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Introduction

• Machine Learning

• Designing a ML System

• Issues in Machine Learning

• Learning Paradigms

• Development of a Learning System
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Machine Learning

A system is said to learn ...

• ... from experience E

• ... with respect to some class of tasks T ...

• ... and a performance measure P, ...

... if ...

• ... its performance at tasks in T , ...

• ... as measured by P, ...

• ... improves with experience E .
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Machine Learning

e.g. learning to play checkers

• task T : playing checkers

• performance measure P: share of games won

• experience E : playing practice games against itself or others

e.g. handwriting recognition

• task T : locating and identifying handwritten words/characters in

images

• performance measure P: share of correctly identified

words/characters

• experience E : a database of handwritten words/characters with

given classifications
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Machine Learning

e.g. robot driving control

• task T : driving in a public traffic space

• performance measure P: average distance travelled without a

driving error

• experience E : human samples of driving actions in various

situations
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Designing a learning system

• target function: produces the desired behaviour according to the

given task

• learning: find a hypothesis for a target function that fits the

observed data best

• hypotheses are taken from among a class of hypothesis

representations

• hypothesis representations: decision trees, neural networks,

Bayesian networks ...

1. chosing the training experience

• direct vs. indirect information (credit assignment problem)
• who selects the samples? (active learning)
• representative vs. spurious samples
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Designing a learning system

2. choosing the target function

• what to do next / what category to choose

choose_move : bi → bi+1

bi ∈ B: possible board states
• usually mapped to a numerical evaluation V : B → R
• decision rule: maximize/minimize the target function

b′ = arg max
bi

V (bi) with bi = succ(bi−1)

• → learning as function approximation

from examples {〈b, Vtrain(b)〉}
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Designing a learning system

2. choosing the target function (cont.)

• e.g.

• winning state: V (b) = 100
• loosing state: V (b) = −100
• start state: V (b) = 0
• non-final state:

V (b) = V (b′) with b′ = arg max
final(bi )

V (bi)
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Designing a learning system

3. choosing a representation of the target function

• e.g. a linear function V̂ = w0 +
∑n

i=1 wixi

• xi : features of the problem space, observations

e.g.

• x1/x2: number of black/white pieces
• x3/x4: number of black/white kings
• x5/x6: number of black/white pieces

threatened by white/black

• → learning as parameter estimation
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Designing a learning system

4. if only indirect information available:

• estimating training values for V
• credit assignment: which board state is good/bad

→ reinforcement learning
• e.g.

• V (b) is known only for the final states

→ propagating values backwards
• Vtrain(b)← V̂ (succ(succ(b)))

with V̂ : current approximation of V
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Designing a learning system

5. choosing a function approximation algorithm

• e.g. minimize the error between the training examples and the

predicted value of the current target function

E =
∑

∀b∈{〈b,Vtrain(b)〉}

(Vtrain(b) − V̂ (b))2

→ linear regression
• alternatives: neural networks, large margin learning,

expectation maximization, ...
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Designing a learning system

6. producing an overall design

Experiment

Generator

Performance

System
Generalizer

Critic

New problem
e.g. initial board game

Solution trace
e.g. game history

Training examples
e.g. [〈b1, Vt(b1)〉, . . . , 〈bn, Vt(bn)〉]

Hypothesis for the

target function V̂
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Designing a learning system

• practical applications are complex

• usually include many embedded learning tasks with mutual

dependencies

• e.g. computer vision

• recognition of visual primitives: lines, points, gradients, ...
• segmenting into regions
• recognition of objects
• recognition of composites
• ...
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Designing a learning system

• e.g. speech recognition: sample sequences 7→ word sequences

• choosing the basic acoustic units
• clustering acoustic models
• selecting the model topology
• training of acoustic parameters
• selection of pronunciation variants
• training a language model
• clustering of words
• ...
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Issues in Machine Learning

• algorithms for learning the target function

• Which different kinds of approaches are there?
• Under which conditions do they converge?
• Which is best under which conditions?

