

Support Vector Machines VL Algorithmisches Lernen, Teil 3a

Norman Hendrich & Jianwei Zhang

University of Hamburg MIN Faculty, Dept. of Informatics Vogt-Kölln-Str. 30, D-22527 Hamburg hendrich@informatik.uni-hamburg.de

12/05/2010

Outline

Introduction Review of the linear classifier Maximum margin classification Soft-margin classification Kernels and feature maps

Support Vector Machines

- a.k.a. maximum margin classifiers
- a family of related
- supervised
- learning methods
- for classification and regression
- try to minimize the classification error
- while maximizing the geometric margin

Нуре

Introduction

SVMs are very popular today

- often the best solutions on classification benchmarks
- can handle large data sets
- an active research area
- but don't believe the hype (at least, all of it)
- good performance is not guaranteed
- selection of feature maps is critical
- requires prior knowledge and experiments
- and fine-tuning of parameters

Overall concept and architecture

- ▶ select a feature space \mathcal{H} and a mapping function $\Phi : x \mapsto \Phi(x)$
- select a classification (output) function σ

 $y(x) = \sigma(\sum_i \vartheta_i \langle \Phi(x), \Phi(x_i) \rangle)$

- during training, find the support-vectors $x_1 \dots x_n$
- and weights ϑ which minimize the classification error
- map test input x to $\Phi(x)$
- calculate dot-products $\langle \Phi(x)\Phi(x_i)\rangle$
- \blacktriangleright feed linear combination of the dot-products into σ
- get the classification result

Block-diagram

handwritten digit recognition

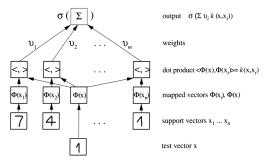


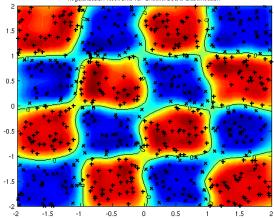
Figure 1.9 Architecture of SVMs and related kernel methods. The input x and the expansion patterns (SVs) x; (we assume that we are dealing with handwritten digits) are nonlinearly mapped (by Φ) into a feature space \mathcal{H} where dot products are computed. Through the use of the kernel k, these two layers are in practice computed in one step. The results are linearly combined using weights v_i , found by solving a quadratic program (in pattern recognition, $v_i = y_i \alpha_i$; in regression estimation, $v_i = \alpha_i^2 - \alpha_i$) or an eigenvalue problem (Kernel PCA). The linear combination is fed into the function or (in pattern recognition, $\sigma(x) = sqn(x + h)$; in regression estimation, $\sigma(x) = x + b$; in Kernel PCA, $\sigma(x) = x$).

Introduction

MIN Faculty Department of Informatics

SVM

Example: learning a checkers board



Regularization Networks for CheckerBoard Classification

<ロ> <日> <日> <日> <日> <日</p>

History

Three revolutions in machine learning (Shawe-Taylor & Cristianni 2004)

- ▶ 1960s: efficient algorithms for (linear) pattern detection
 - e.g., Perceptron (Rosenblatt 1957)
 - efficient training algorithms
 - good generalization
 - but insufficient for nonlinear data
- ▶ 1980s: multi-layer networks and backpropagation
 - can deal with nonlinear data
 - but high modeling effort, long training times
 - and risk of overfitting
- ▶ 1990s: SVMs and related Kernel Methods
 - "all in one" solution
 - considerable success on practical applications
 - based on principled statistical theory

History: SVM

Introduction

- seminal work by Vladimir Vapnik
- B. E. Boser, I. M. Guyon, and V. N. Vapnik, A training algorithm for optimal margin classifiers., 5th Annual ACM Workshop on COLT, pages 144-152, Pittsburgh, 1992
- C. Cortes and V. Vapnik, Support-Vector Networks, Machine Learning, 20, 1995. http://www.springerlink.com/content/k238jx04hm87j80g/
- H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and
 V. Vapnik Support Vector Regression Machines, Advances in Neural Information Processing Systems 9, NIPS 1996, 155-161
- The "bible": V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995

References

- V. Vapnik, The Nature of Statistical Learning Theory, Springer, 1995
- N. Cristianini, J. Shawe-Taylor, Introduction to Support Vector Machines and other kernel-based learning methods, Cambridge University Press, 2000
- J. Shawe-Taylor, N. Cristianini, Kernel Methods for Pattern Analysis, Cambridge University Press, 2004
- B. Schölkopf, A. J. Smola, *Learning with Kernels*, MIT Press, 2002
- L. Bottou, O. Chapelle, D. DeCoste, J. Weste (Eds), Large-Scale Kernel Machines, MIT Press, 2007

SVIVI

References: web resources

www.kernel-machines.org/

- A. W. Moore, Support Vector Machines, www.cs.cmu.edu/~awm, 2003
- S. Bloehdorn, *Maschinelles Lernen*, http://www.aifb.uni-karlsruhe.de/WBS/pci/ML/SVMs.pdf
- C.-C. Chang & C.-J. Lin, *libsvm* http://www.csie.ntu.edu.tw/~cjlin/libsvm/
- W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes – The Art of Scientific Computing, Cambridge University Press, 2007 (all algorithms on CD-ROM)

