
University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (2)

Reinforcement Learning (2)
Algorithmic Learning 64-360, Part 3e

Jianwei Zhang

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
zhang@informatik.uni-hamburg.de

11/07/2012

Zhang 1

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (2)

Contents

Introduction
Dynamic Programming
Asynchronous DP
Q-Learning
Acceleration of Learning
Applications in Robotics
Grasping with RL: Parallel Gripper
Grasping mit RL: Barrett-Hand

Automatic Value Cutoff
Evaluation
Experimental Results

Zhang 2

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Dynamic Programming

Content:

I Overview of a collection of classical solution methods for
MDPs, called dynamic programming

I Demonstration of the application of DP — calculating value
functions and therefore optimal policies

I Discussion about the effectiveness and usefulness of DP

This part is based on “Reinforcement Learning: An Introduction”, Richard S. Sutton and Andrew G. Barto

http://www.cs.ualberta.ca/˜sutton/book/ebook/index.html

Zhang 3

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Dynamic Programming for Model-based Learning

If the dynamics of the environment is known, the class of Dynamic
Programming methods can be used.
Dynamic Programming is a collection of approaches that can be
used if a perfect model of the MDP’s is available. In order to
calculate the optimal policy, the Bellman Equations are embedded
into an update function that approximates the desired value
function V .
Three steps:

1. Policy Evaluation

2. Policy Improvement

3. Policy Iteration

Zhang 4

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Evaluation (1)

Policy Evaluation: Calculate the state-value function V π for a
given policy π.
Remember:
state-value function for policy π:

V π(s) = Eπ {Rt |st = s} = Eπ

{ ∞∑
k=0

γk rt+k+1|st = s

}

Bellman-Equation for V π:

V π(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

– a system of |S | linear equations
Zhang 5

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Evaluation (2)

Policy Evaluation is a process of calculating the value-function V π

for an arbitrary policy π .
Based on the Bellman equation, an update rule can be created
that calculates the approximated value-function V0,V1,V2,V3, . . .

Vk+1(s) =
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)] ∀s ∈ S

Based on the k-th approximation Vk for each state s successively
the k + 1-th approximation Vk+1 is calculated, thus the old value
of s is replaced by the new one, that has been calculated with the
iteration rule based on the old values.
It can be shown that the sequence of the iterated value-functions
{Vk} converges to V π, if k →∞.

Zhang 6

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy Evaluation

Input π, the policy to evaluate
Initialize V (s) = 0, for all s ∈ S+

Repeat

∆← 0
For every s ∈ S :

v ← V (s)
V (s)←

∑
a
π(s, a)

∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

∆← max(∆, |v − V (s)|)

until ∆ < θ (a small positive real number)
Output V ≈ V π

Zhang 7

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Example: A small Gridworld

I An episodic task (undiscounted)

I Non-terminal states: 1, 2, . . . , 14;

I One terminal state (twice, represented as a shaded square)

I Actions that would take the agent from the Grid, leave the
state unchanged

I The reward is - 1 until the terminal state is reached

Zhang 8

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy-Evaluation for the Gridworld (1)

left: Vk(s) for the random policy π (random moves)

right: moves according to the greedy policy Vk(s)
Zhang 9

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Policy-Evaluation for the Gridworld (2)

In this example: The greedy Policy for Vk(s) is optimal for k ≥ 3.

Zhang 10

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (1)

We now consider the action value function Qπ(s, a), when action a
is chosen in state s, and afterwards Policy π is pursued:

Qπ(s, a) =
∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

In each state we look for the action that maximizes the action
value function.
Hence a greedy policy π′ for a given value function V π is
generated:

π′(s) = arg max
a

Qπ(s, a)

= arg max
a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

Zhang 11

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (2)

Suppose we have calculated V π for a deterministic policy π.
Would it be better to choose an action a 6= π(s) for a given state?
If a is chosen in state s, the value is:

Qπ(s, a) = Eπ{rr+1 + γV π(st+1)|st = s, at = a}
=

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

It is better to switch to action a in state s, if and only if

Qπ(s, a) > V π(s)

Zhang 12

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (3)

Perform this for all states, to get a new policy π, that is greedy in
terms of V π:

π
′
(s) = argmax

a
Qπ(s, a)

= argmax
a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]

Then V π′ ≥ V π

Zhang 13

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Improvement (4)

What if V π′
= V π?

e.g. for all s ∈ S , V π′
(s) = max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV π(s ′)]?

