## Function approximation

# Algorithmic Learning 64－360，Part 3d 

Jianwei Zhang

University of Hamburg<br>MIN Faculty，Dept．of Informatics<br>Vogt－Kölln－Str．30，D－22527 Hamburg<br>zhang＠informatik．uni－hamburg．de

27／06／2012

## Approximation

Approximation of the relation between $\mathbf{x}$ and $\boldsymbol{y}$ (curve, plane, hyperplane ) with a different function, given a limited number of data points $D=\left\{\mathbf{x}_{i}, y_{i}\right\}_{i=1}^{l}$.


## Approximation vs. Interpolation

A special case of approximation is interpolation: the model exactly matches all data points.


If many data points are given or measurement data is affected by noise, approximation is preferably used.

## Approximation without Overfitting



## Interpolation with Polynomials

Polynomial interpolation:

- Lagrange polynomial,
- Newton polynomial,
- Bernstein polynomial,
- Basis-Splines.


## Lagrange interpolation

To match $I+1$ data points $\left(x_{i}, y_{i}\right)(i=0,1, \ldots, I)$ with a polynomial of degree $I$, the following approach of LAGRANGE can be used:

$$
p_{l}(x)=\sum_{i=0}^{l} y_{i} L_{i}(x)
$$

The interpolation polynomial in the Lagrange form is defined as follows:

$$
\begin{gathered}
L_{i}(x)=\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{i-1}\right)\left(x-x_{i+1}\right) \cdots\left(x-x_{l}\right)}{\left(x_{i}-x_{0}\right)\left(x_{i}-x_{1}\right) \cdots\left(x_{i}-x_{i-1}\right)\left(x_{i}-x_{i+1}\right) \cdots\left(x_{i}-x_{l}\right)} \\
=\left\{\begin{array}{l}
1 \text { if } x=x_{i} \\
0 \text { if } x \neq x_{i}
\end{array}\right.
\end{gathered}
$$

## Newton Interpolation

The Newton basis polynomials of degree / are constructed as follows:
$p_{l}(x)=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-x_{0}\right)\left(x-x_{1}\right)+\cdots+a_{l}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{l-1}\right)$
This approach enables us to calculate the coefficients easily.
For $n=2$ the following system of equations is obtained:

$$
\begin{array}{ll}
p_{2}\left(x_{0}\right)=a_{0} & =y_{0} \\
p_{2}\left(x_{1}\right)=a_{0}+a_{1}\left(x_{1}-x_{0}\right) & =y_{1} \\
p_{2}\left(x_{2}\right)=a_{0}+a_{1}\left(x_{2}-x_{0}\right)+a_{2}\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right) & =y_{2}
\end{array}
$$

Interpolation with Bernstein polynomials - I
Interpolation of two points with Bernstein polynomials:

$$
\mathbf{y}=\mathbf{x}_{0} B_{0,1}(t)+\mathbf{x}_{1} B_{1,1}(t)=\mathbf{x}_{0}(1-t)+\mathbf{x}_{1} t
$$



## Interpolation with Bernstein polynomials - II

Interpolation of three points with Bernstein polynomials:

$$
\mathbf{y}=\mathbf{x}_{0} B_{0,2}(t)+\mathbf{x}_{1} B_{1,2}(t)+\mathbf{x}_{2} B_{2,2}(t)=\mathbf{x}_{0}(1-t)^{2}+\mathbf{x}_{1} 2 t(1-t)+\mathbf{x}_{2} t^{2}
$$



## Interpolation with Bernstein polynomials－III

Interpolation of four points with Bernstein polynomials：

$$
\begin{gathered}
\mathbf{y}=\mathbf{x}_{0} B_{0,3}(t)+\mathbf{x}_{1} B_{1,3}(t)+\mathbf{x}_{2} B_{2,3}(t) \mathbf{x}_{3} B_{3,3}(t) \\
=\mathbf{x}_{0}(1-t)^{3}+\mathbf{x}_{1} 3 t(1-t)^{2}+\mathbf{x}_{2} 3 t^{2}(1-t)+\mathbf{x}_{3} t^{3}
\end{gathered}
$$



