible
because of the environment. Good communication should prefer information-hiding
to polluting the network with unwanted or unimportant data. Nevertheless infor-
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mation should be available to all receivers that need it.
Another key aspect of such a meta-platform is the human-robot interface, or in other
words, task assignment. How is a task assigned to a group of robots? This topic is
related to control design: where a central planner is available, it can accept a task,
process it and delegate sub-tasks to participating robots. If no such central process
is available, the task has to be subdivided in advance in order to delegate sub-tasks
directly.
Finally certain environmental constraints, such as indoor or outdoor territories,
introduce special system designs. Furthermore, learning requires its own cognitive
components and must be handled at a more abstract level of interaction, as for single
robots.

5.4 Practical Usage

The meta-platform presented here provides all services to support scenario devel-
opment in the field of robotics. The following paragraphs introduce some suitable
application areas.
In the research field of search and rescue robots, interaction becomes mandatory as
typical scenarios are too complex to be accomplished by a single robot. A search
operation benefits from the number of search participants. The deployment area
can be covered in less time with an increased number of robots. In order to effi-
ciently cover the environment without re-discovering the same area it is important
to coordinate the robots’ targets dynamically.
Swarm formation, a recent research topic, benefits from this work by applying ded-
icated formation algorithms to the system.
The scenarios presented are based on a pre-defined static map that is available
to planner components. Another scenario would be to explore unknown territory
using a team of autonomous robots. Present state-of-the-art SLAM algorithms can
robustly map a territory using a single robot system. For a distributed SLAM,
new algorithms can be designed and implemented in the meta-platform in order to
exploit its communication and data memory facilities and to benefit from a multi-
robot team.
Communication between a group of agents or robots is another field of current
research, one in which efficiency, scalability and flexibility are important topics. The
currently implemented service infrastructure can be enhanced in order to explore
these issues.
The important service-robot use-case for a foraging population can also take advan-
tage of such a highly interactive platform. Different kinds of household robot might
share information on activities to be performed and on environmental changes, or
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could pass operator requests to the best suited robot. Nevertheless, such complex
scenarios can be combined with distributed sensor networks to support data re-
trieval by small, fixed sensors (both dedicated or robot-attached) in the domestic
environment, such as refrigerators and washing machines.

A practical environment for the Find and Collect scenario would be that of a pro-
duction line. Unused or rejected parts, as well as trash, are created during manu-
facturing. Such parts could be spotted by mobile or fixed sensors, such as cameras.
Mobile collectors would be given the spot positions and would autonomously find
their way to the target, grasp it and bring it to a disposal position before returning
to their idle task.

Often certain facilities have to be under permanent surveillance, such as museums,
company buildings and military territories. Such a task can be solved by multiple
cameras watching the important area. The field of view can be augmented by
various mobile robots that periodically observe covered territory. In the case of an
emergency event, appropriate actions can be triggered, such as sending mobile robots
to the location of the problem. Robots following surveillance routes through indoor
or outdoor environments could maintain their battery charge state and servicing
autonomously, for example by heading to a recharging point when necessary.

5.5 Summary

This work deals with a generic software platform integrating multi-agent technology
and a multi-robot system. It describes the use of the platform for typical cooperative
robotic scenarios. One Pioneer-3AT and two Pioneer-2DX from MobileRobots Inc.
serve as the hardware base for real-world applications. The robots have sonar and
laser ranger sensors attached and some have grippers. With the ranger devices, the
robots are able to locate their position on a static map in an indoor environment.
The gripper is used for object manipulation. The multi-agent system, Jadex, is
integrated for cognitive and task-distribution services. Furthermore, the multi-robot
system Player/Stage is used to interact with the robot hardware and to provide a
simulation environment.

The development of the software is described in figure 3.5. The robot navigation
stacks were configured to reach high localization and path planning accuracy within
an indoor environment. For this purpose, a proportional and accurate grid-map of
the territory was created by a particle-filter-based SLAM algorithm. The require-
ments for a generic system integrating MAS and MRS lead to the design of a generic
middle layer. Implementation and testing use current software design patterns and
focus on run-time efficiency. The middle layer consists of a flexible concept for
robots, behaviors and devices independent of the specific MAS and MRS in use.
Moreover agents, communication services and scenarios have been implemented and
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tested. A mixed reality graphical user interface allows simulated and augmented-
reality scenarios. The efficiency of the overall system is scalable, allowing for control
of a large number of robots simultaneously.
A multi-robot platform with multi-agent technology based on Player/Stage and
Jadex has been introduced. Core components can be used with other systems of
the same kind, such as other MAS and MRS. Two real-world scenarios and one
virtual scenario served as the basis for the realization of interactive collaboration.
A concluding discussion of current and future research into various topics related to
the meta-platform has been presented.

