Underwater Robots

Proseminar

Patrick Schmolke

University Hamburg

14. December 2009

Overview

- 1 Underwater Robotics Introduction
- 2 History of Underwater Robotics
- 3 Technic
- 4 ROVs introduced
- 5 AUVs introduced
- 6 Conclusion

Overview

1 Underwater Robotics - Introduction

- Introduction
- ROVs
- AUVs

2 History of Underwater Robotics

3 Technic

- 4 ROVs introduced
- 5 AUVs introduced

6 Conclusion

Why do we develope underwater robots?

- Reach dangerous spots in the sea
- Long term observations
- Automatic maintenance

Introduction

- Why do we develope underwater robots?
- Reach dangerous spots in the sea
- Long term observations

- Why do we develope underwater robots?
- Reach dangerous spots in the sea
- Long term observations

- Why do we develope underwater robots?
- Reach dangerous spots in the sea
- Long term observations
- Automatic maintenance

ROV

Remotely Operated underwater Vehicle

AU\

ROV

Remotely Operated underwater Vehicle

AUV

ROV

Remotely Operated underwater Vehicle

AUV

ROV

Remotely Operated underwater Vehicle

AUV

What is a ROV?

remotely operated

- connected to support unit by:
 - wire
 - tether
- battery or surface supported
- mostly frame shaped
- more of a tool than of a robot

What is a ROV?

remotely operated

connected to support unit by:

- wire

- remotely operated
- connected to support unit by:
 - wire
 - tether

- remotely operated
- connected to support unit by:
 - wire
 - tether
- battery or surface supported

- remotely operated
- connected to support unit by:
 - wire
 - tether
- battery or surface supported
- mostly frame shaped

- remotely operated
- connected to support unit by:
 - wire
 - tether
- battery or surface supported
- mostly frame shaped
- more of a tool than of a robot

- remotely operated
- connected to support unit by:
 - wire
 - tether
- battery or surface supported
- mostly frame shaped
- more of a tool than of a robot

What is an AUV?

AI operated

powered by capacitor, battery or fuel cell

What is an AUV?

- AI operated
- powered by capacitor, battery or fuel cell

Overview

1 Underwater Robotics - Introduction

2 History of Underwater Roboticshistory

- 3 Technic
- 4 ROVs introduced
- 5 AUVs introduced
- 6 Conclusion

First AUV

SPOV

First AUV

SPOV

manufactured by University of Washington Applied Physics Laboratory

- torpedo shaped

First AUV

SPOV

manufactured by University of Washington Applied Physics Laboratory

torpedo shaped

First AUV

SPOV

manufactured by University of Washington Applied Physics Laboratory

torpedo shaped

DOF: 1

First AUV

SPOV

- manufactured by University of Washington Applied Physics Laboratory
- torpedo shaped
- DOF: 1
- nominal speed: ca.2 m/s

First AUV

SPOV

- manufactured by University of Washington Applied Physics Laboratory
- torpedo shaped
- DOF: 1
- nominal speed: ca.2 m/s
- maximum depth: 3.600m

timeline

- 1957 SPOV
- 1973 SPOV II
- 1974 SKAT
- 1977 EAVE I
- 1978 SKAT-GEO
- 1980 L-2, Epaulard
- 1981 EAVE III
- 1983 ARCS
- 1987 EAVE IV, LSV-1
- 1988 Seasquirt, MT-88
- 1990 Tiphlonus
- 1992 ALBAC, Odyssey

timeline-continued

- 1993 Odyssey II
- 1993 Twin Burger
- 1994 TSL
- 1995 CR01,ABE
- 1996 Autosub
- 1997 OKPO-6000
- 1998 SAUV, Rauver MkII, Taipan