## Interpolation with Bernstein polynomials－IV

The Bernstein polynomials of degree $k+1$ are defined as follows：

$$
B_{i, k}(t)=\binom{k}{i}(1-t)^{k-i} t^{i}, \quad i=0,1, \ldots, k
$$

Interpolation with Bernstein polynomials $B_{i, k}$ ：

$$
\mathbf{y}=\mathbf{x}_{0} B_{0, k}(t)+\mathbf{x}_{1} B_{1, k}(t)+\cdots+\mathbf{x}_{k} B_{k, k}(t)
$$

## B－Splines

A normalized B－Splines $N_{i, k}$ of degree $k$ is defined as follows：For $k=1$ ，

$$
N_{i, k}(t)=\left\{\begin{array}{lll}
1 & : & \text { for } t_{i} \leq t<t_{i+1} \\
0 & : & \text { else }
\end{array}\right.
$$

and for $k>1$ ，the recursive definition：

$$
\begin{gathered}
N_{i, k}(t)=\frac{t-t_{i}}{t_{i+k-1}-t_{i}} N_{i, k-1}(t)+ \\
\frac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1, k-1}(t)
\end{gathered}
$$

with $i=0, \ldots, m$ ．

## B-Spline-Curve

A B-Spline-Curve of degree $k$ is a composite function built piecewise from basis $\mathbf{B}$-Splines resulting in a polynomial of degree $(k-1)$ that is ( $k$-2)-times continuously differentiable (class $C^{k-2}$ ) at the borders of the segments.
The Curve is constructed by polynomials, that are defined by the following parameters:

$$
\mathbf{t}=\left(t_{0}, t_{1}, t_{2}, \ldots, t_{m}, t_{m+1}, \ldots, t_{m+k}\right)
$$

where

- $m$ : depending on the number of data-points
- $k$ : the fixed degree of the B-Spline curve


## Examples of B-Splines

B-Splines with degree 1, 2, 3 and 4:


Between the interval of parameters $k$ B-Splines are overlapping.

## Examples of cubic B-Splines



B-Splines of degree $k$ - I

The recursive definition procedure of a B-Spline basis function $N_{i, k}(t)$ :


## B-Splines of degree $k$ - II

Current segments of B-Spline basis functions of degree 2, 3 and 4 for $t_{i} \leq t<t_{i+1}$ :


## Uniform B-spline of degree 1 to 4






## Non-uniform B-Splines

## Degree 3:



## Properties of B-splines

Partition of unity:
Positivity:
Local support:
$C^{k-2}$ continuity:
$\sum_{i=0}^{k} N_{i, k}(t)=1$.
$N_{i, k}(t) \geq 0$.
$N_{i, k}(t)=0$ for $t \notin\left[t_{i}, t_{i+k}\right]$.
If the knots $\left\{t_{i}\right\}$ different in pairs then $N_{i, k}(t) \in C^{k-2}$,
i.e. $N_{i, k}(t)$ is $(k-2)$ times continuously differentiable.

## Construction of B－spline curves

A B－spline curve can be constructed blending a number of predefined values（data－points）with $B$－splines

$$
\mathbf{r}(\mathrm{t})=\sum_{\mathrm{j}=0}^{\mathrm{m}} \mathbf{v}_{\mathrm{j}} \cdot \mathrm{~N}_{\mathrm{j}, \mathrm{k}}(\mathrm{t})
$$

where $\mathbf{v}_{j}$ are called control points（de Boor－points）．
Let $t$ be a given parameter，then $\mathbf{r}(t)$ is a point of the B－spline curve．
If $t$ varies from $t_{k-1}$ to $t_{m+1}$ ，then $\mathbf{r}(\mathrm{t})$ is a（ $\left.\mathrm{k}-2\right)$－times continuously differentiable function（class $C^{k-2}$ ）．

## Calculation of control points from data points

The points $\mathbf{v}_{j}$ are only identical with the data points if $k=2$ (interpolation/otherwise approximation). The control points form a convex hull of the interpolation curve. Two methods for the calculation of control points from data points:

## Calculation of control points from data points

1 Solving the following system of equations (Böhm84):

$$
\mathbf{q}_{j}(t)=\sum_{j=0}^{m} \mathbf{v}_{j} \cdot N_{j, k}(t)
$$

where $\mathbf{q}_{j}$ are the data-points for interpolation/approximation, $j=0, \cdots, m$.