Notice: this is the optimal Bellman-Equation.

Therefore V π′
= V ∗ and both π and π′ are optimal policies.

Zhang 14

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Iterative Methods

V0 → V1 → . . .→ Vk → Vk+1 → . . .→ V π

⇑ an “iteration”

An iteration comprises one backup-operation for each state.

A full-policy evaluation-backup:

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

Zhang 15

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (1)

If Policy Improvement and Policy Evaluation are performed
alternating, this means that the policy π is improved with a fixed
value function V π, and then the corresponding value function V π′

is calculated based on the improved policy π′.
Afterwards again policy improvement is used, to get an even better
policy π′′, and so forth . . . :

π0
PE−→ V π0

PI−→ π1
PE−→ V π1

PI−→ π2
PE−→ V π2 · · · PI−→ π∗

PE−→ V ∗

Here
PI−→ stands for performing policy improvement and

PE−→ for
policy evaluation.

Zhang 16

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (2)

π0 → V π0 → π1 → V π1 → . . . π∗ → V ∗ → π∗

policy-evaluation ⇑ ⇑ policy-improvement “greedification”

Zhang 17

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (3)

1. initialization
V (s) ∈ < and π(s) ∈ A(s) arbitrarily for all s ∈ S

2. policy-evaluation
Repeat

∆← 0
for every s ∈ S :

v ← V (s)

V (s)←
∑
s′

P
π(s)
ss′ [R

π(s)
ss′ + γV (s ′)]

∆← max(∆, |v − V (s)|)
until ∆ < θ (a small real positive number)

Zhang 18

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Policy Iteration (4)

3. policy-improvement

policy-stable ← true
for every s ∈ S :

b ← π(s)
π(s)← arg max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

if b 6= π(s), then policy-stable ← false
If policy-stable, then stop; else goto 2

Zhang 19

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Value Iteration

Remember the full policy evaluation-backup

Vk+1(s)←
∑
a

π(s, a)
∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

Here the full value iterations-backup is:

Vk+1(s)← max
a

∑
s′

Pa
ss′ [R

a
ss′ + γVk(s ′)]

Zhang 20

University of Hamburg

MIN Faculty

Department of Informatics

Dynamic Programming Reinforcement Learning (2)

Value Iteration

Initialize V arbitrarily, e.g. V (s) = 0, for all s ∈ S+

repeat
∆← 0
For every s ∈ S :

v ← V (s)
V (s)← max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

∆← max(∆, |v − V (s)|)
until ∆ < θ (a small positive real number)

Output is a deterministic policy π with
π(s) = arg max

a

∑
s′

Pa
ss′ [R

a
ss′ + γV (s ′)]

Zhang 21

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous DP Reinforcement Learning (2)

Asynchronous Dynamic Programming

I All DP-methods described so far require complete iterations
over the entire set of states.

I Asynchronous DP does not perform complete iterations,
instead, it works like this:

Repeat until the convergence criterion is met:

I Pick a random state and apply the appropriate backup.

I Still requires much computation, but does not use hopeless
long loops

I Can states for the application of the backup been selected
intelligently? YES: the experience of an agent can serve as a
guide.

Zhang 22

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous DP Reinforcement Learning (2)

Generalized Policy Iteration (GPI)

Generalized Policy Iteration (GPI):
Every interaction between policy evaluation and policy improvement,

independent from their granularity.

A geometric metaphor

for the convergence of GPI:

Zhang 23

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous DP Reinforcement Learning (2)

Efficiency of DP

I Finding an optimal policy is polynomial with the number of
states. . .

I BUT, the number of states is often extremely high, e.g. grows
often exponentially with the number of state-variables (what
Bellman called “the curse of dimensionality”).

I In practice, the classical DP can be applied to problems with a
few million states.

I The asynchronous DP can be applied to larger problems and is
suitable for parallel computation.

I It is surprisingly easy to find MDPs, where DP methods can
not be applied.

Zhang 24

University of Hamburg

MIN Faculty

Department of Informatics

Asynchronous DP Reinforcement Learning (2)

Summary: Dynamic Programming

I Policy Evaluation: Backups without maximum

I Policy Improvement: form a greedy policy, even if only locally

I Policy Iteration: alternate the above two processes

I Value Iteration: backups with maximum

I Complete Backups (that are later compared to
example-Backups)

I Generalized Iteration (GPI)

I Asynchronous DP: a method to avoid complete iterations

I Bootstrapping: Update approximations with different
approximations.