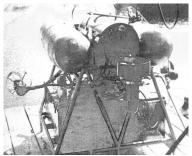
Overview

1 Underwater Robotics - Introduction

2 History of Underwater Robotics

- 3 Technic
 - Chassis Types
 - Power Supply
 - Sensors

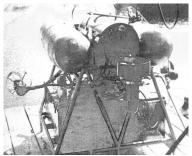
4 ROVs introduced

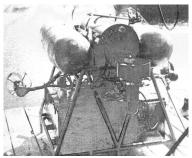

5 AUVs introduced

6 Conclusion

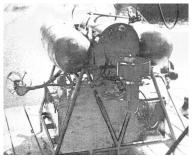
Torpedo

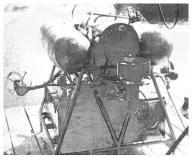
Rectangular


- Open-Space-Frame
- Biomimetic


Torpedo

Rectangular


- Open-Space-Frame
- Biomimetic


- Torpedo
- Rectangular
- Open-Space-Frame
- Biomimetic

- Torpedo
- Rectangular
- Open-Space-Frame
- Biomimetic

- Torpedo
- Rectangular
- Open-Space-Frame
- Biomimetic

Power Supply

battery

- akkumulator
- fuel cell
- solar energy
- surface support unit

Power Supply

battery

akkumulator

- fuel cell
- solar energy
- surface support unit

Power Supply

battery

akkumulator

fuel cell

solar energy

surface support unit

Power Supply

battery

akkumulator

fuel cell

solar energy

surface support unit

Power Supply

battery

akkumulator

fuel cell

solar energy

surface support unit

pressure

temperature

inertia

- conductivity
- sonar and similar systems
- GPS and similar systems

pressure

temperature

inertia

conductivity

- sonar and similar systems
- GPS and similar systems

pressure

temperature

inertia

conductivity

- sonar and similar systems
- GPS and similar systems

pressure

temperature

inertia

conductivity

- sonar and similar systems
- GPS and similar systems

- pressure
- temperature
- inertia
- conductivity
- sonar and similar systems
- GPS and similar systems

- pressure
- temperature
- inertia
- conductivity
- sonar and similar systems
- GPS and similar systems

Overview

1 Underwater Robotics - Introduction

2 History of Underwater Robotics

3 Technic

4 ROVs introducedNereus

5 AUVs introduced

6 Conclusion

■ first deployed in 2007

- deep diving vehicle
- hybrid ROV
- AUV for surveys
- ROV for direct multipurpose interaction

- first deployed in 2007
- deep diving vehicle
- hybrid ROV
- AUV for surveys
- ROV for direct multipurpose interaction

- first deployed in 2007
- deep diving vehicle
- hybrid ROV
- AUV for surveys
- ROV for direct multipurpose interaction

- first deployed in 2007
- deep diving vehicle
- hybrid ROV
- AUV for surveys
- ROV for direct multipurpose interaction

- first deployed in 2007
- deep diving vehicle
- hybrid ROV
- AUV for surveys
- ROV for direct multipurpose interaction

- maximum 20h operation time
- 3 Thrusters, 6 DOF
- nominal speed: 1.5 m/s
- maximum depth: 11km

tethered

maximum 20h operation time

- 3 Thrusters, 6 DOF
- nominal speed: 1.5 m/s
- maximum depth: 11km

- maximum 20h operation time
- 3 Thrusters, 6 DOF
- nominal speed: 1.5 m/s
- maximum depth: 11km

- maximum 20h operation time
- 3 Thrusters, 6 DOF
- nominal speed: 1.5 m/s
- maximum depth: 11km

- maximum 20h operation time
- 3 Thrusters, 6 DOF
- nominal speed: 1.5 m/s
- maximum depth: 11km

Nereus

Overview

1 Underwater Robotics - Introduction

2 History of Underwater Robotics

3 Technic

4 ROVs introduced

5 AUVs introduced

- Autosub
- AquaJelly
- Aqua Penguin

6 Conclusion

About Autosub

introduced and first deployed 1996

- first launched as demo vehicle in Loch Linnhe
- limited capabilities
- continously upgraded
- distributed control system

About Autosub

■ introduced and first deployed 1996

first launched as demo vehicle in Loch Linnhe

- limited capabilities
- continously upgraded
- distributed control system

About Autosub

- introduced and first deployed 1996
- first launched as demo vehicle in Loch Linnhe
- limited capabilities
- continously upgraded
- distributed control system

About Autosub

- introduced and first deployed 1996
- first launched as demo vehicle in Loch Linnhe
- limited capabilities
- continously upgraded
- distributed control system

About Autosub

- introduced and first deployed 1996
- first launched as demo vehicle in Loch Linnhe
- limited capabilities
- continously upgraded
- distributed control system

Autosub 6000

Standard and GeoSub Configuration

- 6x1x1m
- nominal speed: 1 m/s
- maximum speed: 2 m/s
- DOF: 2
- no hovering

Autosub 6000

Standard and GeoSub Configuration 6x1x1m

nominal speed: 1 m/s

maximum speed: 2 m/s

DOF: 2

no hovering

Standard and GeoSub Configuration

- 6x1x1m
- nominal speed: 1 m/s
- maximum speed: 2 m/s
- DOF: 2
- no hovering

Autosub 6000

- Standard and GeoSub Configuration
- 6x1x1m
- nominal speed: 1 m/s
- maximum speed: 2 m/s
- DOF: 2
- no hovering

Autosub 6000

- Standard and GeoSub Configuration
- 6x1x1m
- nominal speed: 1 m/s
- maximum speed: 2 m/s
- DOF: 2
- no hovering

Autosub 6000

- Standard and GeoSub Configuration
- 6x1x1m
- nominal speed: 1 m/s
- maximum speed: 2 m/s
- DOF: 2
- no hovering

