

Jianwei Zhang

University of Hamburg MIN Faculty, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg zhang@informatik.uni-hamburg.de

30/06/2009

Approximation

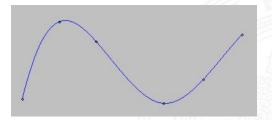
Approximation of the relation between x and y (curve, plane, hyperplane) with a different function, given a limited number of data points $D = \{\mathbf{x}_i, y_i\}_{i=1}^{I}$.



Introduction Function approximation

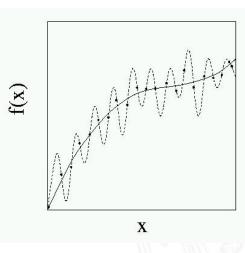
Approximation vs. Interpolation

A special case of approximation is interpolation: the model exactly matches all data points.



If many data points are given or measurement data is affected by noise, approximation is preferably used.

Approximation without Overfitting



Interpolation with Polynomials

Polynomial interpolation:

- ► Lagrange polynomial,
- Newton polynomial,
- Bernstein polynomial,
- Basis-Splines.

Lagrange interpolation

To match l+1 data points (x_i, y_i) (i = 0, 1, ..., l) with a polynomial of degree I, the following approach of LAGRANGE can be used:

$$p_I(x) = \sum_{i=0}^I y_i L_i(x)$$

The interpolation polynomial in the Lagrange form is defined as follows:

$$L_{i}(x) = \frac{(x - x_{0})(x - x_{1}) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_{l})}{(x_{i} - x_{0})(x_{i} - x_{1}) \cdots (x_{i} - x_{i-1})(x_{i} - x_{i+1}) \cdots (x_{i} - x_{l})}$$

$$= \begin{cases} 1 \text{ if } x = x_{i} \\ 0 \text{ if } x \neq x_{i} \end{cases}$$

Function approximation

Newton Interpolation

The Newton basis polynomials of degree *l* are constructed as follows:

$$p_l(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + \dots + a_l(x - x_0)(x - x_0)(x - x_0) + \dots + a_l(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + a_l(x - x_0)(x - x_0)(x - x_0)(x - x_0)(x - x_0) + \dots + a_l(x - x_0)(x - x_0)(x$$

This approach enables us to calculate the coefficients easily. For n = 2 the following system of equations is obtained:

$$p_2(x_0) = a_0 = y_0$$

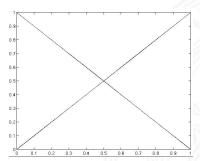
 $p_2(x_1) = a_0 + a_1(x_1 - x_0) = y_1$
 $p_2(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1) = y_2$

University of Hamburg

Interpolation with Bernstein polynomials - I

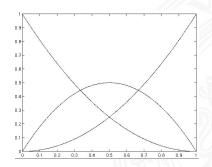
Interpolation of two points with Bernstein polynomials:

$$\mathbf{y} = \mathbf{x}_0 B_{0,1}(t) + \mathbf{x}_1 B_{1,1}(t) = \mathbf{x}_0 (1-t) + \mathbf{x}_1 t$$



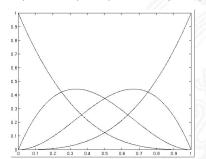
Interpolation of three points with Bernstein polynomials:

$$\mathbf{y} = \mathbf{x}_0 B_{0,2}(t) + \mathbf{x}_1 B_{1,2}(t) + \mathbf{x}_2 B_{2,2}(t) = \mathbf{x}_0 (1-t)^2 + \mathbf{x}_1 2t(1-t) + \mathbf{x}_2 t^2$$



Interpolation of four points with Bernstein polynomials:

$$\mathbf{y} = \mathbf{x}_0 B_{0,3}(t) + \mathbf{x}_1 B_{1,3}(t) + \mathbf{x}_2 B_{2,3}(t) \mathbf{x}_3 B_{3,3}(t)$$
$$= \mathbf{x}_0 (1-t)^3 + \mathbf{x}_1 3t (1-t)^2 + \mathbf{x}_2 3t^2 (1-t) + \mathbf{x}_3 t^3$$



卣

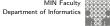
Interpolation with Bernstein polynomials - IV

The Bernstein polynomials of degree k+1 are defined as follows:

$$B_{i,k}(t) = {k \choose i} (1-t)^{k-i} t^i, \quad i = 0, 1, \dots, k$$

Interpolation with Bernstein polynomials $B_{i,k}$:

$$\mathbf{y} = \mathbf{x}_0 B_{0,k}(t) + \mathbf{x}_1 B_{1,k}(t) + \cdots + \mathbf{x}_k B_{k,k}(t)$$



B-Splines

A normalized B-Splines $N_{i,k}$ of degree k is defined as follows: For k=1,

$$N_{i,k}(t) = \left\{ egin{array}{ll} 1 & : & ext{for } t_i \leq t < t_{i+1} \ 0 & : & ext{else} \end{array}
ight.$$

and for k > 1, the recursive definition:

$$N_{i,k}(t) = rac{t-t_i}{t_{i+k-1}-t_i} N_{i,k-1}(t) + rac{t_{i+k}-t}{t_{i+k}-t_{i+1}} N_{i+1,k-1}(t)$$

with $i = 0, \ldots, m$.

