
Algorithmisches Lernen/Machine Learning

Part 1: Stefan Wermter

• Introduction
• Connectionist Learning (e.g. Neural Networks)
• Decision-Trees, Genetic Algorithms

Part 2: Norman Hendrich

• Support-Vector Machines
• Learning of Symbolic Structures
• Bayesian Learning (2)

• Dimensionality Reduction

Part 3: Jianwei Zhang

• Function approximation
• Reinforcement Learning
• Applications in Robotics
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Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks
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Bayesian/Belief Networks

• modelling all dependencies for a joint probability is impossible

P(U) = P(X1|X2, ..., Xn)P(X2|X3, ..., Xn)P(X3|X4, ..., Xn)P(Xn)

• exponential in the number of variables

• reason: no independence assumptions

• ignoring the dependencies (naïve Bayes) is too strong a

simplification

• goal: controlling the dependence/independence of variables

• recommended reading:

Jensen, Finn V. and Nielsen, Thomas D. (2007) Bayesian

Networks and Decision Graphs. Springer 2007.
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Bayesian/Belief Networks

• causal reasoning: P(X |Y1, ..., Yn)

• causal reasoning works in both directions:

P(Waterlevel |Rainfall)

• knowing that there was heavy/no rainfall will increase the belief

that there will be a high/low water level
• knowing there is a high/low water level will increase the belief

that there was heavy/no rainfall
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Bayesian/Belief Networks

• graphical models: variables are connected by edges if there is a

causal relationship between them

Rainfall Water level

• independence assumption for Bayesian networks:

• a variable is independent of its non-descendants given its

immediate predecessors
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Bayesian/Belief Networks

• conditional independence:

X is independent of Y given Z if

∀xi∀yj∀zk .P(X = xi |Y = yj , Z = zk ) = P(X = xi |Z = zk )

• short:

P(X |Y , Z ) = P(X |Z )

• extention to sets of variables

P(X1...Xl |Y1...Ym, Z1...Zn) = P(X1...Xl |Z1...Zn)
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Bayesian/Belief Networks

• three cases

• sequences of causal influence
• diverging connections
• converging connections
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Bayesian/Belief Networks

• sequences:

A B C

• if B is instantiated the value of C is independent of the value of

A
• instantiating B blocks communication between A and C
• A and C are d-separated given B
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Bayesian/Belief Networks

Rainfall Water level Flooding

• knowing that there was heavy rainfall will increase the belief that

there will be a high water level and subsequently that there will be

a flooding

• knowing there is a flooding will increase the belief that there is

high water level and subsequently that there was heavy rainfall

• knowing that there is a high water level the additional knowledge

about a flooding does not change the belief in heavy rainfall

• knowing that there is a high water level the additional knowledge

about heavy rainfall does not change the belief in a flooding
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Bayesian/Belief Networks

• diverging connections:

A

B C D

• instantiating A blocks communication between B, C and D

• B, C, and D are d-separated given A
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Bayesian/Belief Networks

Sex

Hair length Stature

• hair length gives evidence about the sex and the stature

• stature gives evidence about the sex and the hair length

• knowing the sex the additional knowledge about the hair

length/the stature gives no additional knowledge about the

stature/hair length
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Bayesian/Belief Networks

• converging connections

A

B C D

• B, C, and D are not d-separated if either A or one of its

descendants is instantiated

• no information flow if A is not instantiated

• ”explaining away” effect
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Bayesian/Belief Networks

Car starts

Gasoline Spark plugs

• if no information on whether the car starts is available the

information that the fuel tank is empty does not say anything

about the state of the spark plugs

• if we know the car does not start the additional knowledge that the

tank is empty/the spark plugs are dirty will decrease the belief that

the spark plugs are dirty/the car is empty
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Bayesian/Belief Networks

• evidence about a variable: statement about the certainty of its

state (value)

• hard evidence: knowing the value (the variable is instantiated)

• soft evidence: otherwise

A

B

C

D E

• hard evidence about E gives soft evidence about A

• soft evidence is sufficient for explaining away a reason

• blocking requires always hard evidence
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Bayesian/Belief Networks

• a Bayesian/belief network is a joint probability distribution over a

set of variables consisting

• of a set of local conditional probabilities between the variables
• together with a set of conditional independence assumptions
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Bayesian/Belief Networks

• belief networks are represented by a directed acyclic graph

• nodes: variables with a finite set of mutually exclusive states

(values)

• edges between nodes: modelling causal relationships

• conditional probability distributions for the values of each node A

given the values of the parent nodes B1, ...Bn P(A|B1, ..., Bn)

• if a node has no parents the conditional probabilities reduce to

unconditional ones P(A)
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Bayesian/Belief Networks

• if P(U) is known every probability P(Ai) or P(Ai |e) can be

computed.

