

MIN Faculty Department of Informatics

Dream to Control: Learning Behaviors by Latent Imagination Published in 2020 by Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi

Fabian Wieczorek

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

09. December 2021

- 1. Motivation
- 2. Related Work

Model-free Model-based

3. Approach

Architecture Training Process

4. Results

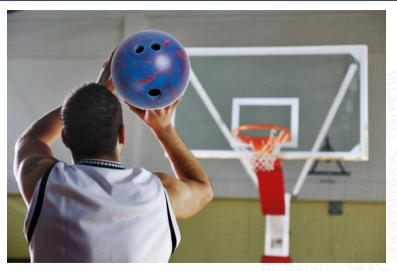
Imagine throwing a basketball

Motivation

Source: https://blog.playo.co/how-to-improve-free-throw-shooting/

Imagine throwing a basketball bowlingball

Motivation



Source: https://blog.playo.co/how-to-improve-free-throw-shooting/

Motivation: Latent Imagination

Motivation

Related We

Continuous control

- In complex environments
 - Uncertainties
 - Dynamic environments
 - Unpredictable situations
- With contact forces
 - Peg-insertion, Assembly
 - Locomotion (bipedal robots)

 Left:
 Human-Robot
 collaboration
 (https://interactiverobotics.engineering.asu.edu/autonomous-robots-special-issue/),

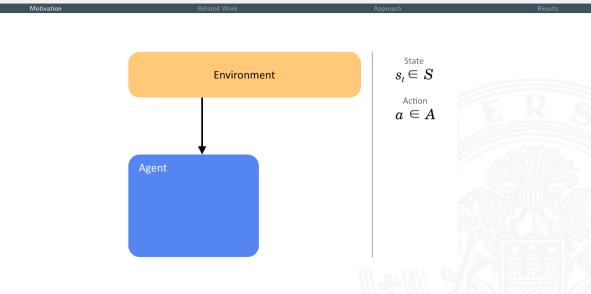
 Right:
 Locomotion
 in
 uncertain

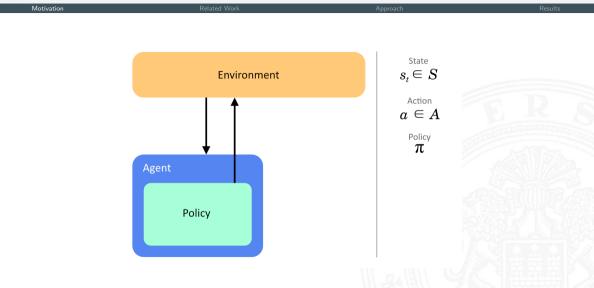
 (https://www.youtube.com/watch?v=k7s1sr4Jdll)

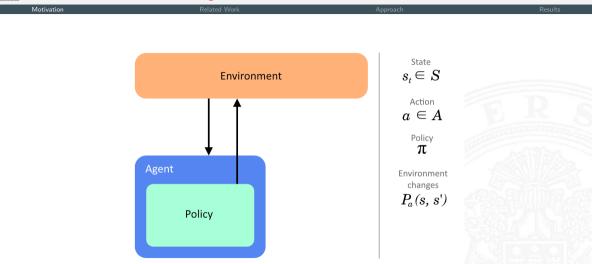
N				

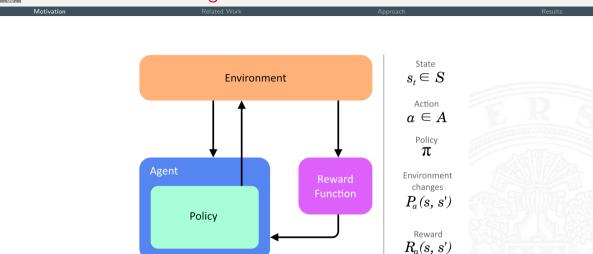
Related W

Results









Related Work - Model-free

Approach

Results

Playing Atari with Deep Reinforcement Learning [MKS⁺13]