B-Spline-Curve

A **B-Spline-Curve** of degree k is a composite function built piecewise from basis B-Splines resulting in a polynomial of degree (k-1) that is (k-2)-times continuously differentiable (class C^{k-2}) at the borders of the segments.

The Curve is constructed by polynomials, that are defined by the following parameters:

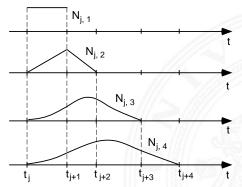
$$\mathbf{t} = (t_0, t_1, t_2, \dots, t_m, t_{m+1}, \dots, t_{m+k}),$$

where

- m: depending on the number of data-points
- ▶ *k*: the fixed degree of the B-Spline curve

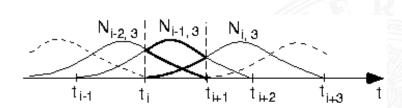
Examples of B-Splines

B-Splines with degree 1, 2, 3 and 4:



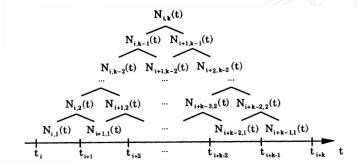
Between the interval of parameters k B-Splines are overlapping.

Examples of cubic B-Splines



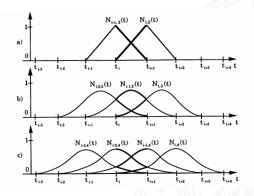
B-Splines of degree k - I

The recursive definition procedure of a B-Spline basis function $N_{i,k}(t)$:

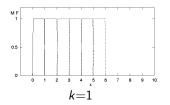


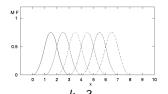
B-Splines of degree k - II

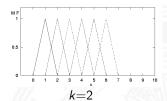
Current segments of B-Spline basis functions of degree 2, 3 and 4 for $t_i \le t < t_{i+1}$:

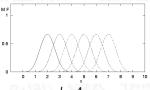


Uniform B-spline of degree 1 to 4









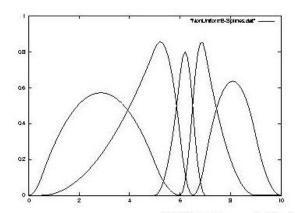
Function approximation

Introduction

UΗ

Non-uniform B-Splines

Degree 3:



Properties of B-splines

 $\sum_{i=0}^{k} N_{i,k}(t) = 1.$ Partition of unity:

 $N_{i,k}(t) \geq 0$. Positivity:

Local support: $N_{i,k}(t) = 0$ for $t \notin [t_i, t_{i+k}]$.

 C^{k-2} continuity: If the knots $\{t_i\}$ different in pairs

then $N_{i,k}(t) \in C^{k-2}$,

i.e. $N_{i,k}(t)$ is (k-2) times continuously

differentiable.

Construction of B-spline curves

A B-spline curve can be constructed blending a number of predefined values (data-points) with B-splines

$$\textbf{r}(t) = \sum_{j=0}^{m} \textbf{v}_j \cdot N_{j,k}(t)$$

where \mathbf{v}_i are called *control points* (de Boor-points).

Let t be a given parameter, then $\mathbf{r}(t)$ is a point of the B-spline curve.

If t varies from t_{k-1} to t_{m+1} , then $\mathbf{r}(t)$ is a (k-2)-times continuously differentiable function (class C^{k-2}).

Calculation of control points from data points

The points \mathbf{v}_i are only identical with the data points if k=2(interpolation/otherwise approximation). The control points form a convex hull of the interpolation curve. Two methods for the calculation of control points from data points:

Function approximation

Calculation of control points from data points

1 Solving the following system of equations (Böhm84):

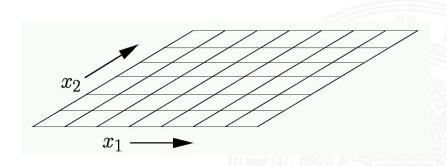
$$\mathbf{q}_j(t) = \sum_{j=0}^m \mathbf{v}_j \cdot N_{j,k}(t)$$

where \mathbf{q}_j are the data-points for interpolation/approximation, $j=0,\cdots,m$.