Autosub 6000 original configuration

weight: 2000kg

- maximum depth: 6000m
- maximum endurance: 206h
- no obstacle avoidance
- oceanographic survey robot

Autosub 6000 original configuration

weight: 2000kgmaximum depth: 6000m

maximum endurance: 206h

- no obstacle avoidance
- oceanographic survey robot

Autosub 6000 original configuration

- weight: 2000kg
- maximum depth: 6000m
- maximum endurance: 206h
- no obstacle avoidance
- oceanographic survey robot

Autosub 6000 original configuration

- weight: 2000kg
- maximum depth: 6000m
- maximum endurance: 206h
- no obstacle avoidance
- oceanographic survey robot

Autosub 6000 original configuration

- weight: 2000kg
- maximum depth: 6000m
- maximum endurance: 206h
- no obstacle avoidance
- oceanographic survey robot

weight: 2400kg

- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey
 - geophysical survey
 - cable route survey
 - noil/gas_survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h

industrial survey robot:

- pipeline route survey
- geophysical survey
- cable route survey
- oil/gas survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey
 - geophysical survey
 - cable route survey
 - oil/gas survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey
 - geophysical survey
 - cable route survey
 - oil/gas survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey
 - geophysical survey
 - cable route survey
 - oil/gas survey

- weight: 2400kg
- maximum depth: 3000m
- maximum endurance: 60h
- industrial survey robot:
 - pipeline route survey
 - geophysical survey
 - cable route survey
 - oil/gas survey

About AquaJelly

Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo

foundet 2007

- terminated 2008
- goals:

- Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo
- foundet 2007
- terminated 2008
- goals:
 - develope and test new biomimetic propulsion system

- Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo
- foundet 2007
- terminated 2008
- goals:
 - develope and test new biomimetic propulsion system
 develope and test a robot capable of swarm intelligence

- Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo
- foundet 2007
- terminated 2008
- goals:
 - develope and test new biomimetic propulsion system
 - develope and test a robot capable of swarm intelligence

- Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo
- foundet 2007
- terminated 2008
- goals:
 - develope and test new biomimetic propulsion system
 - develope and test a robot capable of swarm intelligence

- Project of Uni Stuttgard in cooperation with Effekt-Technik GmbH and Festo
- foundet 2007
- terminated 2008
- goals:
 - develope and test new biomimetic propulsion system
 - develope and test a robot capable of swarm intelligence

AquaJelly Technical Data

body type: biomimetic

propulsion: biomimetic

AquaJelly Technical Data

- body type: biomimetic
- propulsion: biomimetic

Aqua Penguin

About AquaPenguin

Also by Festo

- uses 3DFin-Technology
- testing of energy-efficient propulsion
- swarm intelligence

Aqua Penguin

About AquaPenguin

Also by Festo

uses 3DFin-Technology

testing of energy-efficient propulsion

swarm intelligence

About AquaPenguin

- Also by Festo
- uses 3DFin-Technology
- testing of energy-efficient propulsion
- swarm intelligence

About AquaPenguin

- Also by Festo
- uses 3DFin-Technology
- testing of energy-efficient propulsion
- swarm intelligence

Aqua Penguin

Technical Data

body type: biomimetic

- propulsion: biomimetic
- maximum speed: 1,5m/s
- maximum endurance: 7h

Aqua Penguin

Technical Data

body type: biomimetic propulsion: biomimetic

Technical Data

- body type: biomimetic
- propulsion: biomimetic
- maximum speed: 1,5m/s
- maximum endurance: 7h

Aqua Penguin

Technical Data

- body type: biomimetic
- propulsion: biomimetic
- maximum speed: 1,5m/s
- maximum endurance: 7h

Overview

1 Underwater Robotics - Introduction

- 2 History of Underwater Robotics
- 3 Technic
- 4 ROVs introduced
- 5 AUVs introduced

6 Conclusiona conclusion

conclusions

revolutionary propulsion systems

distributed networks and artificial intelligence

- interesting for research:
 - biology research

problems with maritime law

conclusions

revolutionary propulsion systems

distributed networks and artificial intelligence

■ interesting for research:

- biology research
- climatic research
- mengineering and computer technology research
- inspection of cables, pipelines, ships and artificial underwater structures
- = military
- problems with maritime law

conclusions

revolutionary propulsion systems

distributed networks and artificial intelligence

■ interesting for research:

- biology research
- climatic research
- engineering and computer technology research
- inspection of cables, pipelines, ships and artificial underwater structures
- military

problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structures
 - military
- problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structures
 - military
- problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structuresmilitary
- problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structures
 military
- problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structures
 - military
- problems with maritime law

- revolutionary propulsion systems
- distributed networks and artificial intelligence
- interesting for research:
 - biology research
 - climatic research
 - engineering and computer technology research
 - inspection of cables, pipelines, ships and artificial underwater structures
 - military
- problems with maritime law