• U = {A1, A2, ..., An} is the universe of variables of a Bayesian

network
• e is evidence about some of the variables in the Bayesian

network

• computing P(U) is infeasible in the general case

• great number of conditional probabilities which are impossible

to estimate
• naive computation of P(U) is exponential in the number of

variables
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Bayesian/Belief Networks

• exploiting the independence assumptions captured by the

network structure

• chain rule for Bayesian networks

P(U) =
n∏

i=1

P(Ai |pa(Ai))

• Ai are variables
• P(Ai |...) (conditional) probability distributions (potentials)
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Modelling with Bayesian Networks

• causal reasoning: the probability of Campfire depends on Storm,

and BusTourGroup , and nothing else
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Modelling with Bayesian Networks

• direct influence

Fever Soar throat See spots

Cold Angina

• causal model: generates the observations
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Modelling with Bayesian Networks

• indirect influence

Pregnant

Blood test Urine test
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Modelling with Bayesian Networks

• indirect influence

Pregnant

Blood test Urine test

Pregnant

Hormonal state

Blood test Urine test
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Modelling with Bayesian Networks

• indirect influence

Pregnant

Blood test Urine test

Pregnant

Hormonal state

Blood test Urine test

• mediating variables
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Modelling with Bayesian Networks

• temporal sequences: Poker game

Opponents hand 0

First change

Opponents hand 1

Second change

Opponents hand 2
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Modelling with Bayesian Networks

• Naïve Bayes model

V

X1 X2
. . . Xn
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Inference in Bayesian Networks

• general case: computing the probability distribution of any subset

of variables given the values or distributions for any subset of the

remaining variables

• special case: computing the probability distribution of a variable

given the values or distributions for the remaining variables
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Inference in Bayesian Networks

• computation of a probability means marginalizing out all the other

variables from the joint probability of a variable assignment ...

P(Ai) =
∑

Aj ,j 6=i

n∏

j=1

P(Aj |parents(Aj))

• ... without computing the joint probability distribution

P(A1, ..., An) =
n∏

i=1

P(Ai |parents(Ai))

• tractability requirement: keep the conditional probability

distributions of intermediate results as small as possible
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Inference in Bayesian Networks

• marginalizing out a variable

P(A1) =
∑

A2

P(A1, A2)

P(Ai) =
∑

Aj ,j 6=i

P(A1, ..., An)
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Inference in Bayesian Networks

A1

A2 A3

A4 A5 A6

P(A4) =
∑

A1,A2,A3,A5,A6

P(U)

=
∑

A1,A2,A3,A5,A6

n∏

j=1

P(Aj |parents(Aj))

=
∑

A1,A2,A3,A5,A6

P(A1)P(A2|A1)P(A3|A1)P(A4|A2)

P(A5|A2, A3)P(A6|A3)
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Inference in Bayesian Networks

• distributive law for probability distributions

∑

A

P(B|...)P(C|...) = P(B|...)
∑

A

P(C|...) A /∈ dom(P(B|...))

dom(P(A|B1, ..., Bn)) = {A, B1, ..., Bn}
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Inference in Bayesian Networks

P(A4) =
X

A1,A2,A3,A5,A6

n
Y

j=1

P(Aj |parents(Aj))

=
X

A1,A2,A3,A5,A6

P(A1)P(A2|A1)P(A3|A1)P(A4|A2)P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2,A3,A5,A6