2 Learning based on gradient descent(**Zhang98**).

Function approximation

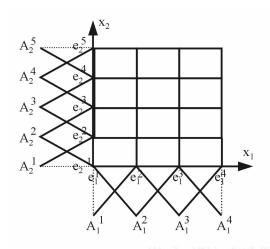
Lattice - I



UН

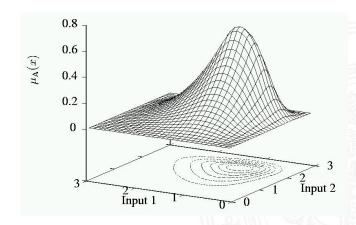
Function approximation

Lattice - II



Function approximation

Tensor 2D-NURBS



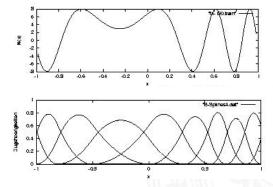
Real-world Problems

- ▶ modeling: learning from examples, self-optimized formation, prediction, ...
- **control**: perception-action cycle, state control, Identification of dynamic systems,

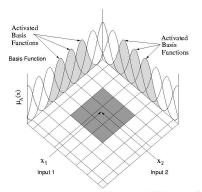
Function approximation as a benchmark for the choice of a model

Function approximation - 1D example

An example function $f(x) = 8\sin(10x^2 + 5x + 1)$ with -1 < x < 1and the correctly distributed B-Splines:



Lattice



The B-spline model – a two-dimensional illustration.

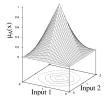
Lattice (cont.)

Every *n*-dimensional square (n > 1) is covered by the i^{th} multivariate B-spline $N_{\nu}^{I}(x)$. $N_{\nu}^{I}(x)$ is defined by the tensor of n univariate B-splines:

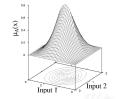
$$N_k^j(x) = \prod_{j=1}^n N_{i_j,k_j}^j(x_j)$$
 (1)

Therefore the shape of each B-spline, and thus the shape of multivariate ones (Figure 2), is implicitly set by their order and their given knot distribution on each input interval.

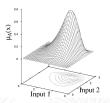
Lattice (cont.)



(a) Tensor of two, order 2 univariate B-splines.



(b) Tensor of one order 3 and one order 2 univariate B-splines.



(c) Tensor of two univariate B-splines of order 3.

Bivariate B-splines formed by taking the tensor of two univariate B-splines.

Function approximation

General requirements for an approximator

- Universality: Approximation of arbitrary functions
- ► Generalization: good approximation without *Overfitting*
- Adaptivity: on the basis of new data
- ▶ Parallelism: Computing based on biological models
- ▶ Interpretability: at least "Grey-box" instead of "Black-box"

Function approximation

Importance of the Interpretability of a Model

Richard P. Feynman: "the way we have to describe nature is generally incomprehensible to us".

Albert Einstein: "it should be possible to explain the laws of physics to a barmaid".

Importance of the Interpretability of a Model (cont.)

Important reasons for the symbolic interpretability of an approximator:

- ► Linguistic modeling is a basis of skill transfer from an expert to a computer or robot .
- Automated learning of a transparent model facilitates the analysis, validation and monitoring in the development cycle of a model or a controller.
- Transparen models provide diverse applications in Decision-Support Systems.

B-Spline ANFIS

In a B-Spline ANFIS with *n* inputs x_1, x_2, \ldots, x_n , the rules are used the following form:

 $\{Rule(i_1, i_2, ..., i_n): \text{IF } (x_1 \text{ IS } N^1_{i_1, k_1}) \text{ AND } (x_2 \text{ IS } N^2_{i_2, k_2}) \text{ AND } ... \}$ AND $(x_n \text{ IS } N_{i_n k_n}^n) \text{ THEN } y \text{ IS } Y_{i_1 i_2 \dots i_n} \}$, where

- \triangleright x_i : input j $(j = 1, \ldots, n)$,
- \triangleright k_i : degree of B-spline basis function for x_i ,
- ▶ $N_{i:.k_i}^j$: with the *i*-th linguistic term for the x_j -associated B-spline function.
- $i_i = 0, \ldots, m_i$, partitioning of input j,
- $Y_{i_1i_2...i_n}$: control points for $Rule(i_1, i_2, ..., i_n)$.
- ▶ the "AND"-operator: product

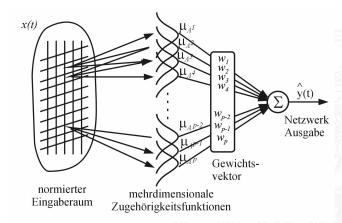
Then the output y of the MISO control system is:

$$y = \sum_{i_1=1}^{m_1} \dots \sum_{i_n=1}^{m_n} (Y_{i_1,\dots,i_n} \prod_{j=1}^n N_{i_j,k_j}^j(x_j))$$

This is a general B-spline model that represents the hyperplane (it NUBS (nonuniform B-spline)).