5.6 Outlook

This section discusses possible improvements to the presented work.
In order to augment the currently supported scenarios, additional robot behavior
can be added. In particular, this might involve higher-level behaviors such as wall-
following or exploration. The low-level behaviors, such as obstacle avoidance, pro-
vide a generic module that can be used with other behaviors. A completely object-
oriented behavioral model that allows new behavioral components to be added or
removed would improve the flexibility and maintainability of the system. Further-
more, advanced swarm scenarios would give the system the ability to perform large
area exploration and communication.
In the present implementation, the robot system consisting of the MRS and the
central MAS are invoked manually. For a more dynamic approach, central and
local systems can be started automatically upon start-up of the robot hardware.
Exploiting the Jadex Awareness feature, which allows automatic detection of agents
present in the network, would enable autonomous agent invocation. When invoked,
a default behavior such as wall-following or system monitoring, could enable more
rapid reaction to environmental changes. It could also trigger appropriate tasks on
the discovery of interesting objects.
The use of standardized, mature and reliable communication protocols, such as the
FIPA-Contract-Net, could make maintainability and debugging more transparent.
Task assignment is currently encapsulated within pre-defined scenarios. Accordingly,
a specific task-solving activity is defined by the choice of dedicated agents that are
known to be able to contribute to the task solution. Another approach to task
assignment is not to define how the task is to be solved but rather to let the (meta-)
platform decide. The task description can then be parsed, automatically divided
into sub-tasks and then assigned to individual robots. The assignment process
is influenced by the agents currently available. Considering the Find and Collect
scenario, it could be specified that certain objects have to be collected and brought
to a specific position, but not which robot or how many robots take part in solving
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the task. Another example in the Hunt and Prey scenario would be to define the
task of hunting a certain group of prey robots instead of assigning each robot a task.
A straightforward enhancement of the current system would be the exploitation
of the BDI cognitive model using Jadex BDI agents instead of the micro agent
implementation. This approach comes with an external definition of agent goals,
with plans and sub-plans to solve. It gives a abstract view of the agent goal definition
and allows complex and long term targets to be defined.
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A Appendix

� �
# 2011−06−07 S e b a s t i a n Rocke l
# P ionee r model w i th d e v i c e s
# F i l e : d e v i c e s . i n c

5 i nc lude "pioneer.inc"
#i n c l u d e " utm30lx . i n c " # anothe r l a s e r model
i nc lude "urgr.inc"
i nc lude "platte.inc"
i nc lude "laptop.inc"

10

def ine bobsb lobf inder b lob f inde r
(

colors_count 1
co lo r s [ "green" ]

15 #fov 1.047196667 # 60 d eg r e e s = p i /3 r a d i a n s
fov 90 # d eg r e e s
range 3
#range_max 5
# camera pa ramete r s

20 #image [160 120 ] #r e s o l u t i o n
image [ 80 60 ] #r e s o l u t i o n

)
def ine bobsgr ipper gr ipper
(

25 pose [ 0 . 2 3 0 .000 −0.20 0 . 0 0 0 ]
co lo r "gray"

)
def ine robot fancypioneer2dx
(

30 l aser240 ( pose [ 0 . 1 3 0 0 0 ] )
#utm30lx ( pose [ 0 . 1 3 0 0 0 ] )
p la t te ( )
laptop ( )
bobsb lobf inder ( )

35 bobsgr ipper ( )

obstacle_return 1
ranger_return 1
blob_return 0

40 )
def ine blob model
(

s i z e [ 0 . 3 0 .3 0 . 0 ]
boundary 0

45 gui_move 1
gr ipper_return 1
obstacle_return 0
l a ser_return 0
ranger_return 0

50 blob_return 1
)� �

List. A.1: The Pioneer robot device definition for the Stage simulator.