Related Work

- DQN
- Input direct from images
 - Converted to greyscale
 - Downscaled/Cropped to 84x84
- Uses non-continuous actions

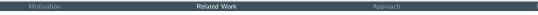
	B. Rider	Breakout	Enduro	Pong	Q*bert	Seaquest	S. Invaders
Random	354	1.2	0	-20.4	157	110	179
Sarsa [3]	996	5.2	129	-19	614	665	271
Contingency [4]	1743	6	159	-17	960	723	268
DQN	4092	168	470	20	1952	1705	581
Human	7456	31	368	-3	18900	28010	3690
HNeat Best [8]	3616	52	106	19	1800	920	1720
HNeat Pixel [8]	1332	4	91	-16	1325	800	1145
DQN Best	5184	225	661	21	4500	1740	1075

Performance comparison of DQN and other approaches in different

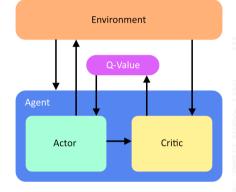
Atari games. [MKS⁺13]

Different Atari games learned by DQN. [MKS⁺13]

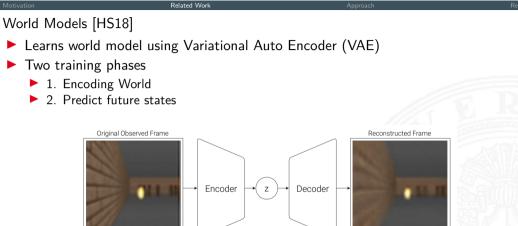
Related Work - Model-free



- Continuous Control with Deep Reinforcement Learning $\left[LHP^{+}19\right]$
- Uses continuous actions
- Actor-critic
- Q-Learning

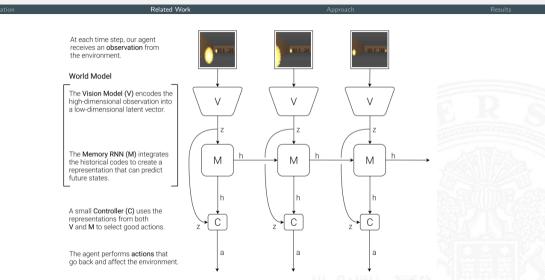


Overview of the actor critic approach in reinforcement learning.



VAE encodes an image to a small latent vector representing the world. [HS18]

Related Work - Model-based

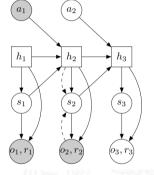


Process overview of PlaNet. [HS18]

Learning Latent Dynamics for Planning from Pixels [HLF⁺19]

Related Work

- Deep Planning Network (PlaNet)
- Recurrent State Space Model (RSSM)
- Same Encoder/Decoder from World models [HS18]
- Predicts multiple (few 1000) solutions and pick the best at each time step
 - No policy required



Overview of the Recurrent State Space Model. [HLF⁺19]

Approac

Dreamer Overview

Motivation

Related Work

Approach

Results

Concept: Train directly in latent space

Saves computational resources skipping the image encoding The three stores

The three stages

- ▶ 1. Learn to encode world from past experience
- 2. Learn to pick best actions in latent space
- ▶ 3. Perform in new scenarios and collect new data

Difference to previous approaches

Training iterates through all stages multiple times

Own performance influences experience

Dreamer Overview

Motivation

Concept: Train directly in latent space

- Saves computational resources skipping the image encoding The three stages
- ▶ 1. Learn to encode world from past experience
- ▶ 2. Learn to pick best actions in latent space
- ▶ 3. Perform in new scenarios and collect new data