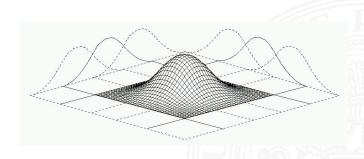
University of Hamburg

Architecture of B-Spline ANFIS

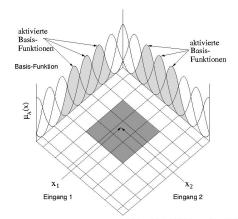


MF(membership function)-Formulation - Tensor

Tensor of 2D-Splines:



The activation of MF by the inputs



Function approximation

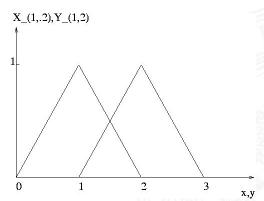
B-Spline ANFIS: example

An example with two input variables (x und y) and one Output z.

The parameters of the THEN-clauses are Z_1, Z_2, Z_3, Z_4 .

B-Spline ANFIS: example (cont.)

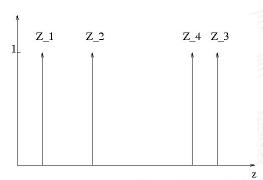
The linguistic terms of inputs (IF-clauses):



Function approximation

B-Spline ANFIS: example (cont.)

The parameters of the THEN-clauses:



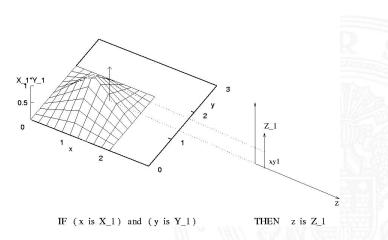
Example: control basis

The sample control basis consists of four rules:

Rule

- 1) Y_1 THEN x is X_1 and z is y is
- IF x is X_1 and y is 2) Y_2 Z_2 THEN z is
- 3) IF x is X_2 and y is Y_1 THEN z is Z_2
- IF x is X_2 Y_2 THEN z is and y is

Illustration of the fuzzy inference



University of Hamburg

Illustration of the fuzzy inference (2)

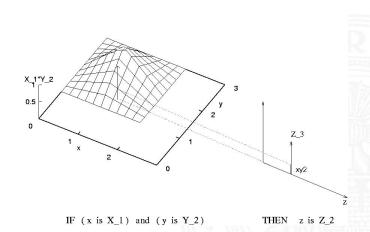


Illustration of the fuzzy inference (3)

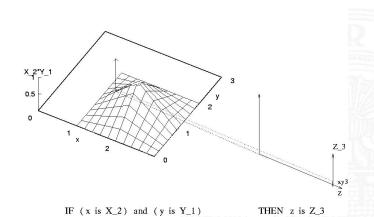


Illustration of the fuzzy inference (4)

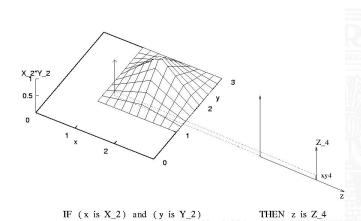
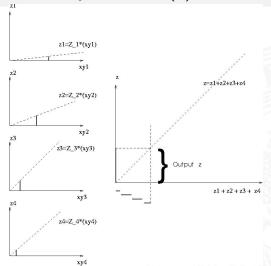


Illustration of the fuzzy inference (5)



Algorithms for Supervised Learning - I

Let $\{(\mathbf{X}, y_d)\}$ be a set of training data, where

- $\mathbf{X} = (x_1, x_2, \dots, x_n)$: the vector of input data,
- \triangleright y_d : the desired output for **X**.