Review of the linear classifier

SVM

Review: binary classification

task:

- classify input test patterns x
- based on previously learned training patterns
- simplest case is binary classification,
- two-classes $y(x) = \{+1, -1\}$
- A first example algorithm:
 - classify based on distance to the
 - center-of-mass of the training pattern clusters
 - result can be written as $y = \operatorname{sgn}(\sum_i w_i \cdot x_i + b)$

MIN Faculty Department of Informatics

Simple classification example

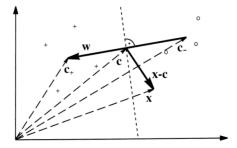


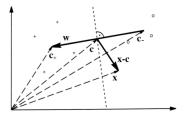
Figure 1.1 A simple geometric classification algorithm: given two classes of points (depicted by 'o' and '+'), compute their means c_+, c_- and assign a test pattern **x** to the one whose mean is closer. This can be done by looking at the dot product between $\mathbf{x} - \mathbf{c}$ (where $\mathbf{c} = (\mathbf{c}_+ + \mathbf{c}_-)/2$) and $\mathbf{w} := \mathbf{c}_+ - \mathbf{c}_-$, which changes sign as the enclosed angle passes through $\pi/2$. Note that the corresponding decision boundary is a hyperplane (the dotted line) orthogonal to **w**.

Review of the linear classifier

MIN Faculty Department of Informatics

SVM

Simple classification example (cont'd)



- two classes of data points ('o' and '+')
- calculate the means of each cluster (center of mass)
- assign test pattern x to the nearest cluster
- can be written as $y = \operatorname{sgn}(\sum_{i=1}^{m} \alpha_i \langle x, x_i \rangle + b)$

• with constant weights
$$\alpha_i = \{\frac{1}{m_+}, \frac{1}{m_-}\}$$

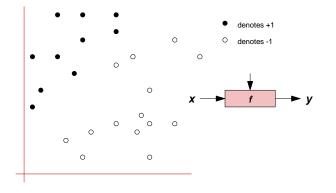
Simple classification example (cont'd)

> centers of mass:

$$c_+ = \frac{1}{m_+} \sum_{\{i|y_i=+1\}} x_i,$$

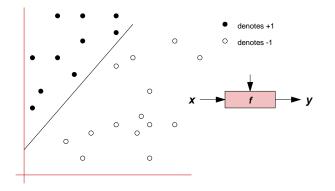
 $c_- = \frac{1}{m_-} \sum_{\{i|y_i=-1\}} x_i,$
> boundary point c: $c = (c_+ + c_-)/2$
> classification: $y = \operatorname{sgn}((x - c), w)$
> norm: $||x|| := \sqrt{\langle x, x \rangle}$
> rewrite: $y = \operatorname{sgn}(\langle (x, c_+) \rangle - \langle (x, c_-) \rangle + b)$
with $b = (||c_-||^2 - ||c_+||^2)/2$
> all together:
 $y = \operatorname{sgn}(\frac{1}{m_+} \sum_{\{i|y_i=+1\}} x_i \langle x, x_i \rangle - \frac{1}{m_-} \sum_{\{i|y_i=-1\}} x_i \langle x, x_i \rangle + b)$

Linear classification



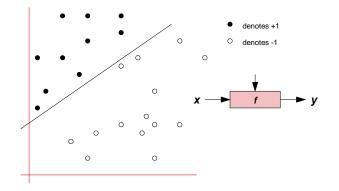
• find w and b, so that $y(x, w, b) = sgn(w \cdot x - b)$

Linear classification



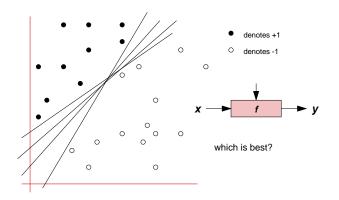
one possible decision boundary

Linear classification



and another one

Linear classification



which boundary is best?

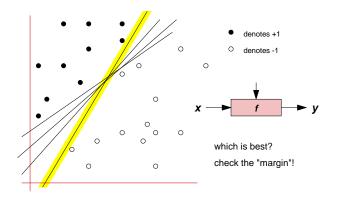
Remember: Perceptron

- can use the Perceptron learning algorithm
- to find a valid decision boundary
- convergence is guaranteed,
- iff the data is separable
- algorithm stops as soon as a solution is found
- but we don't know which boundary will be chosen