P(A2|A1)P(A3|A1)P(A4|A2)P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2

P(A2|A1)
X

A3,A5,A6

P(A3|A1)P(A4|A2)P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2

P(A2|A1)
X

A3

P(A3|A1)
X

A5,A6

P(A4|A2)P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2

P(A2|A1)
X

A3

P(A3|A1)P(A4|A2)
X

A5,A6

P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2

P(A2|A1)P(A4|A2)
X

A3

P(A3|A1)
X

A5,A6

P(A5|A2, A3)P(A6|A3)

=
X

A1

P(A1)
X

A2

P(A2|A1)P(A4|A2)
X

A3

P(A3|A1)
X

A5

P(A5|A2, A3)
X

A6

P(A6|A3)
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Inference in Bayesian Networks

P(A4) =
X

A1

P(A1)
X

A2

P(A2|A1)P(A4|A2)
X

A3

P(A3|A1)
X

A5

P(A5|A2, A3)
X

A6

P(A6|A3)

P(A6|A3)
P

A6
P(A5|A2, A3)

×
P

A5
P(A3|A1)

×
P

A3
P(A4|A2)

×P(A2|A1)

×
P

A2
P(A1)

×
P

A1

elimination order:

A6, A5, A3, A2, A1, A4
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Inference in Bayesian Networks

• usually several alternative elimination orders

• goal: determining the optimal elimination order (for all variables)

• domain graph: connects all variables which appear together in a

domain of a probability distribution

• contains all edges of the Bayesian network plus connections

between nodes which share a common child node

A1

A2 A3

A4 A5 A6
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Inference in Bayesian Networks

• perfect elimination sequence: elimination sequence which does

not produce additional links (fill-ins) in the domain graph

• it avoids computing new distributions

A4

A1

A2 A3

A5 A6
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Inference in Bayesian Networks
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not produce additional links (fill-ins) in the domain graph

• it avoids computing new distributions

A4

A1

A2
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Inference in Bayesian Networks

• perfect elimination sequences for the example

A6, A5, A3, A1, A2, A4

A5, A6, A3, A1, A2, A4

A1, A5, A6, A3, A2, A4

A6, A1, A3, A5, A2, A4

• a perfect elimination sequence ending in variable A is optimal with

respect to calculating P(A)

• complete task: find an optimal elimination sequence for each

variable in U
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Inference in Bayesian Networks

• triangulated graph: graph which contains a perfect elimination

sequence

A1 A2

A3

A4 A5

A1 A2

A3

A4 A5

triangulated not triangulated
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Inference in Bayesian Networks

• checking for a perfect elimination sequence: successively

eliminate simplical nodes from the graph until all nodes have been

removed

• simplical node: node with a complete neighbor set

• complete set: all nodes are pairwise connected

A1 A2

A3 A4

A5 A6

A1 A2

A4

A5 A6
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Inference in Bayesian Networks

• clique: complete set which is not a subset of another complete

set, i.e. a maximal complete set

• a node X is simplical iff its familiy fa(X ) is a clique

• an undirected graph is triangulated iff all nodes can be eliminated

by successively eliminate simplical nodes

• procedure for finding a clique

1. eliminate a simplical node A if fa(A) is a clique candidate

2. if fa(A) does not contain all the remaining nodes continue with

1

3. prune the set of clique candidates by removing all sets that are

subsets of other clique candidates
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Inference in Bayesian Networks

• join tree:

• nodes: cliques of a graph
• all nodes on a path between two nodes V and W contain the

intersection V ∩W

• if the cliques of a graph can be arranged as a join tree, the graph

is triangulated

BCDE

ABCD DEFI

BCDG

CGHJ

BCDE

ABCD DEFI

BCDG

CGHJ

a join tree not a join tree
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Inference in Bayesian Networks

• procedure for constructing a join tree

1. start with a simplical node X , i.e. fa(X ) is a clique

2. remove nodes from fa(X ) that have neighbors only in fa(X )
3. fa(X ) receives an index according to the number of nodes

removed so far

4. the set of remaining nodes of fa(X ) is called a separator

5. continue with 1 until all the cliques have been removed

A B E

C D F

H G I

J

ABCD

V1

BCD

S1

DEFI

V3

DE

S3

CGHJ

V5

CG

S5

BCDG

V6

BCD

S6

BCDE

V10
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Inference in Bayesian Networks

