
Algorithmisches Lernen/Machine Learning

Part 1: Stefan Wermter

• Introduction
• Connectionist Learning (e.g. Neural Networks)
• Decision-Trees, Genetic Algorithms

Part 2: Norman Hendrich

• Support-Vector Machines
• Learning of Symbolic Structures
• Bayesian Learning

• Dimensionality Reduction

Part 3: Jianwei Zhang

• Function approximation
• Reinforcement Learning
• Applications in Robotics

Algorithmic Learning: 1

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 2

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 2

Bayesian Reasoning

• derive the probability of a hypothesis h about some observation ~x

• a priori probability: probability of the hypothesis prior to the

observation P(h)

• a posteriori probability: probability of the hypothesis after

observation P(h|~x)

• observation can have discrete or continuous values

• continuous values: probability density functions p(h|~x) instead of

probabilities

• error optimal decision: choose the hypothesis which maximizes

the a posteriori probability (MAP-decision)

Algorithmic Learning: 3

Bayesian Reasoning

• a posteriori probability is difficult to estimate

• Bayes’ rule provides the missing link

P(h, ~x) = P(~x , h) = P(h)P(~x |h) = P(~x)P(h|~x)

P(h|~x) =
P(h)P(~x |h)

P(~x)

Algorithmic Learning: 4

Bayesian Reasoning

• classification: using the posterior probability as a target function

hMAP = arg max
hi∈H

P(hi)P(~x |hi)

P(~x)
= arg max

hi∈H
P(hi)P(~x |hi)

• simplified form: maximum likelihood decision (e.g. if the priors are

uniform)

hMAP = arg max
hi∈H

P(~x |h)

Algorithmic Learning: 5

Bayesian Reasoning

• allows

• to include domain knowledge (prior probabilities)
• to deal with inconsistent training data
• to provide probabilistic results (confidence)

• but: probability distributions have to be estimated

→ usually many parameters

Algorithmic Learning: 6

Bayesian Reasoning

• derived results: Bayesian analysis of learning paradigms may

uncover their hidden assumptions, even if they are not

probabilistic:

• Every consistent learner outputs a MAP hypothesis under the

assumption of uniform prior probabilities for all hypotheses and

deterministic, noise-free training data
• If the real training data can be assumed to be produced out of

ideal ones by adding a normal-distributed noise term, any

learner that minimizes the mean-squared error yields a ML

hypothesis
• If an observed Boolean value is a probabilistic function of the

input value, minimizing cross entropy in neural networks yields

a ML hypothesis

Algorithmic Learning: 7

Bayesian Reasoning

• derived results (cont.):

• If optimal encodings for the hypotheses and the training data

given the hypothesis are chosen, selecting the hypothesis

according to the principle of minimal description length gives a

MAP hypothesis

hMDL = arg min
h∈H

LC1
(h) + LC2

(D|h)

Algorithmic Learning: 8

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 9

Bayes Optimal Classifier

• Bayes classifier does not always produce a true MAP decision

• e.g. for composite results

hypothesis h1 h2 h3

posterior probability 0.3 0.4 0.3

• maximum of posteriors gives h2

• but if a new observation is classified positive by h2 but negative by

h1 and h3 the MAP decision would be ”negative”

• extension of the Bayes classifier to composite decisions

separating hypotheses h from decisions v

vMAP = arg max
vj∈V

∑

hi∈H

P(vj |hi)P(hi |~x)

• simplification for P(v |h) ∈ {0, 1}

Algorithmic Learning: 10

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 11

Naïve Bayes Classifier

• Bayes Optimal Classifier is too expensive

vMAP = arg max
vj∈V

P(vj |~x) = arg max
vj∈V

P(vj |x1, x2, ..., xn)

= arg max
vj∈V

P(vj)P(x1, x2, ..., xn|vj)

• prohibitively many parameter to estimate

• independence assumption:

P(xi |vj) is independent of P(xk |vj) for i 6= k

vNB = arg max
vj∈V

P(vj)
∏

i

P(xi |vj)

• simple training

• usually good results

Algorithmic Learning: 12

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 13

Cost-Sensitive Decisions

• error optimal classification not always welcome: highly

asymmetric distributions

• diseases, errors, failures, ...