2 Learning based on gradient descent(Zhang98).

UH
iti University of Hamburg
Lattice - I


Lattice - II


## Tensor 2D-NURBS



## Real－world Problems

－modeling：learning from examples，self－optimized formation， prediction，．．．
－control：perception－action cycle，state control，Identification of dynamic systems，

Function approximation as a benchmark for the choice of a model

## Function approximation - 1D example

An example function $f(x)=8 \sin \left(10 x^{2}+5 x+1\right)$ with $-1<x<1$ and the correctly distributed B-Splines:



## Lattice



The B-spline model - a two-dimensional illustration.

## Lattice (cont.)

Every $n$-dimensional square $(n>1)$ is covered by the $j^{t h}$ multivariate B-spline $N_{k}^{j}(x) . N_{k}^{j}(x)$ is defined by the tensor of $n$ univariate B -splines:

$$
\begin{equation*}
N_{k}^{j}(x)=\prod_{j=1}^{n} N_{i_{j}, k_{j}}^{j}\left(x_{j}\right) \tag{1}
\end{equation*}
$$

Therefore the shape of each B-spline, and thus the shape of multivariate ones (Figure 2), is implicitly set by their order and their given knot distribution on each input interval.

## Lattice（cont．）


（a）Tensor of two，order 2 univariate B－splines．

（b）Tensor of one order 3 and one order 2 univa－ riate B －splines．

（c）Tensor of two univa－ riate B－splines of order 3.

Bivariate B－splines formed by taking the tensor of two univariate B－splines．

## General requirements for an approximator

- Universality: Approximation of arbitrary functions
- Generalization: good approximation without Overfitting
- Adaptivity: on the basis of new data
- Parallelism: Computing based on biological models
- Interpretability: at least "Grey-box" instead of "Black-box"


## Importance of the Interpretability of a Model

Richard P. Feynman: "the way we have to describe nature is generally incomprehensible to us".

Albert Einstein: "it should be possible to explain the laws of physics to a barmaid".

## Importance of the Interpretability of a Model（cont．）

Important reasons for the symbolic interpretability of an approximator：
－Linguistic modeling is a basis of skill transfer from an expert to a computer or robot ．
－Automated learning of a transparent model facilitates the analysis，validation and monitoring in the development cycle of a model or a controller．
－Transparen models provide diverse applications in Decision－Support Systems．

## B－Spline ANFIS

In a B－Spline ANFIS with $n$ inputs $x_{1}, x_{2}, \ldots, x_{n}$ ，the rules are used the following form：
$\left\{\operatorname{Rule}\left(i_{1}, i_{2}, \ldots, i_{n}\right)\right.$ ：IF $\left(x_{1}\right.$ IS $\left.N_{i_{1}, k_{1}}^{1}\right)$ AND（ $x_{2}$ IS $N_{i_{2}, k_{2}}^{2}$ ）AND $\ldots$ AND（ $x_{n}$ IS $N_{i_{n}, k_{n}}^{n}$ ）THEN $y$ IS $\left.Y_{i_{1} i_{2} \ldots i_{n}}\right\}$ ， where
－$x_{j}$ ：input $j(j=1, \ldots, n)$ ，
－$k_{j}$ ：degree of B－spline basis function for $x_{j}$ ，
－$N_{i_{j}, k_{j}}^{j}$ ：with the $i$－th linguistic term for the $x_{j}$－associated B－spline function，
－$i_{j}=0, \ldots, m_{j}$ ，partitioning of input $j$ ，
－$Y_{i_{1} i_{2} \ldots i_{n}}$ ：control points for $\operatorname{Rule}\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ ．
－the＂AND＂－operator：product

## B－Spline ANFIS（cont．）

Then the output $y$ of the MISO control system is：

$$
y=\sum_{i_{1}=1}^{m_{1}} \ldots \sum_{i_{n}=1}^{m_{n}}\left(Y_{i_{1}, \ldots, i_{n}} \prod_{j=1}^{n} N_{i_{j}, k_{j}}^{j}\left(x_{j}\right)\right)
$$

This is a general B－spline model that represents the hyperplane（it NUBS（nonuniform B－spline））．
http：／／equipe．nce．ufr．br／adriano／fuzzy／transparencias／anfis／anfis．pdf

## Architecture of B-Spline ANFIS



## MF(membership function)-Formulation - Tensor

Tensor of 2D-Splines:



## The activation of MF by the inputs



## B－Spline ANFIS：example

An example with two input variables（ $x$ und $y$ ）and one Output $z$ ．
The parameters of the THEN－clauses are $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ ．

## B-Spline ANFIS: example (cont.)

The linguistic terms of inputs (IF-clauses):


## B-Spline ANFIS: example (cont.)

The parameters of the THEN-clauses:


## Example: control basis

The sample control basis consists of four rules:
Rule

| 1) | IF | $x$ is | $X_{1}$ | and | $y$ is | $Y_{1}$ | THEN | $z$ is | $Z_{1}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2) | IF | $x$ is | $X_{1}$ | and | $y$ is | $Y_{2}$ | THEN | $z$ is | $Z_{2}$ |
| 3) | IF | $x$ is | $X_{2}$ | and | $y$ is | $Y_{1}$ | THEN | $z$ is | $Z_{2}$ |
| 4) | IF | $x$ is | $X_{2}$ | and | $y$ is | $Y_{2}$ | THEN | $z$ is | $Z_{4}$ |

## Illustration of the fuzzy inference



$$
\text { IF }\left(x \text { is } X \_1\right) \text { and }\left(y \text { is } Y \_1\right) \quad \text { THEN } z \text { is } Z \_1
$$

## Illustration of the fuzzy inference (2)



$$
\text { IF }\left(x \text { is } X \_1\right) \text { and }\left(y \text { is } Y \_2\right)
$$

$$
\text { THEN } \quad \mathrm{z} \text { is } \mathrm{Z} \_2
$$

## Illustration of the fuzzy inference (3)



## Illustration of the fuzzy inference (4)



## Illustration of the fuzzy inference (5)



## Algorithms for Supervised Learning - I

Let $\left\{\left(\mathbf{X}, y_{d}\right)\right\}$ be a set of training data, where

- $\mathbf{X}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ : the vector of input data,
- $y_{d}$ : the desired output for $\mathbf{X}$.

The LSE is:

$$
\begin{equation*}
E=\frac{1}{2}\left(y_{r}-y_{d}\right)^{2}, \tag{2}
\end{equation*}
$$

where $y_{r}$ is the current real output value during the training cycle. Goal is to find the parameters $Y_{i_{1}, i_{2}, \ldots, i_{n}}$, that minimize the error in (2)

$$
\begin{equation*}
E=\frac{1}{2}\left(y_{r}-y_{d}\right)^{2} \equiv \mathrm{MIN} . \tag{3}
\end{equation*}
$$

## Algorithms for Supervised Learning－II

Each control point $Y_{i_{1}, \ldots, i_{n}}$ can be improved with the following gradient descend algorithm：

$$
\begin{align*}
\Delta Y_{i_{1}, \ldots, i_{n}} & =-\epsilon \frac{\partial E}{\partial Y_{i_{1}, \ldots, i_{n}}}  \tag{4}\\
& =\epsilon\left(y_{r}-y_{d}\right) \prod_{j=1}^{n} N_{i_{j}, k_{j}}^{j}\left(x_{j}\right) \tag{5}
\end{align*}
$$

where $0<\epsilon \leq 1$ ．

## Algorithms for Supervised Learning－III

The gradient descend algorithm ensures that the learning algorithm converges to the global minimum of the LSE－function，because the second partial derivative of $Y_{\left(i_{1}\right.}, l_{2}$ ，hdots，$\left.i_{n}\right)$ is constant：

$$
\begin{equation*}
\frac{\partial^{2} E}{\partial^{2} Y_{i}, \ldots, i_{n}}=\left(\prod_{j=1}^{n} N_{i, j}^{j}\left(k_{j}\right)\right)^{2} \geq 0 . \tag{6}
\end{equation*}
$$

This means that the LSE－function（ ref（error））is convex $Y_{\left(i_{1}, l_{2}\right.}$ ，dots，$i_{n}$ is）and therefore has only one（global）minimum．

## Symbol Transformation of the Core Functions

Positive，convex core functions can be considered as Fuzzy sets，for example：


## Membership-functions



## Introduction to fuzzy sets

- fuzzy natural-language gradations of terms like "big", "beautiful", "strong" ...
- human thought and behavior models using the one-step logic:

Driving: "IF-THEN"-clauses
Car parking: With millimeter accuracy?