The LSE is:

$$E = \frac{1}{2}(y_r - y_d)^2,$$
 (2)

where y_r is the current real output value during the training cycle. Goal is to find the parameters $Y_{i_1,i_2,...,i_n}$, that minimize the error in (2)

$$E = \frac{1}{2}(y_r - y_d)^2 \equiv MIN.$$
 (3)

Algorithms for Supervised Learning - II

Each control point $Y_{i_1,...,i_n}$ can be improved with the following gradient descend algorithm:

$$\Delta Y_{i_1,\dots,i_n} = -\epsilon \frac{\partial E}{\partial Y_{i_1,\dots,i_n}}$$

$$= \epsilon (y_r - y_d) \prod_{i=1}^n N_{i_j,k_j}^j(x_j)$$
(5)

$$= \epsilon(y_r - y_d) \prod_{j=1}^{n} N_{i_j, k_j}^{j}(x_j)$$
 (5)

where $0 < \epsilon \le 1$.

Algorithms for Supervised Learning - III

The gradient descend algorithm ensures that the learning algorithm converges to the global minimum of the LSE-function, because the second partial derivative of $Y(i_1, I_2, hdots, i_n)$ is constant:

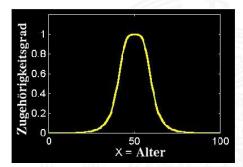
$$\frac{\partial^2 E}{\partial^2 Y_{i_1,...,i_n}} = \left(\prod_{j=1}^n N^j_{i_j,k_j}(x_j) \right)^2 \ge 0.$$
 (6)

This means that the LSE-function (ref (error)) is convex $Y(i_1, I_2, dots, i_n is)$ and therefore has only one (global) minimum.

Symbol Transformation of the Core Functions

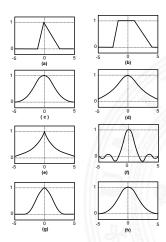
Positive, convex core functions can be considered as Fuzzy sets, for example:

$$\mu_B(x) = \frac{1}{1 + \left(\frac{x - 50}{10}\right)^2}$$



Function approximation

Membership-functions



Introduction to fuzzy sets

fuzzy natural-language gradations of terms like "big", "beautiful", "strong" ...

human thought and behavior models using the one-step logic:

Driving: "IF-THEN"-clauses

Car parking: With millimeter accuracy?

Introduction to Fuzzy sets

▶ Use of fuzzy language instead of numerical description:

brake 2.52 m before the curve

 \rightarrow only in machine systems

brake shortly before the curve

ightarrow in natural language

Definitions

Fuzzy: indistinctive, vague, unclear.

Fuzzy sets / fuzzy logic as a mechanism for

- fuzzy natural-language gradations of terms like "big", "beautiful", "strong" ...
- usage of fuzzy language instead of numerical description:.
- abstraction of unnecessary / too complex details.
- human thought and behavior models using the one-step logic.

Characteristic function vs. Membership function

For **Fuzzy-sets** A we used a generalized characteristic function μ_A that assigns a real number from [0,1] to to each member $x \in X$ — the "degree" of membership of x to the fuzzy set A:

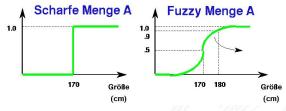
$$\mu_{A}: X \to [0,1]$$

 μ_A is called membershop-function.

$$A = \{(x, \mu_A(x)|x \in X\}$$

Membership function

University of Hamburg



Characteristic of the continuous membership function

- Positive, convex functions (some important core functions).
- Subjective perception
- no probabilistic functions

Membership function types - I

Triangle: $trimf(x; a, b, c) = \max \left(\min \left(\frac{x - a}{b - a}, \frac{c - x}{c - b} \right), 0 \right)$

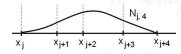
Trapeze: $trapmf(x; a, b, c, d) = \max\left(\min\left(\frac{x - a}{b - a}, 1, \frac{d - x}{d - c}\right), 0\right)$



Membership function types - II

Gaussian: $gaussmf(x; c, \sigma) = e^{-\frac{1}{2}(\frac{x-c}{\sigma})^2}$

B-Splines: $bsplinemf(x, x_i, x_{i+1}, \dots, x_{i+k})$



Function approximation

Linguistic variables

A numeric variable has numerical values:

$$age = 25$$

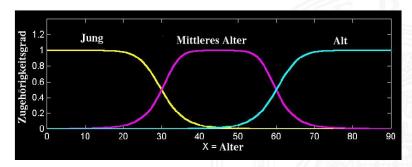
A linguistic variable has linguistic values (terms):

A linguistic value is a fuzzy set.

Fuzzy-Partition

Introduction

Fuzzy partition of the linguistic values "young", "average" and "old":



Fuzzy Logic: inference mechanisms

A fuzzy rule is formulated as follows:

"IF A THEN B"

with Fuzzy-sets A, B and the universes X, Y.