Zhang 25

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Q-Learning

I Q-Function

I Q-Learning algorithm

I Convergence

I Example: GridWorld

I Experience-Replay

Zhang 26

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

The Q-Function

We define the Q-function as follows:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

So π∗ can be written as

π∗(s) = arg max
a

Q(s, a)

I.e.: The optimal policy can be learned, as Q is learned, even if r
and δ are unknown.

Zhang 27

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Q-Learning Algorithm (1)

Q and V ∗ are closely related:

V ∗(s) = max
a′

Q(s, a′)

This allows the re-definition of Q(s, a):

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′)

This recursive definition of Q is the basis for an algorithm that
approximates Q iteratively.

Zhang 28

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Q-Learning Algorithm (2)

Let Q̂ the current approximation for Q. Let s ′ be the new state
after execution of the chosen action and let r be the obtained
reward.
Based on the recursive definition of Q the iteration-rule can be
written as:

Q(s, a) ≡ r(s, a) + γmax
a′

Q(δ(s, a), a′)

⇒:

Q̂(s, a)← r + γmax
a′

Q̂(s ′, a′)

Zhang 29

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Q-Learning Algorithm (3)

The algorithm:

1. Initialize all table entries of Q̂ to 0.

2. Determine the current state s.

3. Loop
I Choose action a and execute it.
I Obtain reward r .
I Determine new state s ′.
I Q̂(s, a)← r + γmaxa′ Q̂(s ′, a′)
I s ← s ′.

Endloop

Zhang 30

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Convergence of Q-Learning

Theorem: If the following conditions are met:

I |r(s, a)| <∞,∀s, a

I 0 ≤ γ < 1

I Every (s, a)-pair is visited infinitely often

Then Q̂ converges to the correct Q-function.

Zhang 31

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Continuous Systems

The Q function of very large or continuous state spaces cannot be
represented by an explicit table.
Instead function-approximation-algorithms are used, e.g a neural
network or B-splines.
The neural network uses the output of the Q-learning algorithm as
training examples.
Convergence is then no longer guaranteed!

Zhang 32

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Example: GridWorld (1)

given: m × n-Grid

I S = {(x , y)|x ∈ {1, · · · ,m}, y ∈ {1, · · · , n}}
I A = {up, down, left, right}

I r(s, a) =

{
100, if δ(s, a) = Goalstate

0, else.

I δ(s, a) determines the following state based on the direction
given with a.

Zhang 33

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Example: GridWorld (2)

Example of a path through a state space:

The numbers on the arrows show the current values of Q̂.

Zhang 34

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Example: GridWorld (3)

Progression of the Q̂-values:

Q̂(S11, up) = r + γmax
a′

Q̂(s ′, a′) = 0 + 0.9 ∗ 100 = 90

Q̂(S10, right) = 0 + 0.9 ∗ 90 = 81

. . .

Zhang 35

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Q-Learning - open Questions

I often not met: Markov assumption, visibility of states

I continuous state-action spaces

I generalization concerning the state and action

I compromise between “exploration” and “exploitation”

I generalization of automatic evaluation

Zhang 36

University of Hamburg

MIN Faculty

Department of Informatics

Q-Learning Reinforcement Learning (2)

Ad-hoc Exploration-Strategies

I Too extensive “exploration” means, that the agent is acting aimlessly
in the usually very large state space even after a long learning period.
Also areas are investigated, that are not relevant for the solution of
the task.

I Too early “exploitation” of the learned approximation of the
Q-function probably causes that a sub-optimal, i.e. longer path
through the state space, that has been found by occasion establishes
and the optimal solution will not be found.

There are:

I “greedy strategies”

I “randomized strategies”

I “interval-based techniques”

Zhang 37

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Acceleration of Learning

Some ad-hoc methods:

I Experience Replay

I Backstep Punishment

I Reward Distance Reduction

I Learner-Cascade

Zhang 38

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (1)

A path through the state space is considered as finished as soon as
G is reached.
Now assume that during the Q-learning the path is repeatedly
chosen.