II
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# P l a y e r d r i v e r s c o n f i g u r a t i o n f o r a P ionee r−2DX robo t
# 2011−07−04 S e b a s t i a n Rocke l
# F i l e : p i o n e e r . c f g

4

d r i v e r
(

name "p2os"
prov ides [ "odometry:::position2d:0" "sonar:0" "power:0"

"gripper:::gripper:0" "lift:::actarray:0" "dio:0" "audio:0" ]
9 gr ipper_outers i ze [ 0 . 5 0 .5 0 . 5 ]

gr ipper_ inner s i ze [ 0 . 4 0 .4 0 . 4 ]

port "/dev/ttyS0"
)

14 d r i v e r
(

name "hokuyo_aist"
prov ides [ "ranger:1" ]
portopts

"type=serial ,device=/dev/ttyACM0 ,timeout=1,debug=0,baud=115200"
19 pose [ 0 .13 0 0 0 0 0 ]

min_dist 0 .02
er ro r_d i s t 5 .6 # i f range < min_dist , range i s s e t to t h i s v a l u e

)
d r i v e r

24 (
name "rangertolaser"
r equ i r e s [ "ranger:1" ]
prov ides [ "laser:0" ]

)
29 d r i v e r

(
name "mapfile"
prov ides [ "map:0" ]
f i lename "bitmaps/tams_compl_red_map.png"

34 r e s o l u t i o n 0 .05 # meter s pe r p i x e l
o r i g i n [−31.475 −7.8 ] # r e a l−wor ld l o c a t i o n o f the bottom− l e f t −hand

c o r n e r o f the map
)� �
List. A.2: The Player driver configuration for a Pioneer-2DX robot includes the p2os
driver for motor and sonar access, the hokuyo_aist driver for the laser ranger, an optional
rangertolaser driver to convert laser into generic ranger data and a mapfile driver to provide
a two-dimensional map of the environment.
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� �
# Desc : P l a y e r c o n f i g f i l e f o r l o c a l i z a t i o n and n a v i g a t i o n
# Date : 2009−11−16
# CVS : $ Id : amcl−sona r . c fg , v 1 . 2 2005−08−05 2 3 : 1 8 : 4 1 ge rkey Exp $

4 # Copied and m o d i f i e d by : S e b a s t i a n Rockel , 2011−06−07
# F i l e : p lanner_6666 . c f g
# Load the map f o r l o c a l i z a t i o n and p l a n n i n g from the same image f i l e ,
# and s p e c i f y the c o r r e c t r e s o l u t i o n ( a 500 x500 p i x e l map at 16m x 16m
# i s 0 .032 m / p i x e l r e s o l u t i o n ) .

9 d r i v e r
(
name " vfh "
p r o v i d e s [ " position2d :1" ]
r e q u i r e s [ " 6665: position2d :0" " 6665: laser :0" ]

14 safety_dist_0ms 0 .1 #The minimum d i s t a n c e the robo t i s a l l o w e d to ge t to o b s t a c l e s when stopped .
safety_dist_1ms 0 .4 #The minimum d i s t a n c e the robo t i s a l l o w e d to ge t to o b s t a c l e s when t r a v e l l i n g at 1 m/ s .
#f ree_space_cuto f f_0ms 2000000.0 #U n i t l e s s v a l u e . The h i g h e r the va lue , the c l o s e r the robo t w i l l ge t to

o b s t a c l e s b e f o r e a v o i d i n g ( w h i l e s topped ) .
f ree_space_cutoff_1ms 1000000.0 #U n i t l e s s v a l u e . The h i g h e r the va lue , the c l o s e r the robo t w i l l ge t to

o b s t a c l e s b e f o r e a v o i d i n g ( w h i l e t r a v e l l i n g at 1 m/ s ) .
max_speed 0 .4 # The maximum a l l o w a b l e speed o f the robo t .