## Introduction to Fuzzy sets

－Use of fuzzy language instead of numerical description：
brake 2.52 m before the curve
$\rightarrow$ only in machine systems
brake shortly before the curve
$\rightarrow$ in natural language

## Definitions

Fuzzy: indistinctive, vague, unclear.
Fuzzy sets / fuzzy logic as a mechanism for

- fuzzy natural-language gradations of terms like "big", "beautiful", "strong" ...
- usage of fuzzy language instead of numerical description:.
- abstraction of unnecessary / too complex details.
- human thought and behavior models using the one-step logic.


## Characteristic function vs．Membership function

For Fuzzy－sets $A$ we used a generalized characteristic function $\mu_{A}$ that assigns a real number from $[0,1]$ to to each member $x \in X$－the ＂degree＂of membership of $x$ to the fuzzy set $A$ ：

$$
\mu_{A}: X \rightarrow[0,1]
$$

$\mu_{A}$ is called membershop－function．

$$
A=\left\{\left(x, \mu_{A}(x) \mid x \in X\right\}\right.
$$

## Membership function



Characteristic of the continuous membership function
－Positive，convex functions（some important core functions）．
－Subjective perception
－no probabilistic functions

## Membership function types - I

Triangle: $\operatorname{trimf}(x ; a, b, c)=\max \left(\min \left(\frac{x-a}{b-a}, \frac{c-x}{c-b}\right), 0\right)$


Trapeze: $\operatorname{trapmf}(x ; a, b, c, d)=\max \left(\min \left(\frac{x-a}{b-a}, 1, \frac{d-x}{d-c}\right), 0\right)$


## Membership function types - II

Gaussian: $\operatorname{gaussmf}(x ; c, \sigma)=e^{-\frac{1}{2}\left(\frac{x-c}{\sigma}\right)^{2}}$


B-Splines: $\operatorname{bsplinemf}\left(x, x_{i}, x_{i+1}, \cdots, x_{i+k}\right)$


## Linguistic variables

A numeric variable has numerical values:

$$
\text { age }=25
$$

A linguistic variable has linguistic values (terms):
age : young

A linguistic value is a fuzzy set.

## Fuzzy-Partition

Fuzzy partition of the linguistic values "young", "average" and "old":


## Fuzzy Logic: inference mechanisms

A fuzzy rule is formulated as follows:
"IF $A$ THEN $B$ "
with Fuzzy-sets $A, B$ and the universes $X, Y$.
One of the most important inference mechanisms is the generalized Modus-Ponens (GMP):

Implication: IF $x$ is $A$ THEN $y$ is B
Premise: $\quad x$ is $A^{\prime}$

## Fuzzy systems for function approximation

Basic idea:

- Description of the desired control behavior through natural language, qualitative rules.
- Quantification of linguistic values by fuzzy sets.
- Evaluation by methods of fuzzy logic or interpolation.


## Fuzzy systems for function approximation

Fuzzy-rules:
,IF (a set of conditions is met)
THEN
(a set of consequences can be determined)"
In the premises (Antecedents) of the IF-part: linguistic variables from the domain of process states;
In the conclusions (Consequences) of the THEN-part: linguistic variables from the system domain.


## Adaptive networks



Architecture：
Feedforward networks with different node functions

## Rule Extraction

The Fuzzy-Patches (Kosko):



## Rule Extraction

A Fuzzy-Rule-Patch:


## Additive Systeme

An additive fuzzy controller adds the＂THEN＂－Parts of the fired rules．

Fuzzy－Approximations－Rule：
An additive Fuzzy controller can approximate any continuous function $f: X \rightarrow Y$ if $X$ is compact

## Optimal Fuzzy-Rule-Patches

Optimal fuzzy rule patches cover the extrema of a function:


## Optimal Fuzzy-Rule-Patches

Projection of the ellipsoids on the input and output axis:


## Optimal Fuzzy-Rule-Patches

The size of an ellipsoid depends on the training data.