Perceptron training algorithm

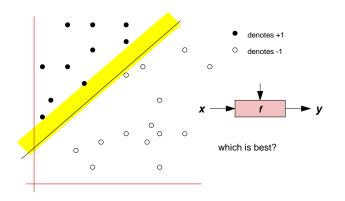
Input: data S **Initialize:** $w \leftarrow 0, b \leftarrow 0$ 1: repeat 2: $err \leftarrow 0$ 3: for $i = 1, ..., \ell$ do 4: compute $f(x_i) = \text{sign}(\langle w, \phi(x_i) \rangle + b)$ 5: if $f(x_i) \neq y_i$ then 6: $w \leftarrow w + y_i \phi(x_i)$ $b \leftarrow b + y_i$ 7: err = err + 18: end if 9: end for 10: 11[•] until err = 012: return w, b

The classifier margin



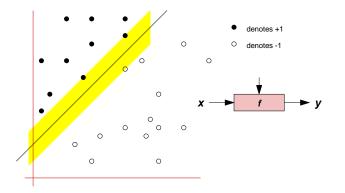
define the margin as the width that the boundary could be increased before hitting a data point.

The classifier margin



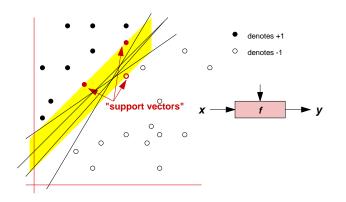
a second example: margin not symmetrical

Maximum margin classifier



- the classifier with the largest margin
- the simplest kind of SVM (called the linear SVM)

Support vectors



data points that limit the margin are called the support vectors

Why maximum margin?

- intuitively, feels safest
- least chance of misclassification if the decision boundary is not exactly correct
- statistical theory ("VC dimension") indicates that maximum margin is good
- empirically, works very well
- note: far fewer support-vectors than data points (unless overfitted)
- note: the model is immune against removal of all non-support-vector data points

The geometric interpretation

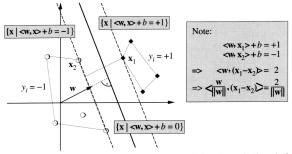
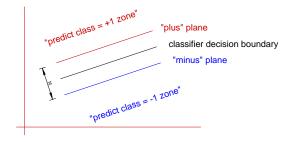


Figure 1.5 A binary classification toy problem: separate balls from diamonds. The *optimal hyperplane* (1.23) is shown as a solid line. The problem being separable, there exists a weight vector **w** and a threshold *b* such that $y_i(\langle \mathbf{w}, \mathbf{x} \rangle + b) > 0$ (i = 1, ..., m). Rescaling **w** and *b* such that the point(s) closest to the hyperplane satisfy $|\langle \mathbf{w}, \mathbf{x} \rangle + b \rangle = 1$, we obtain a *canonical* form (\mathbf{w}, b) of the hyperplane, satisfying $y_i(\langle \mathbf{w}, \mathbf{x} \rangle + b) \geq 1$. Note that in this case, the margin (the distance of the closest point to the hyperplane) equals $1/||\mathbf{w}||$. This can be seen by considering two points $\mathbf{x}_1, \mathbf{x}_2$ on opposite sides of the margin, that is, $\langle \mathbf{w}, \mathbf{x}_1 \rangle + b = 1$, $\langle \mathbf{w}, \mathbf{x}_2 \rangle + b = -1$, and projecting them onto the hyperplane normal vector $\mathbf{w}'||\mathbf{w}||$.

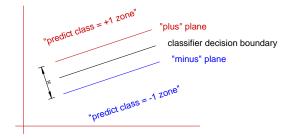
Step by step: calculating the margin width



- how to represent the boundary (hyperplane)
- and the margin width M
- ▶ in *m* input dimensions?

MIN Faculty Department of Informatics

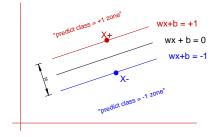
SVM



- plus-plane: $\{x: w \cdot x + b = +1\}$
- minus-plane: $\{x: w \cdot x + b = -1\}$
- ► classify pattern as +1 if $w \cdot x + b \ge +1$ and -1 if $w \cdot x + b \le -1$

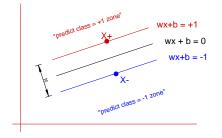
MIN Faculty Department of Informatics

SVM



- w is perpendicular to the decision boundary
- and the plus-plane and minus-plane
- ▶ proof: consider two points u and v on the plus-plane and calculate w · (u v)

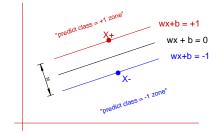
MIN Faculty Department of Informatics



- select point X^+ on the plus plane
- and nearest point X^- on the minus plane
- of course, margin width $M = |X^+ X^-|$
- and $X^+ = X^- + \lambda w$ for some λ

MIN Faculty Department of Informatics

SVM



$$w \cdot (X^{-} + \lambda w) + b = 1$$

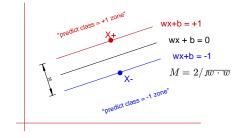
$$w \cdot X^{-} + b + \lambda w \cdot w = 1$$

$$-1 + \lambda w \cdot w = 1$$

$$\lambda = \frac{2}{w \cdot w}$$

MIN Faculty Department of Informatics

SVM



$$\lambda = \frac{2}{w \cdot w}$$

$$M = |X^+ - X^-| = |\lambda w| = \lambda |w|$$

$$M = \lambda \sqrt{w \cdot w} = 2/\sqrt{w \cdot w}$$

SVM

Training the maximum margin classifier

Given a guess of w and b we can

- compute whether all data points are in the correct half-planes
- compute the width of the margin

So: write a program to search the space of w and b to find the widest margin that still correctly classifies all training data points.