• training data

• How much is sufficient?
• Are there general bounds for the confidence, depending on the

learning task and the training data available?
• In which order to present the training examples best?
• Does this order affect the complexity of the learning task?
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Issues in Machine Learning

• prior knowledge

• Can prior knowledge help to guide the learning process? How?
• Is it useful even if only approximative?

• target function representation

• What’s the best way to reduce the learning task to a function

approximation problem?
• Can this process be automated?
• Can the representation be changed by learning system itself?
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Learning Paradigms

• the value of the target function is given for each individual training

sample

→ supervised learning

• no value of the target function is given

→ unsupervised learning

• the value of the target function is given only for a complete

sequence of elementary decision problems

→ reinforcement learning
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Target Functions

• discrete and has (a finite number of) a priori given values

→ classification

• the target function is discrete but the values are not given in

advance

→ clustering

• the target function is continuous

→ function approximation
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Target Functions

• learning creates a symbolic structure (decision tree, rule set, etc.)

→ symbolic learning

• learning estimates the parameters of a stochastic model

→ probabilistic learning

• learning adjusts the parameters of a system of (linear) functions

→ discriminative learning

• learning adjusts the weights of a system of nonlinear decision

units

→ connectionist learning
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Learning System Development

• available data separated into

• training data for learning
• validation/development data for parameter tuning
• test data for evaluation

• data preprocessing

• number of values reduction
• dimensionality reduction
• orthogonalization
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Learning System Development

• development cycle

1. select a class of target functions

2. adjust possible free parameters

3. train the model

4. evaluate the model

5. continue with (2) until no further improvement can be achieved

6. continue with (1) until no further improvement can be achieved
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Machine Learning as Optimization

• selecting the optimal class of target functions ...

• adjusting the parameters ...

• determining the best target function ...

• ... are optimization problems

• no analytical solution available

• full search infeasible

• heuristic procedures and intuition required
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation Rules
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Concept Learning

• inferring a boolean function from consistent categorical data

• features (attributes, predictors) with discrete values
• boolean target function

No Sky Air Humidity Wind Water Forecast Enjoy sports

1 sunny warm normal strong warm no change yes

2 sunny warm high strong warm no change yes

3 rainy cold high strong warm change no

4 sunny warm high strong cool change yes

• target representation: underspecified descriptions

• ?: any value acceptable for the attribute
• single value specified (e.g. ”warm”)
• ∅: no value acceptable

e.g. (?, cold, high, ?, ?, ?)
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Concept Learning
Given:

• observations X : possible days described by the attributes

• sky(X ) ∈ {sunny, cloudy, rainy}
• air(X ) ∈ {warm, cold}
• humidity(X ) ∈ {normal, high}
• wind(X ) ∈ {strong, weak}
• water(X ) ∈ {warm, cold}
• forecast(X ) ∈ {change, no change}

• hypotheses H: conjunction of constraints on the attributes: ?,

value, ∅

• target concept c: enjoy sport: X 7→ {0, 1}

• training data D: positive and negative examples of the target

function

Determine:

• hypothesis h ∈ H such that h(x) = c(x) . ∀x ∈ X
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Concept Learning

Inductive learning hypothesis: Any hypothesis that approximates the

target function well enough over a sufficiently large set of

training examples will also approximate the target function well

over unseen data.
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Concept Learning

• any underspecified representation is a generalized description of

a set of instances

description stands for examples

(sunny, warm, ?, strong, warm, no change) {x1, x2}
(?, ?, high, strong, ?, change) {x3, x4}

(sunny, warm, ∅, strong, warm, no change) ∅

Example Sky Air Humidity Wind Water Forecast Enjoy sports

x1 sunny warm normal strong warm no change yes

x2 sunny warm high strong warm no change yes

x3 rainy cold high strong warm change no

x4 sunny warm high strong cool change yes
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Concept Learning
• descriptions can be ordered according to their specificity
• subsumtion: hi subsumes / is more general than hj

(hi ≥g hj ) iff ∀x ∈ X . hj(x) = 1→ hi(x) = 1
• descriptions form a partial order

(?,?,?)