Difference to previous approaches

Training iterates through all stages multiple times

Own performance influences experience

Dreamer Overview

Motivation

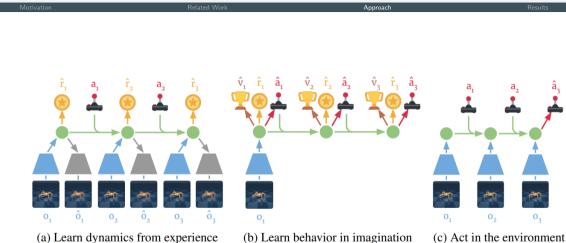
Concept: Train directly in latent space

- Saves computational resources skipping the image encoding The three stages
- ▶ 1. Learn to encode world from past experience
- ▶ 2. Learn to pick best actions in latent space
- ▶ 3. Perform in new scenarios and collect new data

Difference to previous approaches

Training iterates through all stages multiple times

Own performance influences experience



The three training stages of the Dreamer architecture. [HLBN20]

Dreamer Architecture

lotivation

Models for World Model

- Representation
 - Convolutional Neural Network (Encoder/Decoder)
 - Encode Image to latent state
- Transition
 - Recurrent State Space Model
 - Predict next latent state given latent state + action

Reward

- ► Fully Connected Neural Network
- Predict the reward for given latent state

Models for Behavior Learning

- Actor Network
 - Fully Connected Neural Network
 - Pick action given latent state

Value Network

- Fully Connected Neural Network
- Estimate best value given latent state

Dreamer Architecture

lotivation

Related Work

Models for World Model

- Representation
 - Convolutional Neural Network (Encoder/Decoder)
 - Encode Image to latent state
- Transition
 - Recurrent State Space Model
 - Predict next latent state given latent state + action

Reward

- Fully Connected Neural Network
- Predict the reward for given latent state

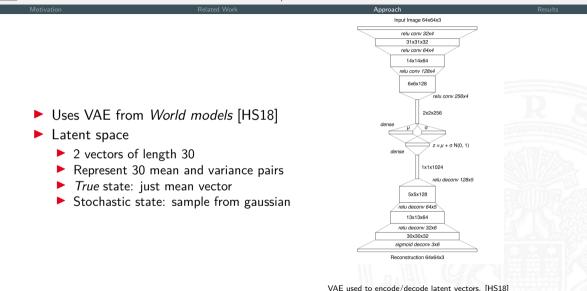
Models for Behavior Learning

- Actor Network
 - Fully Connected Neural Network
 - Pick action given latent state

Value Network

- Fully Connected Neural Network
- Estimate best value given latent state

Dreamer Architecture - Encoder/Decoder



Dreamer Architecture - RSSM

Notivation

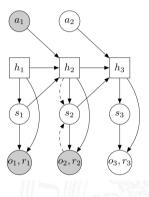
Related Work

Approach

Results

Recurrent State Space Model [HLF⁺19]

- Recurrent Neural Network
- Deterministic part h_t
 - Forwards the actual information present
- Stochastic part s_t
 - Helps predicting multiple futures
 - Useful for partial observability



Overview of RSSM. [HLF⁺19]

Dreamer Architecture - Reward/Action/Value

All other models (Reward, Action, Value)

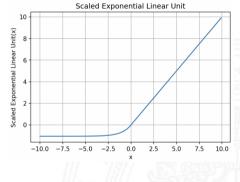
- ▶ 3 Dense Layers with 300 neurons
- Exponential Linear Unit activation

Reward/Value Model

Scalar output (1 neuron)

Actor Model

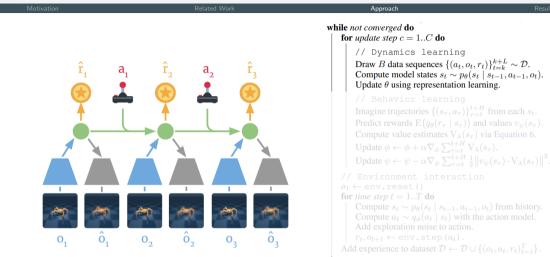
- High dimensional (depends on task)
- Continuous (real numbers)



ELU activation. Source: https://blog.robofied.com/scaled-elu-activation-function/