• priors determine the decision

• including a cost function into the decision rule

• cij cost of predicting i when the true class is j

• cost matrix

C =

c11 c12 ... C1n

c21 c22 ... C2n

...
cn1 cn2 ... Cnn

Algorithmic Learning: 14

Cost-Sensitive Decisions

• Bayes classifier with cost function can help to reduce false

positives/negatives

h(~x) = arg min
hi∈H

∑

j

cij p(hj |~x)

• alternative: biased sampling of training data

• not really effective

Algorithmic Learning: 15

Cost-Sensitive Decisions

• not every cost matrix is a reasonable one

→ reasonableness conditions

• correct decisions should be less expensive than incorrect ones

cii < cij i 6= j
• a row in the cost matrix should not dominate another one

• row m dominates row n: ∀j .cmj ≥ cnj

• optimal policy: always decide for the dominated class

• e.g. asymmetric cost function for diseases:

actually not ill actually ill

predict not ill 0 1

predict ill 9 0

Algorithmic Learning: 16

Cost-Sensitive Decisions

• any two-class cost matrix can be changed by

• adding a constant to every entry (shifting)
• multiplying every entry with a constant (scaling)

without affecting the optimal decision

(

c00 c01

c10 c11

)

=⇒
(

0 c01 − c00/c10 − c00

1 c11 − c00/c10 − c00

)

→ actually only one degree of freedom!

Algorithmic Learning: 17

Cost-Sensitive Decisions

• optimal decision require the expected cost of the decision to be

larger than the expected cost for the alternative decisions

e.g. two-class case

P(⊕|x) c10 + P(⊖|x) c11 ≤ P(⊕|x) c00 + P(⊖|x) c01

(1− P(⊖|x) c10 + P(⊖|x) c11 ≤ (1− P(⊖|x) c00 + P(⊖|x) c01

• threshold for making optimal cost-sensitive decisions

(1− p∗) c10 + p∗ c11 = (1− p∗) c00 + p∗ c01

p∗ =
c10 − c00

c10 − c00 + c01 − c11

can be used e.g. in decision tree learning

Algorithmic Learning: 18

Cost-Sensitive Decisions

• costs are a dangerous perspective for many applications

• e.g. rejecting a ”good” bank loan application is a missed

opportunity not an actual loss

→ cost are easily measured against different baselines
• benefits provides a more natural (uniform) baseline: cash flow

• costs/benfits are usually not constant for every instance

• e.g. potential benefit/loss of a defaulted bank loan varies with

the amount

Algorithmic Learning: 19

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Conditional Random Fields

Algorithmic Learning: 20

Modelling with Probability Density Functions

• probability density functions p(~x |vj) instead of P(~x |vj)

• P(~x |vj) is always zero in a continuous domain

• choosing a distribution class, e.g. Gaussian or Laplace

p(x |v) = N [x , µ, σ] =
1√
2πσ

e
−

(x−µ)2

2σ2

p(x |v) = L[x , µ, σ] =
1

2σ
e−

|x−µ|
σ

• parameters: mean µ, variance σ

Algorithmic Learning: 21

Modelling with Probability Density Functions

• distributions for multidimensional observations

• e.g. multivariate normal distribution

p(~x |v) = N [~x , ~µ,Σ]

• parameters

• vector of means ~µ
• co-variance matrix Σ

Algorithmic Learning: 22

Modelling with Probability Density Functions

diagonal covariance

matrix

uniformly filled

(rotation symmetry around

the mean)

σij =

{

n for i = j

0 else

diagonal covariance

matrix

filled with arbitrary values

(reflection symmetry)

σij =

{

ni for i = j

0 else

completely filled

covariance matrix

Algorithmic Learning: 23

Modelling with Probability Density Functions

• diagonal covariance matrix: uncorrelated features

relativly small number of parameters to be trained

→ naïve Bayes classifier

• completely filled covariance matrix: correlated features

high number of parameters to be trained

Algorithmic Learning: 24

Modelling with Probability Density Functions

• decorrelation of the features: transformation of the feature space

• Principal Component Analysis
• Karhunen-Loève-Transformation

Algorithmic Learning: 25

Modelling with Probability Density Functions
• compromise: mixture densities

• superposition of several Gaussians with uncorrelated features

p(~x |v) =
M

∑

m=1

cm N [~x , ~µm, Σm]

Algorithmic Learning: 26

Modelling with Probability Density Functions
• compromise: mixture densities

• superposition of several Gaussians with uncorrelated features

p(~x |v) =
M

∑

m=1

cm N [~x , ~µm, Σm]

Algorithmic Learning: 26

Modelling with Probability Density Functions
• mixture density functions introduce a hidden variable:

Which Gaussian produced the value?
• two step stochastic process:

• choosing a mixture randomly

zij =

{

1 if ~xi was generated by pj(~x |v)
0 otherwise

• choosing a value randomly

. . .