19 max_speed_narrow_opening 0 .1 #The maximum a l l o w a b l e speed o f the robo t through a narrow open ing
when stopped .
when t r a v e l l i n g 1 m/ s .
d i s t a n c e _ e p s i l o n 0 .2 #Plana r d i s t a n c e from the t a r g e t p o s i t i o n t h a t w i l l be c o n s i d e r e d a c c e p t a b l e . Set t h i s

to be GREATER than the c o r r e s p o n d i n g t h r e s h o l d o f the u n d e r l y i n g p o s i t i o n d e v i c e !
a n g l e _ e p s i l o n 3 #Angula r d i f f e r e n c e from t a r g e t a n g l e t h a t w i l l c o n s i d e r e d a c c e p t a b l e . Set t h i s to be GREATER

than the c o r r e s p o n d i n g t h r e s h o l d o f the u n d e r l y i n g p o s i t i o n d e v i c e !
24 #m i n _ t u r n _ r a d i u s _ s a f e t y _ f a c t o r 1 . 0 #??

escape_speed 0 .1 #I f non−zero , the t r a n s l a t i o n a l v e l o c i t y t h a t w i l l be used w h i l e t r y i n g to e scape .
escape_time 5 .0 #I f non−zero , the t ime ( i n seconds ) f o r which an escape attempt w i l l be made .
escape_max_turnrate 10 #I f non−zero , the maximum a n g u l a r v e l o c i t y t h a t w i l l be used when t r y i n g to e scape .
#synch ronous 0 #I f z e r o ( the d e f a u l t ) , VFH runs i n i t s own t h r e a d . I f non−zero , VFH runs i n the main P l a y e r

t h r e a d
29 #w e i g h t _ d e s i r e d _ d i r 5 . 0 #Bias f o r the robo t to t u r n to move toward g o a l p o s i t i o n .

#w e i g h t _ c u r r e n t _ d i r 3 . 0 #Bias f o r the robo t to c o n t i n u e moving i n c u r r e n t d i r e c t i o n o f t r a v e l .
)
d r i v e r
(

34 name " amcl "
p r o v i d e s [ " localize :0" " position2d :2" ]
r e q u i r e s [ " odometry ::6665: position2d :0" " 6665: laser :0" " laser ::6665: map :0" ]

#enab l e_gu i 1 # Set t h i s to 1 to e n a b l e the b u i l t −i n d r i v e r GUI

39 # P a r t i c l e f i l t e r s e t t i n g s
#
odom_init 0 #Use the odometry d e v i c e as the " a c t i o n " s e n s o r
#pf_min_samples 100 #Lower bound on the number o f samples to ma in ta i n i n the p a r t i c l e f i l t e r
#pf_max_samples 10000 #Upper bound on the number o f samples to ma in ta i n i n the p a r t i c l e f i l t e r

44 #p f _ e r r 0 .01 #C o n t r o l pa ramete r f o r the p a r t i c l e s e t s i z e . See n o t e s below
#pf_z 3 .0 #C o n t r o l pa ramete r f o r the p a r t i c l e s e t s i z e . See no t e s below
i n i t _ p o s e [ −21.0 4 .0 0 ] #I n i t i a l pose e s t i m a t e ( mean v a l u e ) f o r the robo t
#i n i t _ p o s e [ −6.0 −5.0 0 . 0 ] #I n i t i a l pose e s t i m a t e ( mean v a l u e ) f o r the robo t
i n i t_pose_var [ 3 . 0 3 . 0 3 6 0 . 0 ] #U n c e r t a i n t y i n the i n i t i a l pose e s t i m a t e

49 #update_thre sh [ 0 . 2 0 . 5 2 ] #Minimum change r e q u i r e d i n a c t i o n s e n s o r to f o r c e update i n p a r t i c l e f i l t e r

# Set the 3 rows o f the c o v a r i a n c e mat r i x used f o r odomet r i c d r i f t
#odom_dr i f t [ 0 ] [ 0 . 2 0 . 0 0 . 0 ]
#odom_dr i f t [ 1 ] [ 0 . 0 0 . 2 0 . 0 ]

54 #odom_dr i f t [ 2 ] [ 0 . 2 0 . 0 0 . 2 ]

# L a s e r s e t t i n g s
#
l a se r_pose [ 0 . 1 3 0 0 ] #Pose o f the l a s e r s e n s o r i n the robot ’ s c o o r d i n a t e system