- but how?
- gradient descent? simulated annealing? ...
- usually, Quadrating programming

Learning via Quadratic Programming

- ▶ QP is a well-studied class of optimization algorithms
- maximize a quadratic function of real-valued variables
- subject to linear constraints
- could use standard QP program libraries
- ▶ e.g. MINOS
 - $http://www.sbsi-sol-optimize.com/asp/sol_products_minos.htm$
- e.g. LOQO http://www.princeton.edu/~rvdb/loqo
- ▶ or algorithms streamlined for SVM (e.g. large data sets)

Quadratic Programming

General problem:

- find $\arg \max_u \left(c + d^T u + \frac{1}{2} u^T R u \right)$
- ▶ subject to *n* linear inequality constraints $a_{11}u_1 + a_{12}u_2 + \cdots + a_{1m}u_m \le b_1$ $a_{21}u_1 + a_{22}u_2 + \cdots + a_{2m}u_m \le b_2$...

$$a_{n1}u_1+a_{n2}u_2+\cdots+a_{nm}u_m\leq b_n$$

subject to e additional linear equality constraints a_{(n+1)1}u₁ + a_{(n+1)2}u₂ + ··· + a_{(n+1)m}u_m = b_{n+1} ...

$$a_{(n+e)1}u_1 + a_{(n+e)2}u_2 + \cdots + a_{(n+e)m}u_m = b_{n+1}u_n$$

Maximum margin classification

MIN Faculty Department of Informatics

SVM

QP for the maximum margin classifier

Setup of the Quadratic Programming for SVM:

•
$$M = \lambda \sqrt{w \cdot w} = 2/\sqrt{w \cdot w}$$

• for largest M, we want to minimize $w \cdot w$

- assuming R data points (x_k, y_k) with $y_k = \pm 1$
- ▶ there are *R* constraints:

$$w \cdot x_k + b \ge +1$$
 if $y_k = +1$
 $w \cdot x_k + b \le -1$ if $y_k = -1$

Maximum margin classification

MIN Faculty Department of Informatics

SVM

QP for the maximum margin classifier

- solution of the QP problem is possible
- but difficult, because of the complex constraints

Instead, switch to the dual representation

- use the "Lagrange multiplier" trick
- introduce new dummy variables α_i
- ▶ this allows to rewrite with simple inequalities $\alpha_i \ge 0$
- solve the optimization problem, find α_i
- from the α_i , find the separating hyperplane (w)
- from the hyperplane, find b

SVM

The dual optimization problem

Directly solving this problem is difficult because the constraints are quite complex. The mathematical tool of choice for simplifying this problem is the Lagrangian duality theory (e.g., Bertsekas, 1995). This approach leads to solving the following dual problem:

$$\max \mathcal{D}(\boldsymbol{\alpha}) = \sum_{i=1}^{n} \alpha_i - \frac{1}{2} \sum_{i,j=1}^{n} y_i \alpha_i \, y_j \alpha_j \, \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}_j)$$

subject to
$$\begin{cases} \forall i \quad \alpha_i \ge 0, \\ \sum_i y_i \alpha_i = 0. \end{cases}$$
 (1.2)

Problem (1.2) is computationally easier because its constraints are much simpler. The direction \mathbf{w}^* of the optimal hyperplane is then recovered from a solution $\boldsymbol{\alpha}^*$ of the dual optimization problem (1.2).

$$\mathbf{w}^* = \sum_i \alpha_i^* y_i \Phi(\mathbf{x}_i).$$

Determining the bias b^* becomes a simple one-dimensional problem. The linear discriminant function can then be written as

$$\hat{y}(\mathbf{x}) = \mathbf{w}^{*\top} \mathbf{x} + b^* = \sum_{i=1}^n y_i \alpha_i \, \Phi(\mathbf{x}_i)^\top \Phi(\mathbf{x}) + b^*.$$
(1.3)

Dual representation

 In simple Perceptron training, the weight vector w can always be rewritten as a linear combination of training data points:

$$w = \sum_{i=1}^{\infty} \alpha_i y_i \phi(x_i).$$

 $\leftarrow \qquad w \leftarrow w + y_i x_i$

- Coefficient α_i says how often x_i was misclassified.
- Indirect evaluation of dot product with weight vector becomes possible without explicitly representing it.

$$\begin{aligned} \langle w, \phi(x) \rangle &= \left\langle \sum_{i=1}^{\ell} \alpha_i y_i \phi(x_i), \phi(x) \right\rangle \\ &= \sum_{i=1}^{\ell} \alpha_i y_i \left\langle \phi(x_i), \phi(x) \right\rangle. \end{aligned}$$