## Optimal Fuzzy-Rule-Patches

Visualization of the input-output space:


## Optimal Fuzzy-Rule-Patches

An example for interpolation:


## Optimal Fuzzy－Rule－Patches

Data cluster along the function：


## Optimal Fuzzy-Rule-Patches



## Optimal Fuzzy-Rule-Patches

Approximation with Fuzzy-sets using the projections of extremes:


## Approximation of a 2D-function

$$
\begin{aligned}
z & =f(x, y) \\
& =3(1-x)^{2} e^{-x^{2}-(y+1)^{2}}-10\left(\frac{x}{5}-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}}-\frac{1}{3} e^{-(x+1)^{2}-y^{2}}
\end{aligned}
$$



## Approximation of a 2D-function

Derivatives of the function:

$$
\begin{aligned}
\frac{d z}{d x}= & -6(1-x) e^{-x^{2}-(y+1)^{2}}-6(1-x)^{2} x e^{-x^{2}-(y+1)^{2}} \\
& -10\left(\frac{1}{5}-3 x^{2}\right) * e^{-x^{2}-y^{2}}+20\left(\frac{1}{5} x-x^{3}-y^{5}\right) x e^{-x^{2}-y^{2}} \\
& -\frac{1}{3}(-2 x-2) e^{-(x+1)^{2}-y^{2}} \\
\frac{d z}{d y}= & 3(1-x)^{2}(-2 y-2) e^{-x^{2}-(y+1)^{2}} \\
& +50 y^{4} e^{-x^{2}-y^{2}}+20\left(\frac{1}{5} x-x^{3}-y^{5}\right) y e^{-x^{2}-y^{2}} \\
& +\frac{2}{3} y e^{-(x+1)^{2}-y^{2}}
\end{aligned}
$$

## Approximation of a 2D-function

$$
\begin{aligned}
\frac{d \frac{d z}{d x}}{d x}= & 36 x e^{-x^{2}-(y+1)^{2}}-18 x^{2} e^{-x^{2}-(y+1)^{2}}-24 x^{3} e^{-x^{2}-(y+1)^{2}} \\
& +12 x^{4} e^{-x^{2}-(y+1)^{2}}+72 x e^{-x^{2}-y^{2}}-148 x^{3} e^{-x^{2}-y^{2}} \\
& -20 y^{5} e^{-x^{2}-y^{2}}+40 x^{5} e^{-x^{2}-y^{2}}+40 x^{2} e^{-x^{2}-y^{2}} y^{5} \\
& -\frac{2}{3} e^{-(x+1)^{2}-y^{2}}-\frac{4}{3} e^{-(x+1)^{2}-y^{2}} x^{2}-\frac{8}{3} e^{-(x+1)^{2}-y^{2}} x
\end{aligned}
$$

## Approximation of a 2D-function

$$
\begin{aligned}
\frac{d\left(\frac{d z}{d y}\right)}{d y}= & -6(1-x)^{2} e^{-x^{2}-y(+1)^{2}}+3(1-x)^{2}(-2 y-2)^{2} e^{-x^{2}-(y+1)^{2}} \\
& +200 y^{3} e^{-x^{2}-y^{2}}-200 y^{5} e^{-x^{2}-y^{2}}+20\left(\frac{1}{5} x-x^{3}-y^{5}\right) e^{-x^{2}-y^{2}} \\
& -40\left(\frac{1}{5} x-x^{3}-y^{5}\right) y^{2} e^{-x^{2}-y^{2}}+\frac{2}{3} e^{-(x+1)^{2}-y^{2}} \\
& -\frac{4}{3} y^{2} e^{-(x+1)^{2}-y^{2}}
\end{aligned}
$$

## Global Overview of the Statistical Learning Theory－I

Let $\left\{\left(\mathbf{x}_{i}, y_{i}\right)\right\}_{i=1}^{\prime}$ be a set of data points／examples．We are searching for a function $f$ ，which minimizes the following equation：

$$
H[f]=\frac{1}{l} \sum_{i=1}^{l} V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)+\lambda\|f\|_{K}^{2}
$$

where $V(\cdot, \cdot)$ is a loss function and $\|f\|_{K}^{2}$ is a norm in the Hilbert space $\mathcal{H}$ ，which is defined by a positive kernel $K$ ，and $\lambda$ is the regularization parameter．
The problems in modeling，data regression and pattern classification are each based on a kind of $V(\cdot, \cdot)$ ．