• procedure for constructing a join tree (2)

• connect each separator Si to a clique Vj such that j > i and

Si ⊂ Vj

ABCD

V1

BCD

S1

DEFI

V3

DE

S3

CGHJ

V5

CG

S5

BCDG

V6

BCD

S6

BCDE

V10
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Inference in Bayesian Networks

• triangulation of graphs

• eliminate simplical nodes
• if the remaining graph does not contain a simplical node

choose an arbitrary node and make its family complete by

adding fill-ins

• non-deterministic choice

• heuristics: eliminate the node with minimal

sz(fa(X )) =
∏

Y∈fa(X)

|sp(Y )|

sp(X ): number of values (states) of variable X
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Inference in Bayesian Networks

• updating probabilities after receiving evidence

P(U , e) =
∏

A∈U

P(A|pa(A))
m∏

i=1

ei

• ei is a vector over {0, 1} associated with a particular node,

specifying which states (values) are possible/impossible

P(A|e) =

∑
U\{A} P(U , e)

P(e)
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Learning of Bayesian Networks

• estimating the probabilities for a given structure

• for complete data:

• maximum likelihood estimation
• Bayesian estimation

• for incomplete data

• expectation maximization
• gradient descent methods

• learning the network structure
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Learning of Bayesian Networks

• expectation maximization

• calculate the table of expected counts

E

Θt

(N(Xi , pa(Xi))|D) =
∑

d∈D

P(Xi , pa(Xi)|d , Θt)

• use the expected counts as if they were actual counts to

compute a new likelihood estimate for Θ

Θ̂ijk =
EΘt (N(Xi = k), pa(Xi) = j)|D

∑|sp(Xi )|
h=1 EΘt (N(Xi = h, pa(Xi) = j |D)

|sp(X )|: number of values of X
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Learning of Bayesian Networks

• learning the network structure

• space of possible networks is extremely large (> O(2n))

• a Bayesian network over a complete graph is always a possible

answer, but not an interesting one (no modelling of

independencies)

• problem of overfitting

• two apporaches

• constraint-based learning
• (score-based learning)
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Learning of Bayesian Networks

• constraint-based structure learning

• estimate the pairwise degree of independence using

conditional mutual information
• determine the direction of the arcs between non-independent

nodes
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Learning of Bayesian Networks

• conditional mutual information

CMI(A, B|X ) =
∑

X

P̂(X )
∑

A,B

P̂(A, B|X )log2
P̂(A, B|X )

P̂(A|X )P̂(B|X )

• two nodes are independent if CMI(A, B|X ) = 0

• choose all pairs of nodes as non-independent, where the

significance of a χ2-test on the hypothesis CMI(A, B|X ) = 0 is

above a certain user-defined threshold

• high minimal significance level: more links are established

• result is a skeleton of possible candidates for causal influence
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Learning of Bayesian Networks

• determining the direction of the causal influence

• Rule 1 (introduction of v-structures): A− C and B − C but not

A− B introduce a v-structure A→ C ← B if there exists a set

of nodes X so that A is d-separated from B given X

A B

C

A B

C

• Rule 2 (avoid new v-structures): When Rule 1 has been

exhausted and there is a structure AtoC − B but not A− B

then direct C → B
• Rule 3 (avoid cycles): If A→ B introduces a cycle in the graph

do A← B
• Rule 4 (choose randomly): If no other rule can be applied to

the graph, choose an undirected link and give it an arbitrary

direction
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Learning of Bayesian Networks

A B

C D E

F G

Rule 1

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4
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Learning of Bayesian Networks

• independence/non-independence candidates might contradict

each other

• ¬I(A, B),¬I(A, C),¬I(B, C), but I(A, B|C), I(A, C|B) and I(B, C|A)

• remove a link and build a chain out of the remaining ones

A B

C

A B

C

• uncertain region: different heuristics might lead to different

structures
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Learning of Bayesian Networks

• I(A, C), I(A, D), I(B, D)

A D

B C

A D

B C

E

• problem might be caused by a hidden variable E → B E → C

A→ B D → C
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Learning of Bayesian Networks