Often new learning steps are much more cost- and time-consuming
than internal repetitions of previously stored Learning steps. For
these reasons it makes sense to store the learning steps and repeat
them internally. This method is called Experience Replay.

Zhang 39

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (2)

An experience e is a tuple

e = (s, s ′, a, r)

with s, s ′ ∈ S , a ∈ A, r ∈ IR. e represents a learning step, i.e. a
state of transition, where s the initial state, s ′ the goal state, a the
action, which led to the state transition, and r the reinforcement
signal that is obtained.

A learning path is a series e1 . . . eLk of experiences (Lk is the length
of the k-th learning path).

Zhang 40

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (3)

The ER-Algorithm:

for k = 1 to N
for i = Lk down to 1

update(ei from series k)
end for

end for

Zhang 41

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay (4)

Advantages:

I Internal repetitions of stored learning steps usually cause far
less cost than new learning steps.

I Internally a learning path can be used in the reverse direction,
thus the information is spread faster.

I If learning paths cross, they can “learn form each other”, i.e.
exchange information. Experience Replay makes this exchange
regardless of the order in which the learning path was firstly
executed.

Zhang 42

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Experience Replay - Example

Progression of the Q̂-values when the learning path is repeatedly
run through:

Zhang 43

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Backstep Punishment

Usually an exploration strategy is needed, that ensures a straightforward
movement of agents through the state space. Therefore backsteps should
be avoided.
An useful method seems to be, that in case the agent chooses a
backstep, the agent may carry out this step but an artificial, negative
reinforcement-signal is generated.
Compromise between the “dead-end avoidance” and “fast learning”.

In context of a goal-oriented learning an extended reward function could
look as follows:

rBP =

100 if transition to goal state

−1 if backstep

0 else

Zhang 44

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Reward Distance Reduction

The reward function could perform a more intelligent assessment of the
actions. This presupposes knowledge of the structure of the state space.
If the encoding of the target state is known, then it can be a be good
strategy to reduce the Euclidean distance between the current state and
the target state.
The reward functions can be extended the way that actions that reduce
the Euclidean distance to the target state, get a higher reward. (reward
distance reduction, RDR):

rRDR =

100 if ~s ′ = ~sg

50 if |~s ′ −~sg | < |~s −~sg |
0 else

where ~s, ~s ′ and ~sg are the vectors that encode the current state, the

following state, and the goal state.
Zhang 45

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade

The accuracy of positioning depends on how fine the state space is
divided.
On the other hand the number of states increases with increasing
fineness of the discretization and therefore also the effort of
learning increases.

Before the learning procedure a trade-off between effort and
accuracy of positioning has to be chosen.

Zhang 46

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade - Variable Discretization

An example state space without discretization (a) with variable
discretization (b)

a) b)

This requires knowledge of the structure of the state space.

Zhang 47

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Learner-Cascade - n-Stage Learner-Cascade

Divisions of the state space of a four-stage learner cascade:

1. learner: 2. learner:

3. learner: 4. learner:

Zhang 48

University of Hamburg

MIN Faculty

Department of Informatics

Acceleration of Learning Reinforcement Learning (2)

Q-Learning: Summary

I Q-Function

I Q-Learning algorithm

I convergence

I acceleration of learning

I examples

Zhang 49

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

Path Planning with Policy Iteration (1)

Policy iteration is used to find a path between start- and
goal-configuration.
The following sets need to be defined to solve the problem.

I The state space S is the discrete configuration space, i.e. every
combination of joint angles (θ1, θ2, . . . , θDim) is exactly one state of
the set S except the target configuration

I The set A(s) of all possible actions for a state s includes the
transitions to neighbor-configurations in the K-space, so one or more
joint angles differ by ±Dis. Only actions a in A(s) are included, that
do not lead to K-obstacles and do not exceed the limits of the
K-space

Zhang 50

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

Path Planning with Policy Iteration (2)

I Let Ra
ss′ be the reward function:

Ra
ss′ = Reward not in goal ∀s ∈ S , a ∈ A(s), s ′ ∈ S and

Ra
ss′ = Reward in goal ∀s ∈ S , a ∈ A(s), s ′ = st .

Only if the target state is reached a different reward value is
generated. For all other states there is the same reward.

I Let the policy π(s, a) be deterministic, i.e. there is exactly one
a with π(s, a) = 1

I A threshold Θ needs to be chosen, where the policy evaluation
terminates

I For the problem the Infinite-Horizon Discounted Model is the
best choice, therefore γ needs to be set accordingly.