59 laser_max_beams 50 #Maximum number o f range r e a d i n g s be i ng used
laser_range_max 5 .6 #Maximum range r e t u r n e d by l a s e r
#l a s e r _ r a n g e _ v a r 0 .1 #Var i ance i n range data r e t u r n e d by l a s e r
laser_range_bad 0 .02 #Probab l e l a s e r min v a l u e s

)
64 d r i v e r

(
name " wavefront "
p r o v i d e s [ " planner :0" ]
r e q u i r e s [ " output ::: position2d :1" " input ::: position2d :2" " 6665: map :0" ]

69 alwayson 1
s a f e t y _ d i s t 0 .3 #Don ’ t p l an a path any c l o s e r than t h i s d i s t a n c e to any o b s t a c l e . Set t h i s to be GREATER

than the c o r r e s p o n d i n g t h r e s h o l d o f the u n d e r l y i n g p o s i t i o n d e v i c e !
d i s t a n c e _ e p s i l o n 0 .4 #Plana r d i s t a n c e from the t a r g e t p o s i t i o n t h a t w i l l be c o n s i d e r e d a c c e p t a b l e . Set t h i s

to be GREATER than the c o r r e s p o n d i n g t h r e s h o l d o f the u n d e r l y i n g p o s i t i o n d e v i c e !
a n g l e _ e p s i l o n 10 #Angu la r d i f f e r e n c e from t a r g e t a n g l e t h a t w i l l c o n s i d e r e d a c c e p t a b l e . Set t h i s to be

GREATER than the c o r r e s p o n d i n g t h r e s h o l d o f the u n d e r l y i n g p o s i t i o n d e v i c e !
#c s p a c e _ f i l e " p l a n n e r . c space " # C u r r e n t l y d i s a b l e d i n Wavefront d r i v e r

74 #r e p l a n _ d i s t _ t h r e s h 2 .0 #Change i n robot ’ s p o s i t i o n ( i n l o c a l i z a t i o n space ) t h a t w i l l t r i g g e r r e p l a n n i n g
#replan_min_t ime 2 .0 #Minimum time i n seconds between r e p l a n n i n g . Set to −1 f o r no r e p l a n n i n g . See a l s o

r e p l a n _ d i s t _ t h r e s h
#fo rce_map_re f r e sh 0 # I f non−zero , map i s updated from s u b s c r i b e d map d e v i c e whenever new g o a l i s s e t

)� �
List. A.3: The Player driver configuration for the local path planner VFH, the global
path planner Wavefront and the localization component AMCL.
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# 2011−06−07 S e b a s t i a n Rocke l
# Stage S i m u l a t i o n wi th r o b o t s

3 # f i l e : uhh1 . c f g
d r i v e r
(

name " stage "
p r o v i d e s [ " simulation :0" ]

8 p l u g i n " stageplugin "
# l o a d the named f i l e i n t o the s i m u l a t o r
w o r l d f i l e " uhh1 . world "

)
d r i v e r

13 (
name " stage "
p r o v i d e s [ " position2d :0" " ranger :0" " ranger :1" " gripper :0" ]
model "r0"

)
18

d r i v e r
(

name " stage "
p r o v i d e s [ " 6667: position2d :0" " 6667: ranger :0" " 6667: ranger :1" " 6667: gripper :0" ]

23 model "r1"
)
d r i v e r
(

name " stage "
28 p r o v i d e s [ " 6669: position2d :0" " 6669: ranger :0" " 6669: ranger :1" " 6669: gripper :0"

" 6669: blobfinder :0" ]
model "r2"

)
# P r o x i e s o f r e a l r o b o t s
d r i v e r

33 (
name " stage "
p r o v i d e s [ " 6671: position2d :0" " 6671: blobfinder :0" ]
model "r3"

)
38 d r i v e r

(
name " stage "
p r o v i d e s [ " 6672: position2d :0" " 6672: blobfinder :0" ]
model "r4"

43 )
d r i v e r
(

name " stage "
p r o v i d e s [ " 6673: position2d :0" " 6673: blobfinder :0" ]

48 model "r5"
)
# l a s e r d e v i c e s t i l l needed f o r v fh and acml d r i v e r
d r i v e r ( name " rangertolaser " r e q u i r e s [ " 6665: ranger :1" ] p r o v i d e s [ " 6665: laser :0" ] )
d r i v e r ( name " rangertolaser " r e q u i r e s [ " 6667: ranger :1" ] p r o v i d e s [ " 6667: laser :0" ] )