Approach

Training Process - Learn World Model



Overview of world model learning step. [HLBN20]

Training Process - Learn Behaviors

Approach â, â, // Behavior learning Imagine trajectories $\{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H}$ from each s_t . Predict rewards $E(q_{\theta}(r_{\tau} \mid s_{\tau}))$ and values $v_{\psi}(s_{\tau})$. Compute value estimates $V_{\lambda}(s_{\tau})$ via Equation 6. Update $\phi \leftarrow \phi + \alpha \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau}).$ Update $\psi \leftarrow \psi - \alpha \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} \|v_{\psi}(s_{\tau}) - V_{\lambda}(s_{\tau})\|^2$. 0

Related Wo

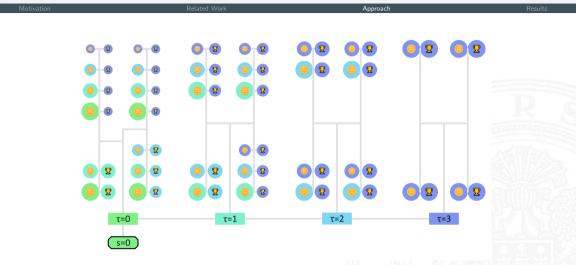
Results

- Trains the actor and value Network
- exponentially weighted average of value estimates

$$\begin{aligned} \mathbf{V}_{\mathbf{N}}^{k}(s_{\tau}) &\doteq \mathbf{E}_{q_{\theta},q_{\phi}} \left(\sum_{n=\tau}^{h-1} \gamma^{n-\tau} r_{n} + \gamma^{h-\tau} v_{\psi}(s_{h}) \right) & \text{with} \quad h = \min(\tau + k, t + H) \\ \mathbf{V}_{\lambda}(s_{\tau}) &\doteq (1-\lambda) \sum_{n=1}^{H-1} \lambda^{n-1} \mathbf{V}_{\mathbf{N}}^{n}(s_{\tau}) + \lambda^{H-1} \mathbf{V}_{\mathbf{N}}^{H}(s_{\tau}), \end{aligned}$$

Equation for the value estimator. [HLBN20]

Training Process - Value Estimator



Visualisation of the value estimation $V_{\lambda}(s_{\tau})$ for t = 0 (here s = 0) with H = 3.

Training Process - Value Estimator

Visualisation of the distribution of the value estimation $V_{\lambda}(s_{\tau})$ for t = 0 with H = 3.

Training Process - Learn Behaviors

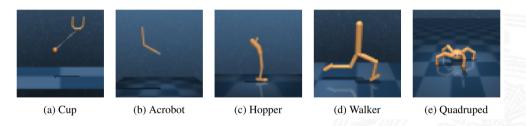
Approach â, â, // Behavior learning Imagine trajectories $\{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H}$ from each s_t . Predict rewards $E(q_{\theta}(r_{\tau} \mid s_{\tau}))$ and values $v_{\psi}(s_{\tau})$. Compute value estimates $V_{\lambda}(s_{\tau})$ via Equation 6. Update $\phi \leftarrow \phi + \alpha \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau}).$ Update $\psi \leftarrow \psi - \alpha \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} \|v_{\psi}(s_{\tau}) - V_{\lambda}(s_{\tau})\|^2$. 0