Zhang 51

University of Hamburg

MIN Faculty

Department of Informatics

Applications in Robotics Reinforcement Learning (2)

2-Joint Robot

The found sequence of motion for the 2-joint robot (left to right, top to

bottom):

Zhang 52

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs

Normally a robot arm needs six DOFs to grasp an object from any
position and orientation.
To grasp virtually planar objects, we suppose that the gripper is
perpendicular to the table and its weight is known.
There still remain three DOFs to control the robot arm: parallel to
the table-plane (x , y) and the rotation around the axis
perpendicular to the table(θ).

Zhang 53

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (2)

Control of x , y , θ. The pre-processed images will be centered for
the detection of the rotation.

Zhang 54

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (3)

To achieve a small state space, learning will be distributed to two
learners:
one for the translational movement on the plane,
the other one for the rotational movement.
The translation-learner can choose four actions (two in x- and two in
y -direction).
The rotation-learner can choose two actions (rotation
clockwise/counterclockwise).
The partition has advantages compared to a monolithic learner:

I The state space is much smaller.

I The state-encoding is designed the way that the state-vectors contain
only the relevant information for the corresponding learner.

Zhang 55

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (4)

In practice, the two learners will be used alternatingly. Firstly the
translation-learner will be run in long learning-steps, until it has reached
the goal defined in its state-encoding.
Then the translation-learner is replaced by the rotation-learner, which is
also used in long learning-steps until it reaches its goal.

At this time it can happen, that the translation-learner is disturbed by

the rotation-learner. Therefore the translation-learner is activated once

again. The procedure is repeated, until both learners reach their goal

state. This state is the common goal state.

Zhang 56

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (5)

(a) (b) (c)

(d) (e) (f)

Position and orientation-control with 6 DOFs in four steps.

Zhang 57

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Grasping with RL: Partition of DOFs (6)

To use all six DOFs, additional learners need to be introduced.

1. The first learner has two DOFs and its task is that the object
can be looked upon from a defined perspective. For a plane
table this typically means, that the gripper is positioned
perpendicularly to the surface of the table (a → b).

2. Apply the x/y learner (b → c).

3. Apply the θ rotation learner(c → d).

4. The last learner controls the height and corrects the
z-coordinate (d → e).

Zhang 58

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Visually Guided Grasping using Self-Evaluative Learning

Grip is optimal with respect to local criteria:

I The fingers of the gripper can enclose the object at the
gripping point

I No slip occurs between the fingers and object

Grip is optimal with respect to global criteria:

I No or minimal torque on fingers

I Object does not slip out of the gripper

I The grasp is stable, i.e. the object is held rigidly between the
fingers

Zhang 59

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Local and Global Criteria

(a) (b)

Zhang 60

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Two approaches
One learner:

I The states consist of a set of m + n local and global properties:
s = (fl1 , . . . , flm , fg1 , . . . , fgn).

I The learner tries to map them to actions a = (x , y , φ), where x and y
are translational components in x- and y -direction and φ is the
rotational component around the approach vector of the gripper.

Two learners:

I The states for the first learner only supply the local properties
s = (fl1 , . . . , flm).

I The learner tries to map them to actions, that only consist of a
rotational component a = (φ).

I The second learner tries to map states of global properties
s = (fg1 , . . . , fgn) to actions concerning the translational component
a = (x , y).

Zhang 61

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Setup

I Two-component learning system:

1. orientation learner 2. position learner

operates on local criteria operates on global criteria

equal for every object different for each new object

I Use of Multimodal sensors:
I Camera
I Force / torque sensor

I Both learners work together in the perception-action cycle.

Zhang 62

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

State Encoding

θ

L D COA

θ

θ θ

2 1

3 4

The orientation Lerner uses length L as well as the angles
Θ1, . . . ,Θ4, while the position learner uses the distance D between
the center of the gripper-line and the optical center of gravity of
the object.

Zhang 63

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Orientation Learner

Visual feedback of the grasp success:
Friction results in rotation or misalignment of the object.