53 d r i v e r ( name " rangertolaser " r e q u i r e s [ " 6669: ranger :1" ] p r o v i d e s [ " 6669: laser :0" ] )

# Map d r i v e r
d r i v e r
(

58 name " mapfile "
p r o v i d e s [ " map :0" ]
f i l e n a m e " bitmaps / tams_compl_red_map .png "
r e s o l u t i o n 0 .05 # meter s pe r p i x e l
o r i g i n [−31.475 −7.8 ] # r e a l−wor ld l o c a t i o n o f the bottom− l e f t −hand c o r n e r o f

the map
63 )� �

List. A.4: The Player TAMS world configuration.
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1 # 2009−11−17 TAMS

# f i l e : urg . i n c

d e f i n e urg_ranger ranger
(

6 s e n s o r (
pose [ 0 .13 0 0 0 ]
s i z e [ 0 . 1 0 .1 0 .1 ]
range [ 0 .02 5 .6 ]
fov 240 .0

11 samples 682
)

watts 2 .0
co lo r_rgba [ 0 1 0 0 .15 ]

16 )� �
List. A.5: The Stage URG-04LX Laser model definition.

� �
# 2011−06−07 S e b a s t i a n Rocke l
# Hokuyo UTM−30LX d e f i n i t i o n

3 # f i l e : utm30lx . i n c

d e f i n e utm30lx ranger
(

s e n s o r (
8 range [ 0 . 1 30 ]

fov 270 .0
samples 1080
watts 8 .0
co lo r_rgba [ 0 0 1 0 .15 ]

13 )

# g e n e r i c model p r o p e r t i e s
model (

c o l o r " blue "
18 s i z e [ 0 .05 0 .05 0 .1 ]

pose [ 0 0 −0.2 0 ] # to be s e t i n robo t d e f i n i t i o n
)

)� �
List. A.6: The Stage UTM-30LX Laser model definition.
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#!/ b in / bash
# 2011−03−30 S e b a s t i a n Rocke l
# S t a r t s Stage s i m u l a t i o n wi th r o b o t s

4 # f i l e : s t a r t S i m u l a t i o n . sh

k i l l a l l p l a y e r
k i l l a l l p l a y e r
k i l l a l l p l a y e r

9 k i l l a l l p l a y e r n a v

p l a y e r uhh1 . c fg &

s l e e p 3
14

. / s t a r t P l a n n e r . sh &� �
List. A.7: The TAMS Simulation Start Script.

� �
#!/ b in / bash
# 2011−03−16 S e b a s t i a n Rocke l
# S t a r t P l a y e r p l a n n e r s e r v e r s
# M u l t i p l e r o b o t s s c e n a r i o

5 # f i l e : s t a r t P l a n n e r . sh

p l a y e r −p 6666 planner_6666 . c fg &
p l a y e r −p 6668 planner_6668 . c fg &
p l a y e r −p 6670 planner_6670 . c fg &

10
s l e e p 2

p l a y e r n a v l o c a l h o s t : 6665 l o c a l h o s t : 6666 l o c a l h o s t : 6668 l o c a l h o s t : 6670 &� �
List. A.8: The Player Navigation Start Script.

� �
#!/ b in / bash

2 # 2011−03−18 S e b a s t i a n Rocke l
# S t a r t S c a l e s c e n a r i o
# s t a r t S c a l e . sh

k i l l a l l p l a y e r
7 k i l l a l l p l a y e r

k i l l a l l p l a y e r

p l a y e r s c a l e . c fg &
p l a y e r −p 6667 s c a l e _ l a s e r . c fg &

12 p l a y e r −p 6666 p l a n n e r _ s c a l e . c fg &� �
List. A.9: The Swarm Scenario Start Script.
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usecase

test.robot

test.jadex

test.device
test.data

test

robot.external

robot

jadex.tools

jadex.service

jadex.agent

jadex

device.external device

data

core

behavior

Fig. A.1: This dependency graph illustrates all middle layer (RSAL) components. As this
graph is automatically generated from the corresponding components (in Java packages)
some components are split into several Java packages. This separates the public interface
from the internal code. Arrows indicate whether a package actually uses another package
or inherits from it.
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