One of the most important inference mechanisms is the generalized Modus-Ponens (GMP):

IF x is A THEN y is B Implication:

x is A'Premise:

Conclusion: *v* is *B'*

Fuzzy systems for function approximation

Basic idea:

- Description of the desired control behavior through natural language, qualitative rules.
- Quantification of linguistic values by fuzzy sets.
- Evaluation by methods of fuzzy logic or interpolation.

Fuzzy systems for function approximation

Fuzzy-rules:

University of Hamburg

"**IF** (a set of conditions is met)

THEN

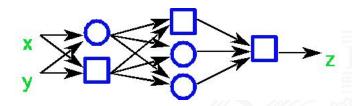
(a set of consequences can be determined)"

In the premises (Antecedents) of the IF-part: linguistic variables from the domain of process states;

In the conclusions (Consequences) of the THEN-part: linguistic variables from the system domain.

Adaptive networks

University of Hamburg



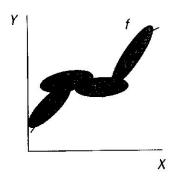
Architecture:

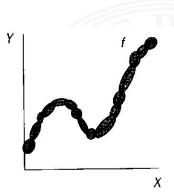
Feedforward networks with different node functions

Function approximation

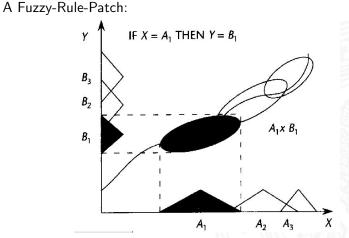
Rule Extraction

The Fuzzy-Patches (Kosko):





UΗ



Function approximation

Additive Systeme

An additive fuzzy controller adds the "THEN"-Parts of the fired rules.

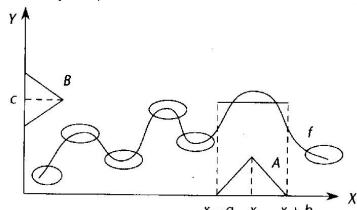
Fuzzy-Approximations-Rule:

An additive Fuzzy controller can approximate any continuous function $f: X \to Y$ if X is compact

University of Hamburg

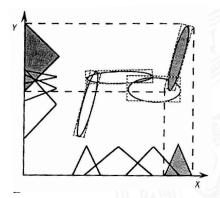
Optimal Fuzzy-Rule-Patches

Optimal fuzzy rule patches cover the extrema of a function:



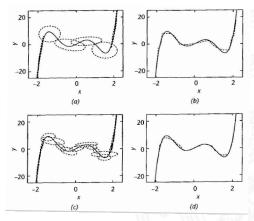
Optimal Fuzzy-Rule-Patches

Projection of the ellipsoids on the input and output axis:



Optimal Fuzzy-Rule-Patches

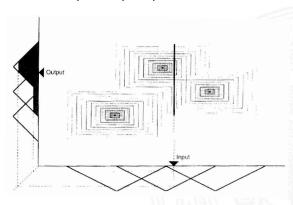
The size of an ellipsoid depends on the training data.



句

Optimal Fuzzy-Rule-Patches

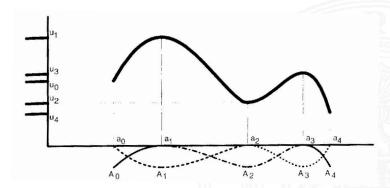
Visualization of the input-output space:



Zhang

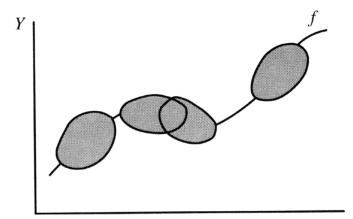
Optimal Fuzzy-Rule-Patches

An example for interpolation:

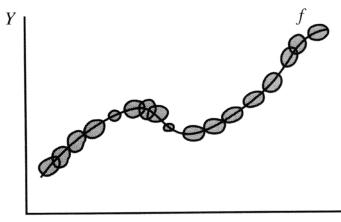


Optimal Fuzzy-Rule-Patches

Data cluster along the function:

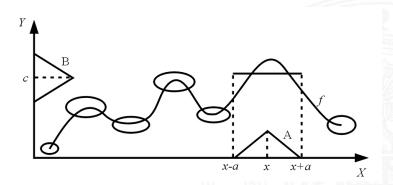


Optimal Fuzzy-Rule-Patches



Optimal Fuzzy-Rule-Patches

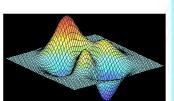
Approximation with Fuzzy-sets using the projections of extremes:



Approximation of a 2D-function

$$z = f(x, y)$$

$$= 3(1 - x)^{2} e^{-x^{2} - (y+1)^{2}} - 10(\frac{x}{5} - x^{3} - y^{5})e^{-x^{2} - y^{2}} - \frac{1}{3}e^{-(x+1)^{2} - y^{2}}$$



Approximation of a 2D-function

Derivatives of the function:

$$\frac{dz}{dx} = -6(1-x)e^{-x^2 - (y+1)^2} - 6(1-x)^2 x e^{-x^2 - (y+1)^2}$$
$$-10(\frac{1}{5} - 3x^2) * e^{-x^2 - y^2} + 20(\frac{1}{5}x - x^3 - y^5)x e^{-x^2 - y^2}$$
$$-\frac{1}{3}(-2x - 2)e^{-(x+1)^2 - y^2}$$

$$\frac{dz}{dy} = 3(1-x)^{2}(-2y-2)e^{-x^{2}-(y+1)^{2}}$$

$$+50y^{4}e^{-x^{2}-y^{2}} + 20(\frac{1}{5}x - x^{3} - y^{5})ye^{-x^{2}-y^{2}}$$

$$+\frac{2}{3}ye^{-(x+1)^{2}-y^{2}}$$

Approximation of a 2D-function

$$\begin{aligned} \frac{d\frac{dx}{dx}}{dx} = &36xe^{-x^2 - (y+1)^2} - 18x^2e^{-x^2 - (y+1)^2} - 24x^3e^{-x^2 - (y+1)^2} \\ &+ 12x^4e^{-x^2 - (y+1)^2} + 72xe^{-x^2 - y^2} - 148x^3e^{-x^2 - y^2} \\ &- 20y^5e^{-x^2 - y^2} + 40x^5e^{-x^2 - y^2} + 40x^2e^{-x^2 - y^2}y^5 \\ &- \frac{2}{3}e^{-(x+1)^2 - y^2} - \frac{4}{3}e^{-(x+1)^2 - y^2}x^2 - \frac{8}{3}e^{-(x+1)^2 - y^2}x \end{aligned}$$

Approximation of a 2D-function

$$\frac{d(\frac{\partial z}{\partial y})}{dy} = -6(1-x)^2 e^{-x^2 - y(+1)^2} + 3(1-x)^2 (-2y-2)^2 e^{-x^2 - (y+1)^2}
+ 200y^3 e^{-x^2 - y^2} - 200y^5 e^{-x^2 - y^2} + 20(\frac{1}{5}x - x^3 - y^5) e^{-x^2 - y^2}
- 40(\frac{1}{5}x - x^3 - y^5)y^2 e^{-x^2 - y^2} + \frac{2}{3}e^{-(x+1)^2 - y^2}
- \frac{4}{3}y^2 e^{-(x+1)^2 - y^2}$$

Let $\{(\mathbf{x}_i, y_i)\}_{i=1}^{I}$ be a set of data points/examples. We are searching for a function f, which minimizes the following equation:

$$H[f] = \frac{1}{I} \sum_{i=1}^{I} V(y_i, f(\mathbf{x}_i)) + \lambda ||f||_K^2$$

where $V(\cdot,\cdot)$ is a *loss function* and $\|f\|_K^2$ is a norm in the Hilbert space $\mathcal H$, which is defined by a positive kernel K, and λ is the regularization parameter.

The problems in modeling, data regression and pattern classification are each based on a kind of $V(\cdot, \cdot)$.

University of Hamburg

Global Overview of the Statistical Learning Theory - II

- 1. $V(y_i, f(\mathbf{x}_i)) = (y_i f(\mathbf{x}_i))^2$ $(y_i \in R^1, V: square error function)$
- ⇒ Regularization Networks, RN
- 2. $V(y_i, f(\mathbf{x}_i)) = |y_i f(\mathbf{x}_i)|_{\epsilon}$ $(y_i \in R^1, |\cdot|_{\epsilon}: \text{ eine } \epsilon\text{-unempfindliche Norm})$ ⇒ Support Vector Machines Regression, SVMR

卣

3. $V(y_i, f(\mathbf{x}_i)) = |1 - y_i f(\mathbf{x}_i)|_+$ $(y_i \in \{-1,1\}, |x|_+ = x \text{ für } x \ge 0, \text{ else } |x|_+ = 0)$ ⇒ Support Vector Machines Classification, SVMC