• useful results can only be expected, if

• the data is complete
• no (unrecognized) hidden variables obscure the induced

influence links
• the observations are a faithful sample of an underlying

Bayesian network

• the distribution of cases in D reflects the distribution

determined by the underlying network
• the estimated probability distribution is very close to the

underlying one

• the underlying distribution is recoverable from the observations
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Learning of Bayesian Networks

• example of an unrecoverable distribution:

• two switches: P(A = up) = P(B = up) = 0.5
• P(C = on) = 1 if val(A) = val(B)
• → I(A, C), I(B, C)

A B C

• problem: independence decisions are taken on individual links

(CMI), not on complete link configurations

P(C|A, B) =

(
1 0

0 1

)
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Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks
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Markov Models

• Markov Models (n-gram)

• Hidden Markov Models

• Training of Hidden Markov Models
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• Markov Models (n-gram)

• Hidden Markov Models

• Training of Hidden Markov Models
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Markov Models

• special case of Bayesian/belief networks for describing sequential

observations

• modelling dependencies of various lengths

• bigrams: P(yi |yi−1)
• trigrams: P(yi |yi−2yi−1)
• quadrograms: P(yi |yi−3yi−2yi−1)
• ...

• e.g. to predict the probability of the next event

• speech and language processing, genome analysis, time series

predictions (stock market, natural desasters, ...)
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Markov Models

• examples of Markov chains for German letter sequences

• unigrams

aiobnin*tarsfneonlpiitdregedcoa*ds*e*dbieastnreleeucdkeaitb*

dnurlarsls*omn*keu**svdleeoieei* . . .

• bigrams

er*agepteprteiningeit*gerelen*re*unk*ves*mterone*hin*d*an*

nzerurbom* . . .

• trigrams

billunten*zugen*die*hin*se*sch*wel*war*gen*man*nicheleblant*

diertunderstim* . . .

• quadrograms

eist*des*nich*in*den*plassen*kann*tragen*was*wiese*zufahr* . . .
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Markov Models

• Markov Models (n-gram)

• Hidden Markov Models

• Training of Hidden Markov Models
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Hidden Markov Models

• symbol strings are usually fully observable

→ estimating the probabilities by counting and normalizing

• observation may depend on a underlying, not observable

stochastic process

→ Hidden Markov Models
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Hidden Markov Models

• Hidden Markov Model: doubly stochastic process

• state transitions Pt(si |si−1): states change randomly
• emission of symbols from states pe(~x |si): observations are

generated randomly
• initial state: Pi(si)

s1 s2

s3 s4

x1 . . . x3 x1 . . . x3

x1 . . . x3 x1 . . . x3
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Hidden Markov Models

• Hidden Markov Models are able to capture the same regularities

with vastly different probability estimations

→ high flexibility to accomodate unknown regularities

• example: coin

• emission probability only

0.5 0.5

heads tails
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Hidden Markov Models

• transition probabilities only (1st order Markov model)

0.5

0.5

0.5 0.5

heads tails
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Hidden Markov Models

• transition probabilities only (1st order Markov model)

0.5

0.5

0.5 0.5

heads tails

• Hidden Markov Models for the observation

0.5

0.5

0.5 0.5

1 0

heads tails

0 1

heads tails
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Hidden Markov Models

• transition probabilities only (1st order Markov model)

0.5

0.5

0.5 0.5

heads tails

• Hidden Markov Models for the observation

0.5

0.5

0.5 0.5

1 0

heads tails

0 1

heads tails

0.5

0.5

0.5 0.5

0.5 0.5

heads tails

0.5 0.5

heads tails
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Hidden Markov Models

• alternative HMMs for the same observation

0.5

0.5

0.5 0.5

0.3 0.7

heads tails

0.7 0.3

heads tails
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Hidden Markov Models

• alternative HMMs for the same observation

0.5

0.5

0.5 0.5

0.3 0.7

heads tails

0.7 0.3

heads tails

0.7

0.3

0.3 0.7

0.5 0.5

heads tails

0.5 0.5
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Hidden Markov Models

• alternative HMMs for the same observation

0.5

0.5

0.5 0.5

0.3 0.7

heads tails

0.7 0.3

heads tails

0.7

0.3

0.3 0.7

0.5 0.5

heads tails

0.5 0.5

heads tails

• even more possibilities for biased coins or coins with more than

two sides
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Hidden Markov Models