SVM

Dual representation of Perceptron learning

Algorithm 1 Perceptron Training (dual form) **Initialize:** $\alpha_1, \ldots, \alpha_\ell \leftarrow 0, b \leftarrow 0$ 1: repeat the only reference to $\phi(x)$ and only for the known data items. $err \leftarrow 0$ 2: 3: for $i = 1, \ldots, \ell$ do ---- rewritten $\gamma_i = y_i(\sum_{j=1}^{\ell} \alpha_j y_j(\phi(x_j), \phi(x_i)) + b) + b$ 4: if $\gamma_i \leq 0$ then 5: 6: $\alpha_i \leftarrow \alpha_i + 1$ >> rewritten $b \leftarrow b + u_i$ 7: rewritten err = err + 18. 9: end if end for 10: 11: **until** err = 012: return $\alpha_1, \ldots, \alpha_\ell, b$

Summary: Linear SVM

- based on the classical linear classifier
- maximum margin concept
- Imiting data points are called Support Vectors
- solution via Quadratic Programming
- dual formulation (usually) easier to solve

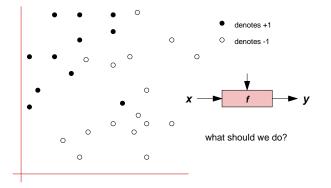
SVM

Classification of noisy input data?

- actual "real world" training data contains noise
- usually, several "outlier" patterns
- for example, mis-classified training data
- ► at least, reduced error-margins
- or worse, training set not linearly separable
- complicated decision boundaries
- complex kernels can handle this (see below)
- but not always the best idea
- risk of overfitting
- instead, allow some patterns to violate the margin constraints

MIN Faculty Department of Informatics

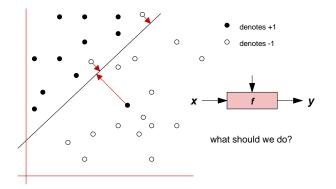
The example data set, modified



- not linearly separable!
- trust every data point?

SVM

Example data set, and one example classifier



- three points misclassified
- two with small margin, one with large margin

SVM

Noisy input data? Another toy example LWK, page 10

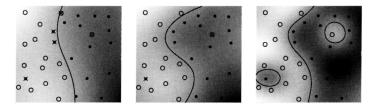


Figure 1.2 2D toy example of binary classification, solved using three models (the decision boundaries are shown). The models vary in complexity, ranging from a simple one (*left*), which misclassifies a large number of points, to a complex one (*right*), which "trusts" each point and comes up with solution that is consistent with all training points (but may not work well on new points). As an aside: the plots were generated using the so-called softmargin SVM to be explained in Chapter 7; cf. also Figure 7.10.

- allow errors?
- trust every data point?

Soft-margin classification Cortes and Vapnik, 1995

- allow some patterns to violate the margin constraints
- find a compromise between large margins
- and the number of violations

Idea:

- introduce slack-variables $\xi = (\xi_i \dots \xi_n), \ \xi_i \ge 0$
- which measure the margin violation (or classification error) on pattern x_i: y(x_i)(w · Φ(x_i) + b) ≥ 1 − ξ_i
- introduce one global parameter C which controls the compromise between large margins and the number of violations

• introduce slack-variables ξ_i

• and global control parameter C

$$\max_{w,b,\xi} \mathcal{P}(w,b,\xi) = \frac{1}{2}w^2 + C\sum_{i=1}^n \xi_i$$

subject to:

$$orall i: y(x_i)(w \cdot \Phi(x_i) + b) \geq 1 - \xi_i \ orall i: \xi_i \geq 0$$

- problem is now very similar to the hard-margin case
- ▶ again, the dual representation is often easier to solve

Slack parameters ξ_i , control parameter *C* (LSKM chapter 1)

Optimal hyperplanes (section 1.2.1) are useless when the training set is not linearly separable. Kernel machines (section 1.2.2) can represent complicated decision boundaries that accomodate any training set. But this is not very wise when the problem is very noisy.

Cortes and Vapnik (1995) show that noisy problems are best addressed by allowing some examples to violate the margin constraints in the primal problem (1.1). These potential violations are represented using positive slack variables $\boldsymbol{\xi} = (\xi_i \dots \xi_n)$. An additional parameter C controls the compromise between large margins and small margin violations.

$$\max_{\mathbf{w},b,\boldsymbol{\xi}} \mathcal{P}(\mathbf{w},b,\boldsymbol{\xi}) = \frac{1}{2} \mathbf{w}^2 + C \sum_{i=1}^n \xi_i$$

subject to
$$\begin{cases} \forall i \quad y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) \ge 1 - \xi_i \\ \forall i \quad \xi_i \ge 0 \end{cases}$$
 (1.4)

The dual formulation of this soft-margin problem is strikingly similar to the dual formulation (1.2) of the optimal hyperplane algorithm. The only change is the appearance of the upper bound C for the coefficients α .