P(zi1 = 1)

P(zi2 = 1)

P(zin = 1)

v

p1(~x|v) p2(~x|v) pn(~x|v)

• direct estimation of distribution parameters is not possible

→ iterative refinement (Expectation Maximization)Algorithmic Learning: 27

Bayesian Learning

• Bayesian Reasoning

• Bayes Optimal Classifier

• Naïve Bayes Classifier

• Cost-Sensitive Decisions

• Modelling with Probability Density Functions

• Parameter Estimation

• Bayesian Networks

• Markov Models

• Dynamic Bayesian Networks

• Conditional Random Fields

Algorithmic Learning: 28

Parameter estimation

• complete data

• maximum likelihood estimation
• Bayesian estimation

• incomplete data

• expectation maximization
• (gradient descent techniques)

Algorithmic Learning: 29

Maximum Likelihood Estimation

• likelihood of the model M given the (training) data D

L(M|D) =
∏

d∈D

P(d |M)

• log-likelihood

LL(M|D) =
∏

d∈D

log2P(d |M)

• choose among several possible models for describing the data

according to the principle of maximum likelihood

Θ̂ = arg max
Θ

L(MΘ|D) = arg max
Θ

LL(MΘ|D)

• the models only differ in the set of parameters Θ

Algorithmic Learning: 30

Maximum Likelihood Estimation

• complete data: estimating the parameters by counting

P(A = a) =
N(A = a)

∑

v∈dom(A) N(A = v)

P(A = a|B = b, C = c) =
N(A = a, B = b, C = c)

N(B = b, C = c)

Algorithmic Learning: 31

Bayesian Estimation

• sparse data bases result in pessimistic estimations for unseen

events

• if the count for an event in the data base is 0, the event ios

considered impossible by the model

• Bayesian estimation: using an estimate of the prior probability as

starting point for the counting

• estimation of maximum a posteriori parameters
• no zero counts can occur
• if nothing else available use an even distribution as prior
• Bayesian estimate in the binary case with an even distribution

P(yes) =
n + 1

n + m + 2

n: counts for yes, m: counts for no
• effectively adding virtual counts to the estimate
• alternative: smoothing as a post processing step

Algorithmic Learning: 32

Incomplete Data

• missing at random:

• probability that a value is missing depends only on the

observed value
• e.g. confirmation measurement: values are available only if the

preceding measurement was positive/negative

• missing completely at random

• probability that a value is missing is also independent of the

value
• e.g. stochastic failures of the measurement equipment
• e.g. hidden/latent variables (mixture coefficients of a Gaussian

mixture distribution)

• nonignorable:

• neither MAR or MCAR
• probability depends on the unseen values, e.g. exit polls for

extremist parties

Algorithmic Learning: 33

Expectation Maximization

Estimating the means of a Gaussian mixture distribution

• choose an initial hypothesis for Θ = (µ1, ..., µk)

• estimate the expected mean E(zij) given Θ = (µ1, ..., µk)

• recalculate the maximum likelihood estimate of the means:

Θ′ = (µ′
1, ..., µ

′
k) assuming zij

zij =

{

1 if ~xi was generated by pj(~x |v)
0 otherwise

• replace µj by µ′
j and repeat until convergence

Algorithmic Learning: 34

Expectation Maximization

• expectation:

• ”complete” the data set using the current estimation h = Θ to

calculate expectations for the missing values
• applies the model to be learned (Bayesian inference)

• maximization:

• use the ”completed” data set to find a new maximum likelihood

estimation h′ = Θ′

Algorithmic Learning: 35

Expectation Maximization

• generalizing the EM framework

• estimating the underlying distribution of not directly observable

variables

• full data n+1-tuples 〈~xi , zi1, ..., zik 〉
only xi can be observed

• training data: X = {~x1, ..., ~xm}
• hidden information: Z = {z1, ..., zm}
• parameters of the distribution to be estimated: Θ

• Z can be treated as random variable with p(Z) = f (Θ, X)

• full data: Y = X ∪ Z

• hypothesis: h of Θ, needs to be revised into h′

Algorithmic Learning: 36

Expectation Maximization

• goal of EM: h′ = arg max E(log2 p(Y |h′))

• define a function Q(h′|h) = E(log2 p(Y |h′)|h, X)

Estimation (E) step

Calculate Q(h′|h) using the current hypothesis h and the observed

data X to estimate the probability distribution over Y

Q(h′|h)← E(log2 p(Y |h′)|h, X)

Maximization (M) step

Replace hypothesis h by h′ that maximizes the function Q

h← arg max
h′

Q(h′|h)

Algorithmic Learning: 37

Expectation Maximization

• expectation step requires applying the model to be learned

• Bayesian inference

• gradient ascent search

• converges to the next local optimum
• global optimum is not guaranteed

Algorithmic Learning: 38

Expectation Maximization

Q(h′|h)h

Q(h′|h)← E(ln p(Y |h′)|h, X)

h← arg max
h′

Q(h′|h)

• If Q is continuous, EM converges to the local maximum of the

likelihood function P(Y |h′)

Algorithmic Learning: 39