Zhang 64

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Position Learner (1)

Feedback using force torque sensor:
Unstable grasp – analyzed by force measurement

Zhang 65

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

Measures for Self-Evaluation in the Position Learner (2)

Suboptimal grasp – analyzed by torques

Zhang 66

University of Hamburg

MIN Faculty

Department of Informatics

Grasping with RL: Parallel Gripper Reinforcement Learning (2)

The Problem of Hidden States

Examples for incomplete state information:

a) b) c) d)

Zhang 67

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Grasping mit RL: Barrett-Hand

I learn to grasp everyday objects with artificial robot hand

I reinforcement-learning process based on simulation

I find as many suitable grasps as possible

I support arbitrary type of objects
I efficiency

I memory usage
I found grasps/episodes

Zhang 68

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

BarretHand BH-262

I 3-finger robotic hand

I open/close each finger independently

I variable spread angle

I optical encoder

I force measurement

Zhang 69

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Applied model

States:

I pose of gripper to object

I spread angle of hand

I grasp tried yet

Actions:

I translation (x-axis, negative y-axis, z-axis)

I rotation(roll-axis, yaw-axis, pitch-axis)

I alteration of spread-angle

I grasp-execution

Zhang 70

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Applied model (cont.)

Action-Selection:

I ε-greedy (highest rated, with probability ε random)

Reward-Function:

I reward for grasps depend on stability

I stability is evaluated by wrench-space-calculation (GWS)
(introduced 1992 by Ferrari and Canny)

I small negative reward if grasp unstable

I big negative reward if object is missed

r(s, a) =

−100 if number of contact points < 2
−1 if GWS(g) = 0
GWS(g) otherwise

Zhang 71

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand Reinforcement Learning (2)

Learning Strategy

Problem: The state-space is extremely large

I TD-(λ)-algorithm

I learning in episodes
I episode ends

I after fixed number of steps
I after grasp trial

I Q-table built dynamically

I states are only included if they occur

Zhang 72

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Automatic Value Cutoff Reinforcement Learning (2)

Automatic Value Cutoff

Problem: There exist many terminal states (grasp can be executed
every time)

I instable grasps are tried several times

I agent gets stuck in local minimum

I not all grasps are found

=⇒ No learning at the end of an episode - waste of computing
time
This can not simply be solved by adapting RL-parameters.

Zhang 73

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Automatic Value Cutoff Reinforcement Learning (2)

Automatic Value Cutoff (cont.)

Automatic Value Cutoff: remove actions

I leading to instable grasps (if reward negative)

I that have been evaluated sufficiently

Q(s, a)←

Q(s, a) + α

[
r + γQ(s

′
, a

′
)− Q(s, a)

]
if 0 ≤ Q(s, a) < r ∗ β

remove Q(s, a) from Q otherwise

with 0 ≤ β ≤ 1. (we had good results with β = 0.95)

Zhang 74

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Evaluation Reinforcement Learning (2)

Automatic Value Cutoff vs. no Cutoff

 0

 10

 20

 30

 40

 50

 60

 70

 0 200 400 600 800 1000 1200 1400

G
ri

ff
e

Episode

Box 1 − NCO
Box 1 − CO

Box 2 − NCO
Box 2 − CO

Cylinder − NCO
Cylinder − CO
Banana − NCO
Banana − CO

Zhang 75

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Evaluation Reinforcement Learning (2)

Reinforcement Learning vs. Brute Force: Mug

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000

G
ra

sp
s

Episodes

Mug top − BF
Mug top − RL

Mug side − BF
Mug side − RL

Zhang 76

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Evaluation Reinforcement Learning (2)

Reinforcement Learning vs. Brute Force: Telephone

 0

 50

 100

 150

 200

 250

 300

 0 5000 10000 15000 20000 25000 30000 35000 40000

G
ra

sp
s

Episodes

Phone side − BF
Phone side − RL
Phone top − BF
Phone top − RL

Zhang 77

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Experimental Results Reinforcement Learning (2)

Experimental Results

Testing some grasps with the service robot TASER:

Zhang 78

University of Hamburg

MIN Faculty

Department of Informatics

Grasping mit RL: Barrett-Hand - Experimental Results Reinforcement Learning (2)

Experimental Results (cont.)

Testing some grasps with the service robot TASER:

Zhang 79

	Introduction
	Dynamic Programming
	Asynchronous DP
	Q-Learning
	Acceleration of Learning
	Applications in Robotics
	Grasping with RL: Parallel Gripper
	Grasping mit RL: Barrett-Hand
	Automatic Value Cutoff
	Evaluation
	Experimental Results