• example: part-of-speech tagging

t1 t2

t3 t4

w1 . . . w3 w1 . . . w3

w1 . . . w3 w1 . . . w3

• sequence labelling problem

• one-to-one correspondence between states and tags

• typical case: trigram transition probabilities

• emission of words depending on the state
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Hidden Markov Models

• example: speech recognition

• subsequences of observations are mapped to one label

• model topologies for phones (only transitions depicted)
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Hidden Markov Models

• example: speech recognition

• subsequences of observations are mapped to one label

• model topologies for phones (only transitions depicted)

the more data available→ the more sophisticated models can be

trained
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Markov Models

• Markov Models (n-gram)

• Hidden Markov Models

• Training of Hidden Markov Models
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Training of Hidden Markov Models

• special case of EM: Baum-Welch training

• start with an initial parameter set
• iteratively improve the estimation

• converges to a local maximum

• no prior segmentation/alignment of the sequence required

• can be combined with the estimation of mixture densities
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Training of Hidden Markov Models
• forward coefficients: αn(i)

• probability for producing a partial sequence x [1:n] by a path

leading to state si

αn(i) = p(x [1:n], ln = si |M)

• initialization

α1(i) = Pi(si) pe(x [1]|si)

• induction

αn+1(j) = pe(x [n+1]|sj)
I∑

i=1

αn(i) Pt(sj |si)

• probability of the whole input sequence

p(x [1:N]|M) =
I∑

i=1

αN(i)
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Training of Hidden Markov Models

• backward coefficients: βn(i)

• probability to leave a state on a certain path

βn(i) = p(x [n:N]|si = ln,M)

βN(i) = 1

βn(j) =

I∑

i=1

Pt(si |sj) pe(x [n+1]|si) βn+1(i)
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Training of Hidden Markov Models

• γn(i): probability of the modelM to be in state si at a certain point

in time

γn(i) = p(ln = si |x [1:N],M) =
αn(i) βn(i)

p(x [1:N]|M)

• ξn(i , j): probability of a transition from state si to state sj given the

training data

ξn(i , j) = p(ll = si , ll+1 = sj |x [1:N],M)

=
αn(i) Pt(sj |si) pe(x [n+1]|zj) βn+1(j)

p(x [1:N]|M)
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Training of Hidden Markov Models

• EM re-estimation

p′
i (si) = γ1(i)

P ′
t (sj |si) =

N−1∑
n=1

ξn(i , j)

N−1∑
n=1

γn(i)

p′
e(x |si) =

[
N∑

n=1

γn(i)

]

x [n]=x

N∑
n=1

γn(i)
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Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks
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Dynamic Bayesian Networks

• modelling sequences of observations

• representing individual time slices and their connections to

neighboring time slices

• enrolling the time slices according to the length of the observation

sequence

• initial segment
• middle segment
• final segment

• Markov property: links have a limited time horizon (e.g. from the

previous slice to the current one)
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Dynamic Bayesian Networks

• example: milk infection test

• the probability of the test outcome depends on the cow being

infected or not

Infected?

Test

• the probability of the cow being infected depends on the cow

being infected on the previous day

• first order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Dynamic Bayesian Networks

• the probability of the cow being infected depends on the cow

being infected on the two previous days

• incubation and infection periods of more than one day
• second order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

• assumes only random test errors
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Dynamic Bayesian Networks

• the probability of the test outcome also depends on the cow’s

health and the test outcome on the previous day

• can also capture systematic test errors
• second order Markov model for the infection
• first order Markov model for the test results

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Dynamic Bayesian Networks

• relationship between HMM and DBN

HMM DBN

nodes states variables

edges state transitions causal influence

# nodes # model states length of the observation se-

quence

• causal links can be stochastic or deterministic

• stochastic: conditional probabilities to be estimated
• deterministic: to be specified manually (decision trees)
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Dynamic Bayesian Networks

• modelling the state of the model: setting a state variable to a

certain state number

• changing the state of the model: setting a state variable in slice i

according to values in slice i − 1

stochastic state
variables

observation variables
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Dynamic Bayesian Networks