SVM

Lagrange formulation of the soft-margin SVM

The difficulty of the primal problem (1.4) lies with the complicated inequality constraints that represent the margin condition. We can represent these constraints using positive Lagrange coefficients $\alpha_i \geq 0$.

$$\mathcal{L}(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}) = \frac{1}{2} \mathbf{w}^2 + C \sum_{i=1}^n \xi_i - \sum_{i=1}^n \alpha_i \left(y_i(\mathbf{w}^\top \Phi(\mathbf{x}_i) + b) - 1 + \xi_i \right).$$

The formal dual objective function $\underline{\mathcal{D}}(\boldsymbol{\alpha})$ is defined as

$$\underline{\mathcal{D}}(\boldsymbol{\alpha}) = \min_{\mathbf{w}, b, \boldsymbol{\xi}} L(\mathbf{w}, b, \boldsymbol{\xi}, \boldsymbol{\alpha}) \text{ subject to } \forall i \ \xi_i \ge 0.$$
(1.8)

This minimization no longer features the complicated constraints expressed by the Lagrange coefficients. The $\xi_i \geq 0$ constraints have been kept because they are easy enough to handle directly. Standard differential arguments¹ yield the analytical expression of the dual objective function.

$$\underline{\mathcal{D}}(\boldsymbol{\alpha}) = \begin{cases} \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i,j} y_{i} \alpha_{i} y_{j} \alpha_{j} K_{ij} & \text{if } \sum_{i} y_{i} \alpha_{i} = 0 \text{ and } \forall i \ \alpha_{i} \leq C, \\ -\infty & \text{otherwise.} \end{cases}$$

・ロト (四 ト (三 ト (三 ト ぐ ① ト

Dual formulation of soft-margin SVM

The rest of this chapter focuses on solving the soft-margin SVM problem (1.4) using the standard dual formulation (1.5),

$$\begin{aligned} \max \ \mathcal{D}(\boldsymbol{\alpha}) &= \sum_{i=1}^{n} \alpha_{i} - \frac{1}{2} \sum_{i,j=1}^{n} y_{i} \alpha_{i} \ y_{j} \alpha_{j} \ K_{ij} \\ \text{subject to} \quad \begin{cases} \forall i \quad 0 \leq \alpha_{i} \leq C, \\ \sum_{i} y_{i} \alpha_{i} = 0, \end{cases} \end{aligned}$$

where $K_{ij} = K(\mathbf{x}_i, \mathbf{x}_j)$ is the matrix of kernel values.

After computing the solution α^* , the SVM discriminant function is

$$\hat{y}(\mathbf{x}) = \mathbf{w}^{*\top} \mathbf{x} + b^* = \sum_{i=1}^n \alpha_i^* K(\mathbf{x}_i, \mathbf{x}) + b^*.$$
(1.6)

The optimal bias b^* can be determined by returning to the primal problem, or, more efficiently, using the optimality criterion (1.11) discussed below.

It is sometimes convenient to rewrite the box constraint $0 \le \alpha_i \le C$ as a box constraint on the quantity $y_i \alpha_i$:

$$y_i \alpha_i \in [A_i, B_i] = \begin{cases} [0, C] & \text{if } y_i = +1, \\ [-C, 0] & \text{if } y_i = -1. \end{cases}$$
(1.7)

イロト イヨト イヨト イヨト 今へで

The optimization problem

$$\max_{\boldsymbol{\alpha}'} \ \mathcal{D}(\boldsymbol{\alpha}') = \sum_{i=1}^{n} \alpha_i' - \frac{1}{2} \sum_{i,j=1}^{n} y_i \alpha_i' y_j \alpha_j' \ K(\mathbf{x}_i, \mathbf{x}_j)$$

subject to
$$\begin{cases} \forall i \notin \mathcal{B} \quad \alpha_i' = \alpha_i, \\ \forall i \in \mathcal{B} \quad 0 \le \alpha_i' \le C, \\ \sum_i y_i \alpha_i' = 0. \end{cases}$$
(1.19)

We can rewrite (1.19) as a quadratic programming problem in variables α_i , $i \in \mathcal{B}$ and remove the additive terms that do not involve the optimization variables α' :

$$\max_{\boldsymbol{\alpha}'} \sum_{i \in \mathcal{B}} \alpha'_i \left(1 - y_i \sum_{j \notin \mathcal{B}} y_j \alpha_j K_{ij} \right) - \frac{1}{2} \sum_{i \in \mathcal{B}} \sum_{j \in \mathcal{B}} y_i \alpha'_i y_j \alpha'_j K_{ij}$$
(1.20)
subject to $\forall i \in \mathcal{B} \quad 0 \le \alpha'_i \le C$ and $\sum_{i \in \mathcal{B}} y_i \alpha'_i = -\sum_{j \notin \mathcal{B}} y_j \alpha_j.$

How to select the control parameter?