Global Overview of the Statistical Learning Theory - II

- 1. $V(y_i, f(\mathbf{x}_i)) = (y_i f(\mathbf{x}_i))^2$ $(y_i: \text{a real number}, V: \text{square error function})$ $\Rightarrow \text{Regularization Networks}, \text{RN}$
- 2. $V(y_i, f(\mathbf{x}_i)) = |y_i f(\mathbf{x}_i)|_{\epsilon}$ $(y_i: \text{ a real number, } |\cdot|_{\epsilon}: \text{ an } \epsilon\text{-independent norm})$ $\Rightarrow Support \ Vector \ Machines \ Regression, \ SVMR$
- 3. $V(y_i, f(\mathbf{x}_i)) = |1 y_i f(\mathbf{x}_i)|_+$ $(y_i: -1 \text{ oder } 1, |x|_+ = x \text{ für } x \ge 0, \text{ sonst } |x|_+ = 0)$ $\Rightarrow Support Vector Machines Classification, SVMC$

For modeling and control tasks, the first definition is most important.

卣

University of Hamburg

Universelal Function Approximation - I

A control-network can approximate all smooth functions with an arbitrary precision.

The general solution of this problem is:

$$f(x) = \sum_{i=1}^{l} c_i K(x; x_i)$$

where c_i are the coefficients.

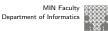
Function approximation

Universelal Function Approximation - II

Proposition of the approximation:

For any continuous function Y that is defined on the compact subset R^n and the core function K, there is a function $y^*(x) = \sum_{i=1}^{l} c_i K(x; x_i)$ that fulfills for all x and any ϵ :

$$|Y(x)-y^*(x)|<\epsilon$$



Universal Function Approximation - II

Using different kernel functions leads to different models:

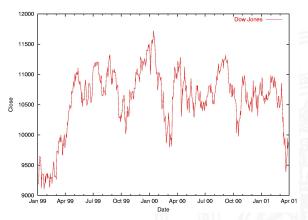
$K(\mathbf{x} - \mathbf{x}_i) = \exp(-\ \mathbf{x} - \mathbf{x}_i\ ^2)$	Gaussian RBF
$K(\mathbf{x} - \mathbf{x}_i) = (\ \mathbf{x} - \mathbf{x}_i\ ^2 + c^2)^{-\frac{1}{2}}$	Inverse multiquadratic functions
$K(\mathbf{x} - \mathbf{x}_i) = \tanh(\mathbf{x} \cdot \mathbf{x}_i - \theta)$	Multilayer perceptron
$\mathcal{K}(\mathbf{x} - \mathbf{x}_i) = (1 + \mathbf{x} \cdot \mathbf{x}_i)^d$	Polynomial of degree d
$K(x-x_i)=B_{2n+1}(x-x_i)$	B-Splines
$K(x-x_i) = \frac{\sin(d+\frac{1}{2})(x-x_i)}{\sin\frac{(x-x_i)}{2}}$	Trigonometric polynomial

Problems

University of Hamburg

- 1. "Curse of dimensionality" because of the exponential dependency between the memory requirements and the dimension of input space.
- 2. Aliasing within the feature extraction
- 3. Not available target data (y).
- 4. Not available input factors.

Learning from DJ-Data



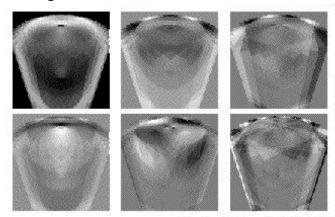
Dow-Jones-Index: can the function be modeled?

Example: Image Processing in Local Observation scenarios

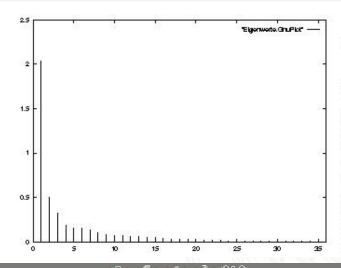
A sequence of gray scale images of an object is acquired by the movement along a fixed location:

Example: Extraction of Eigenvectors

The first 6 Eigenvectors:



Example: Eigenvectors and Eigenvalues

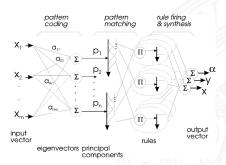


UHI

Combination of Dimension Reduction with B-Spline Model

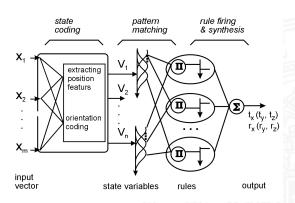
Eigenvectors can be partitioned by linguistic terms.

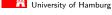
Such a combination of PCA and B-spline model can be considered as a Neuro-Fuzzy model.



卣

The Neuro-Fuzzy Model





The Training and Application Phases