• alternative model structure: separation of state and transition

variables

deterministic state
variables

stochastic transition
variables

observation variables
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Dynamic Bayesian Networks

• state variables

• distinct values for each state of the corresponding HMM
• value at slice t + 1 is a deterministic function of the state and

the transition of slice t

• transition variables

• probability distribution
• which arc to take to leave a state of the corresponding HMM
• number of values is the outdegree of the corresponding state

in an HMM

• use of transition variables is more efficient than using stochastic

state variables with zero probabilities for the impossible state

transitions
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Dynamic Bayesian Networks

• composite models: some applications require the model to be

composed out of sub-models

• speech: phones→ syllables→ words→ utterances
• vision: sub-parts→ parts→ composites
• genomics: nucleotides→ amino acids→ proteins
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Dynamic Bayesian Networks

• composite models:

• length of the sub-segments is not kown in advance
• naive concatenation would require to generate all possible

segmentations of the input sequence

︸ ︷︷ ︸
sub-model for /n/

︸ ︷︷ ︸
sub-model for /ow/

evolution of articulationacoustic emission

which sub-model to choose next?
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Dynamic Bayesian Networks

• additional sub-model variables select the next sub-model to

choose

sub-model index
variables

stochastic transition
variables

submodel state
variables
observation variables

• sub-model index variables: which submodel to use at each point

in time

• sub-model index and transition variables model legal sequences

of sub-models (control layer)

• several control layers can be combined
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Dynamic Bayesian Networks

• factored models (1): factoring out different influences on the

observation

• e.g. articulation:

• asynchroneous movement of articulators

(lips, tongue, jaw, ...)

state

articulators

observation

• if the data is drawn from a factored source, DBNs are superior to

HMMs
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Dynamic Bayesian Networks

• factored models (2): coupling of different input channels

• e.g. acoustic and visual information in speech processing

• naïve approach (1): data level fusion

state

mixtures

observation

• too strong synchronisation constraints
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Dynamic Bayesian Networks

• naïve approach(2): independent input streams

acoustic channel

visual channel

• no synchronisation at all
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Dynamic Bayesian Networks

• product model

state

mixtures

visual channel

acoustic channel

• state values are taken from the cross product of acoustic and

visual states

• large probability distributions have to be trained
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Dynamic Bayesian Networks

• factorial model (NEFIAN ET AL., EURASIP Journal on Applied

Signal Processing, 2002(11))

factor 1 state

factor 2 state

mixtures

visual channel

acoustic channel

• independent (hidden) states

• indirect influence by means of the ”explaining away” effect

• loose coupling of input channels
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Dynamic Bayesian Networks

• inference is expensive

• nodes are connected across slides
• domains are not locally restricted
• cliques became intractably large

• but: joint distribution usually need not be computed

• only maximum detection required
• Viterbi-like inference algorithms
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Dynamic Bayesian Networks

• if computation of the joint probability is really required

• partion the set of output variables O into {O1, O2, ..., On} and

instead of passing P(O) = P(O1, O2, ..., Pn)
• pass {P(O1), P(O2), ..., P(On)}
• error does not accumulate over time but converges to a finite

error (Kullback-Leibler divergence)
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Dynamic Bayesian Networks

• if space is bounded

• recursive conditioning: trading space for time

• instead of traversing the computation tree bottom-up and

marginalizing out variables, the computation starts at the

top node
• space requirements is linear in the number of variables, but

time requirements grow exponential

• stochastic approximation: trading space for accuracy

• simulation of likelihood estimation
• to compute a P(X ) large numbers of configurations over

the variables in the network are drawn using the conditional

probabilities of the network
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Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks
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Conditional Random Fields

• hidden markov models ...