- ▶ of course, the optimization result depends on the specified control parameter C
- how to select the value of C?
- depends on the application and training data
- Numerical Recipes recommends the following
 - start with C = 1
 - then try to increase or decrease by powers of 10
 - until you find a broad plateau where the exact value of C doesn't matter much
 - good SVM solution should classify most patterns correctly,
 - with many $\alpha_i = 0$ and many $\alpha_i = C$, but only a few in between

Summary: soft-margin SVM

- same concept as the linear SVM
- try to maximize the decision margin
- allow some patterns to violate the margin constraints
- compromise between large margin and number of violations
- introduce a control parameter C
- and new inequality parameters ξ_i (slack)
- again, can be written as a QP problem
- again, dual formulation easier to solve

MIN Faculty Department of Informatics

SVM

Nonlinearity through feature maps

General idea:

 introduce a function Φ which maps the input data into a higher dimensional *feature space*

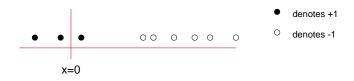
$$\Phi: x \in X \mapsto \Phi(x) \in \mathcal{H}$$

- similar to hidden layers of multi-layer ANNs
- explicit mappings can be expensive in terms of CPU and/or memory (especially in high dimensions)
- "Kernel functions" achieve this mapping implicitly
- often, very good performance

MIN Faculty Department of Informatics

SVM

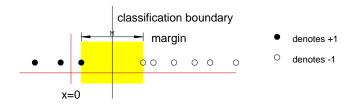
Example 1-dimensional data set



what would the linear SVM do with these patterns?

MIN Faculty Department of Informatics

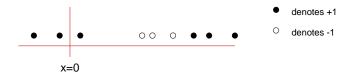
Example 1-dimensional data set



- what would the linear SVM do with these patterns?
- not a big surprise!
- maximum margin solution

MIN Faculty Department of Informatics

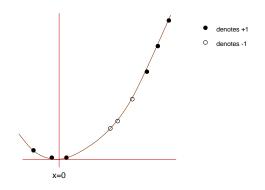
Harder 1-dimensional data set



- ▶ and now?
- doesn't look like "outliers"
- ▶ so, soft-margin won't help a lot

MIN Faculty Department of Informatics

Harder 1-dimensional data set

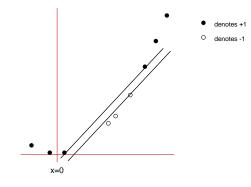


permit non-linear basis functions

$$\blacktriangleright z_k = (x_k, x_k^2)$$

MIN Faculty Department of Informatics

Harder 1-dimensional data set

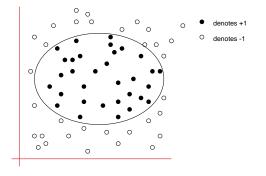


►
$$z_k = (x_k, x_k^2)$$

data is now linearly separable!

MIN Faculty Department of Informatics

Similar for 2-dimensional data set



clearly not linearly separable in 2D

• introduce
$$z_k = (x_k, y_k, \sqrt{2}x_ky_k)$$

MIN Faculty Department of Informatics

Common SVM feature maps basis functions

- $z_k = ($ polynomial terms of x_k of degree 1 to q)
- $z_k = ($ radial basis functions of $x_k)$
- $z_k = ($ sigmoid functions of $x_k)$
- ٠...
- combinations of the above

Note:

- feature map Φ only used in inner products
- for training, information on pairwise inner products is sufficient

Kernel: definition

Definition 1 (Kernel): A *Kernel* is a function K, such that for all $x, z \in \mathcal{X}$:

$$K(x,z) = \langle \phi(x), \phi(z) \rangle.$$

where Φ is a mapping from ${\cal X}$ to an (inner product) feature space ${\cal F}.$

SVM

Example: polynomial Kernel

• consider the mapping: $\Phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2) \in \mathbb{R}^3$

• evaluation of dot products:

$$\langle \Phi(x), \Phi(z) \rangle$$

 $= \langle (x_1^2, \sqrt{2}x_1x_2, x_2^2), (z_1^2, \sqrt{2}z_1z_2, z_2^2) \rangle$
 $= x_1^2 z_1^2 + 2x_1 x_2 z_1 z_2 + x_2^2 z_2^2$
 $= (x_1 z_1 + x_2 z_2)^2 = \langle x, z \rangle^2 = \kappa(x, z)$

▶ kernel does not uniquely determine the feature space: $\Phi'(x) = (x_1^2, x_2^2, x_1x_2, x_2x_1) \in \mathbb{R}^4$ also fits to $k(x, z) = \langle x, z \rangle^2$

SVM

Example: quadratic kernel, m dimensions

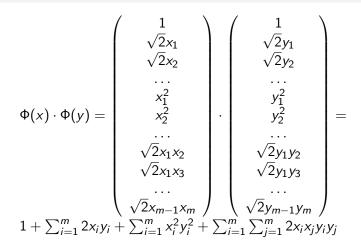
►
$$x = (x_1, ..., x_m)$$

► $\Phi(x) = ($
 $1,$
 $\sqrt{2}x_1, \sqrt{2}x_2, ..., \sqrt{2}x_m,$
 $x_1^2, x_2^2, ..., x_m^2,$
 $\sqrt{2}x_1x_2, \sqrt{2}x_1x_3, ..., \sqrt{2}x_{m-1}x_m)$

- constant, linear, pure quadratic, cross quadratic terms
- in total (m+2)(m+1)/2 terms (roughly $m^2/2$)
- so, complexity of evaluating $\Phi(x)$ is $O(m^2)$
- for example, m = 100 implies 5000 terms...