Training Process - Interact in Environment

Motivation	Related Work	Approach R	Results
	a ₂ â ₃	while not converged do for update step $c = 1C$ do // Dynamics learning Draw <i>B</i> data sequences $\{(a_t, o_t, r_t)\}_{t=k}^{k+L} \sim \mathcal{D}$. Compute model states $s_t \sim p_{\theta}(s_t s_{t-1}, a_{t-1}, o_t$ Update θ using representation learning. // Behavior learning Imagine trajectories $\{(s_{\tau}, a_{\tau})\}_{\tau=t}^{t+H}$ from each s_t . Predict rewards $E(q_{\theta}(r_{\tau} s_{\tau}))$ and values $v_{\psi}(s_{\tau})$ Compute value estimates $V_{\lambda}(s_{\tau})$ via Equation 6. Update $\phi \leftarrow \phi + \alpha \nabla_{\phi} \sum_{\tau=t}^{t+H} V_{\lambda}(s_{\tau})$. Update $\psi \leftarrow \psi - \alpha \nabla_{\psi} \sum_{\tau=t}^{t+H} \frac{1}{2} \ v_{\psi}(s_{\tau}) - V_{\lambda}(s_{\tau})$	
	0 ₃	$ \begin{array}{l} // \text{ Environment interaction} \\ o_1 \leftarrow \text{env.reset}() \\ \text{for time step } t = 1T \text{ do} \\ \\ \hline \text{ Compute } s_t \sim p_\theta(s_t \mid s_{t-1}, a_{t-1}, o_t) \text{ from histor} \\ \\ Compute a_t \sim q_\phi(a_t \mid s_t) \text{ with the action model.} \\ \\ \text{Add exploration noise to action.} \\ \\ r_t, o_{t+1} \leftarrow \text{env.step}(a_t). \\ \hline \text{Add experience to dataset } \mathcal{D} \leftarrow \mathcal{D} \cup \{(o_t, a_t, r_t)_{t=1}^T\} \end{array} $	

Overview of environment interaction step. [HLBN20]

Motivation	Related Work	Approach	Results



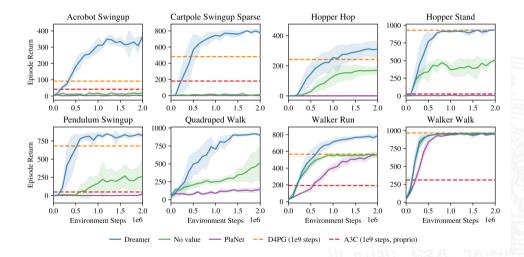
Selection of different tasks requiring continuous control. [HLBN20]

Results - Scores in Tasks

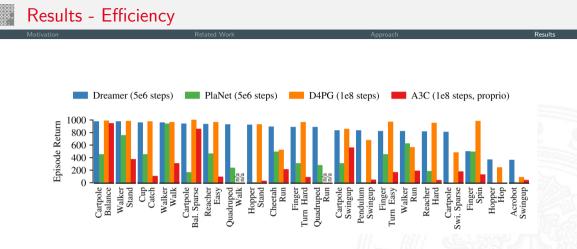
Related Wo

Approac

Results



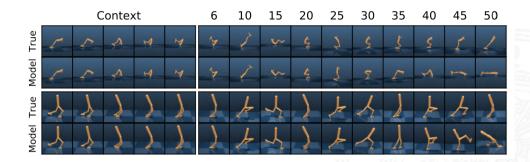
Comparison of overall performance between different algorithms. [HLBN20]



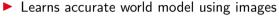
Comparison of efficiency between different algorithms. [HLBN20]

Results - Reconstructed predictions





Comparison between the reconstructed predictions of dynamics (given five images) and the actual outcome. [HLBN20]



- Efficiently trains directly on latent states
- Estimates values beyond time horizon
- Exceeds state-of-the-art algorithms in performance/efficiency

Future Work

Mastering Atari with Discrete World Models [HLNB21]

Related W

[HLBN20] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi, Dream to control: Learning behaviors by latent imagination, 2020.

- [HLF⁺19] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James Davidson, *Learning latent dynamics for planning from pixels*, 2019.
- [HLNB21] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba, Mastering atari with discrete world models, 2021.
- [HS18] David Ha and Jürgen Schmidhuber, *World models*, CoRR abs/1803.10122 (2018).
- [LHP⁺19] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra, *Continuous control with deep reinforcement learning*, 2019.

ı

Related Wo

Approac

Results

[MKS⁺13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, and Martin Riedmiller, *Playing atari with deep reinforcement learning*, 2013.