## Global Overview of the Statistical Learning Theory－II

1．$V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}$
$\left(y_{i} \in R^{1}, V\right.$ ：square error function $)$
$\Rightarrow$ Regularization Networks，RN
2．$V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|_{\epsilon}$
（ $y_{i} \in R^{1},|\cdot|_{\epsilon}$ ：eine $\epsilon$－unempfindliche Norm）
$\Rightarrow$ Support Vector Machines Regression，SVMR
3．$V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left|1-y_{i} f\left(\mathbf{x}_{i}\right)\right|_{+}$
$\left(y_{i} \in\{-1,1\},|x|_{+}=x\right.$ für $x \geqq 0$ ，else $\left.|x|_{+}=0\right)$
$\Rightarrow$ Support Vector Machines Classification，SVMC

## Global Overview of the Statistical Learning Theory - II

1. $V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}$
( $y_{i}$ : a real number, $V$ : square error function)
$\Rightarrow$ Regularization Networks, RN
2. $V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left|y_{i}-f\left(\mathbf{x}_{i}\right)\right|_{\epsilon}$
( $y_{i}$ : a real number, $|\cdot|_{\epsilon}:$ an $\epsilon$-independent norm)
$\Rightarrow$ Support Vector Machines Regression, SVMR
3. $V\left(y_{i}, f\left(\mathbf{x}_{i}\right)\right)=\left|1-y_{i} f\left(\mathbf{x}_{i}\right)\right|_{+}$
( $y_{i}$ : -1 oder $1,|x|_{+}=x$ für $x \geqq 0$, sonst $|x|_{+}=0$ )
$\Rightarrow$ Support Vector Machines Classification, SVMC
For modeling and control tasks, the first definition is most important.

## Universelal Function Approximation - I

A control-network can approximate all smooth functions with an arbitrary precision.
The general solution of this problem is:

$$
f(x)=\sum_{i=1}^{\prime} c_{i} K\left(x ; x_{i}\right)
$$

where $c_{i}$ are the coefficients.

## Universelal Function Approximation - II

## Proposition of the approximation:

For any continuous function $Y$ that is defined on the compact subset $R^{n}$ and the core function $K$, there is a function $y^{*}(x)=\sum_{i=1}^{l} c_{i} K\left(x ; x_{i}\right)$ that fulfills for all $x$ and any $\epsilon$ :

$$
\left|Y(x)-y^{*}(x)\right|<\epsilon
$$

## Universal Function Approximation - II

Using different kernel functions leads to different models:

| $K\left(\mathbf{x}-\mathbf{x}_{i}\right)=\exp \left(-\left\\|\mathbf{x}-\mathbf{x}_{i}\right\\|^{2}\right)$ | Gaussian RBF |
| :--- | :--- |
| $K\left(\mathbf{x}-\mathbf{x}_{i}\right)=\left(\left\\|\mathbf{x}-\mathbf{x}_{i}\right\\|^{2}+c^{2}\right)^{-\frac{1}{2}}$ | Inverse multiquadratic functions |
| $K\left(\mathbf{x}-\mathbf{x}_{i}\right)=\tanh \left(\mathbf{x} \cdot \mathbf{x}_{i}-\theta\right)$ | Multilayer perceptron |
| $K\left(\mathbf{x}-\mathbf{x}_{i}\right)=\left(1+\mathbf{x} \cdot \mathbf{x}_{i}\right)^{d}$ | Polynomial of degree $d$ |
| $K\left(x-x_{i}\right)=B_{2 n+1}\left(x-x_{i}\right)$ | B-Splines |
| $K\left(x-x_{i}\right)=\frac{\sin \left(d+\frac{1}{2}\right)\left(x-x_{i}\right)}{\sin \frac{\left(x-x_{i}\right.}{2}}$ | Trigonometric polynomial |
| $\ldots$ | $\ldots$ |

## Problems

1．＂Curse of dimensionality＂because of the exponential dependency between the memory requirements and the dimension of input space．

2．Aliasing within the feature extraction

3．Not available target data $(y)$ ．
4．Not available input factors．

## Learning from DJ-Data



Dow-Jones-Index: can the function be modeled?

## Example: Image Processing in Local Observation scenarios

A sequence of gray scale images of an object is acquired by the movement along a fixed location:


## Example: Extraction of Eigenvectors

## The first 6 Eigenvectors:



## Example: Eigenvectors and Eigenvalues



## Combination of Dimension Reduction with B-Spline Model

Eigenvectors can be partitioned by linguistic terms.
Such a combination of PCA and B-spline model can be considered as a Neuro-Fuzzy model.


## The Neuro-Fuzzy Model



## The Training and Application Phases