SVM

Example: quadratic kernel, scalar product



Example: scalar product

- calculating $\langle \Phi(x), \Phi(y) \rangle$ is $O(m^2)$
- for comparison, calculate $(x \cdot y + 1)^2$:

►
$$(x \cdot y + 1)^2 = ((\sum_{i=1}^m x_i \cdot y_i) + 1)^2$$

= $(\sum_{i=1}^m x_i y_i)^2 + 2(\sum_{i=1}^m x_i y_i) + 1$
= $\sum_{i=1}^m \sum_{j=1}^m x_i y_i x_j y_j + 2 \sum_{i=1}^m x_i y_i + 1$
= $\sum_{i=1}^m (x_i y_i)^2 + 2 \sum_{i=1}^m \sum_{j=1}^m x_i y_i x_j y_j + 2 \sum_{i=1}^m x_i y_i + 1$
= $\Phi(x) \cdot \Phi(y)$

• we can replace $\langle \Phi(x), \Phi(y) \rangle$ with $(x \cdot y + 1)^2$, which is O(m)

Polynomial kernels

- the learning algorithm only needs $\langle \Phi(x), \Phi(y) \rangle$
- For the quadratic polynomial, we can replace this by (⟨x, y⟩ + 1)²
- optional, use scale factors: $(a\langle x, y \rangle + b)^2$
- calculating one scalar product drops from $O(m^2)$ to O(m)
- overall training algorithm then is $O(mR^2)$
- same trick also works for cubic and higher degree
- ► cubic polynomial kernel: (a⟨x, y⟩ + b)³, includes all m³/6 terms up to degree 3
- ▶ quartic polynomial kernel: $(a\langle x, y \rangle + b)^4$ includes all $m^4/24$ terms up to degree 4
- etc.

Polynomial kernels

- for polynomial kernel of degree d, we use $(\langle x, y \rangle + 1)^d$
- calculating the scalar product drops from $O(m^d)$ to O(m)
- algorithm implicitly uses an enourmous number of terms
- high theoretical risk of overfitting
- but often works well in practice
- note: same trick is used to evaluate a test input: $y(x_t) = \sum_{i=1}^{R} \alpha_k y_k (\langle x_k, x \rangle + 1)^d)$
- note: $\alpha_k = 0$ for non-support vectors, so overall O(mS) with the number of support vectors S.

Kernel "Design"

How to get up a useful kernel function?

- derive it directly from explicit feature mappings
- design a similarity function for your input data, then check whether it is a valid kernel function
- use the application domain to guess useful values of any kernel parameters (scale factors)
- For example, for polynomial kernels make (a⟨x, y⟩ + b) lie between ±1 for all i and j.

Kernel composition

Given Kernels K_1 and K_2 over $X \times X$, the following functions are also kernels:

•
$$K(x,z) = \alpha K_1(x,z), \alpha \in \mathbb{R}^+;$$

•
$$K(x,z) = K_1(x,z) + c, c \in {\rm I\!R}^+;$$

•
$$K(x,z) = K_1(x,z) + K_2(x,z);$$

•
$$K(x,z) = K_1(x,z) \cdot K_2(x,z);$$

•
$$K(x,z) = x'Bz, X \subseteq \mathbb{R}^n, B$$
 pos. sem.-def.

Gaussian Kernel

$$\mathcal{K}(x,z) = \expig(-rac{||x-z||^2}{2\sigma^2}ig)$$

- \blacktriangleright with "bandwidth" parameter σ
- kernel evaluation depends on distance of x and z
- Iocal neighborhood classification
- \blacktriangleright initialize σ to a characteristic distance between nearby patterns in feature space
- large distance implies orthogonal patterns

The Kernel "Trick"

- rewrite the learning algorithm
- such that any reference to the input data happens from within inner products
- replace any such inner product by the kernel function
- work with the (linear) algorithm as usual
- many well-known algorithms can be rewritten using the kernel approach

Summary: Kernels

- non-linearity enters (only) through the kernel
- but the training algorithm remains linear
- free choice of the kernel (and feature map)
- based on the application
- polynomial or Gaussian kernels often work well
- some examples of fancy kernels next week

Summary: Support Vector Machine

based on the linear classifier

Four new main concepts:

- maximum margin classification
- soft-margin classification for noisy data
- introduce non-linearity via feature maps
- kernel-trick: implicit calculation of feature maps
- use Quadratic Programming for training
- polynomial or Gaussian kernels often work well