• ... describe a joint probability distribution p(x , h) over

observation-label sequences
• ... require a generative model of the domain: p(x |h)

• enumerates all possible observation sequences x
• generation not directly necessary for the task

• ... make a simplifying assumption: observation depends only

on the state of the model

• simplification only justified in some cases, usually

• multiple interacting features
• long range dependencies

• also: generative models are sometimes difficult to obtain
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Conditional Random Fields

• partly contradictory goals

• tractable inference and trainability→ simple models
• avoiding unwarranted independence assumptions→ richer

models

• reconciling the goals: direct learning of the probability p(h|x)

• → discriminative training

• no effort wasted on modelling the observations
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Conditional Random Fields
• modelling the dependency of a set of variables on the whole input

sequence

• undirected graphical model

• globally conditioned on the observation sequence x

• nodes in the graph correspond to random variables for elements

in the label sequence

• Markov assumption: edges in the graph model the dependencies

• simplest model structure: chain of nodes

h1 h2 h3 hn−1 hn

x1:n

...

• in case of (potentially) infinite observations the variables are

defined for a window of observations

Algorithmic Learning: 94



Conditional Random Fields

• global probability distribution modelled as the normalized product

of local potential functions

• positive real valued functions
• defined for subsets of the random variables

• Markov property: variables are conditionally independent given all

the other variables in the model if no edge exists between them

• potential functions defined over maximum cliques of the graph
• only nodes which are directly connected are members of a

maximum clique
• for chains of nodes: potential functions operate on pairs of

adjacent nodes (label variables) only
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Conditional Random Fields

• isolated potential functions have no direct probabilistic

interpretation

• represent constraints on the configuration of random variables

over which the function is defined

• local potential functions affect the global probability
• a global configuration with a high probability is likely to satisfy

more of these constraints than a configuration with a low

probability
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Conditional Random Fields

• potential functions have the form

exp(
∑

j

)λj tj(hi−1, hi , x1:n, i) +
∑

k

µksk (hi , x1:n, i)

• tj(hi−1, hi , x1:n, i): transition functions
• sk (hi , x1:n, i): state function
• λ1:n and µ1:n: parameters to be trained

• relationship to the observation: real valued feature functions, i.e.

b(x1:n, i) =

{
1 if xi = september

0 otherwise

• transition functions defined in terms of feature functions, i.e.

tj(hi−1, hi , x1:n, i) =

{
b(x1:n) if yi−1 = IN ∧ yi = NNP

0 otherwise
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Conditional Random Fields

• global probability

p(y1:n|x1:n, λ1:n) =
1

Z (x1:n)
exp(

∑

j

λjFj(y1:n, x1:n))

with

Fj(y1:n, x1:n) =
n∑

i=1

fi(hi−1, hi , x1:n, i)

which are generalized transition and state functions

Z (x1:n): normalizing factor
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Conditional Random Fields

• motivated by the principle of maximum entropy

• maximum entropy: probability distribution should be as uniform as

possible

principle of maximum entropy

The only probability distribution which can justifiably be constructed

from incomplete data is the one which has maximum entropy subject

to a set of constraints representing the given information.

• incomplete data: finite training set
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Conditional Random Fields

• log-likelihood function of a conditional random field is concave

→ convergence to the global optimum is guaranteed

• usually no analytical solution for the maximum available

→ iterative approximation required
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Conditional Random Fields
• for chain models probability can be computed as a sequence of

matrix multiplications

Mi(h
′, h|x1:n) = exp(

∑

j

λj fj(h
′, h, x1:n, i))

• (n + 1× n + 1) matrices

including reserved symbols for start and end of the sequence

• global probability

p(h1:n|x1:n, λ1:n) =
1

Z (x1:n)

n+1∏

i=1

Mi(hi−1, hi |x1:n)

• normalizing factor

Z (x1:n) =

[
n+1∏

i=1

Mi(x1:n)

]

start,end
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Conditional Random Fields

• training as dynamic programming

• forward and backward coefficients

• similar to the hidden markov model case
• but now vectors

α0(h|x1:n) =

{
1 if h = start

1 otherwise

βn + 1(h|x1:n) =

{
1 if h = end

1 otherwise

αi(x1:n)
T = αi−1(x1:n)

T Mi(x1:n)

βi(x1:n) = Mi+1(x1:n)βi+1(x1:n)
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Conditional Random Fields

• e.g. probability of a transition from h′ to h at time i − 1 for a given

training sequence x t
1:n

p(h′, h|x t
1:n, λ1:n) =

αi−1(h
′|x1:n)Mi(h

′, h|x1:n)βi(h|x1:n)

Z (x1:n)
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