(w,?,?) (c,?,?) (?,n,?) (?,h,?) (?,?,s) (?,?,w)

(w,n,?) (c,n,?) (w,h,?) (c,h,?) (w,?,s) (w,?,w) (c,?,w) (c,?,s) (?,n,s) (?,n,w) (?,h,s) (?,h,w)

(w,n,s) (c,n,s) (w,h,s) (c,h,s) (w,n,w) (c,n,w) (w,h,w) (c,h,w)

(∅,∅,∅)
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FIND-S

• finding a maximally specific hypothesis

1. Intitialize h to the most specific hypothesis in H

2. For each positive training example x

• For each attribute constraint in ai in h

If the constraint ai is satisfied by h

Then do nothing

Else replace ai by the next more general constraint that is

satisfied by x

3. Output hypothesis h
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FIND-S

h (∅,∅,∅,∅,∅,∅)

x1 (sunny, warm, normal, strong, warm, no change)

h (sunny, warm, normal, strong, warm, no change)

x2 (sunny, warm, high, strong, warm, no change)

h (sunny, warm, ?, strong, warm, no change)

x3 negative example

x4 (sunny, warm, high, strong, cool, change)

h (sunny, warm, ?, strong, ?, ?)

Algorithmic Learning: Learning Symbolic Structures 30



FIND-S

• makes no use of negative examples

• finds a hypothesis which is consistent with the training examples

...

• ... but cannot guarantee that this is the only hypothesis that is

consistent with the data

• the most specific hypothesis is not necessarily the most plausible

one

• produces implausible results if the training data are inconsistent

• cannot even detect an inconsistency

• if there are several most specific hypotheses (e.g. in case of

disjunctive target functions), only one of them is found
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CANDIDATE-ELIMINATION

• most specific hypotheses→ set of all consistent hypotheses
• satisfiability→ consistency
• a hypothesis h is consistent with a set of training examples D iff

∀〈x , c(x)〉 ∈ D . h(x) = c(x)
• version space: set of all hypotheses from H which consistent with

D
• represented by its most (G) and least (S) general members

(upper and lower bound in the lattice)

{(sunny , warm, ?, strong, ?, ?)}

(sunny , ?, ?, strong, ?, ?) (sunny , warm, ?, ?, ?, ?) (?, warm, ?, strong, ?, ?)

{(sunny , ?, ?, ?, ?, ?), (?, warm, ?, ?, ?, ?)}

S:

G:
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CANDIDATE-ELIMINATION

Initialize G with the maximally general hypotheses in H

Initialize S with the most specific hypotheses in H

For each training example d do

• If d is a positive example
• Remove from G any hypothesis which is inconsistent with d
• For each hypothesis s in S that is not consistent with d

• Remove s from S
• Add to S all minimal generalizations h of s such that

h is consistent with d and

some member of G is more general than h
• If d is a negative example

• Remove from S any hypothesis which is inconsistent with d
• For each hypothesis g in G that is not consistent with d

• Remove g from G
• Add to G all minimal specializations h of g such that

h is consistent with d and

some member of S is less general than h
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CANDIDATE-ELIMINATION

1. initial state

S: {(∅, ∅, ∅, ∅, ∅, ∅)}

G: {(?, ?, ?, ?, ?, ?)}

2. training example x1: 〈 (sunny,warm,normal,strong,warm,no_change), yes 〉

S: {(∅, ∅, ∅, ∅, ∅, ∅)}

S′: {(sunny,warm,normal,strong,warm,no_change)}

G: {(?, ?, ?, ?, ?, ?)}
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CANDIDATE-ELIMINATION

3. training example x2: 〈 (sunny,warm,high,strong,warm,no_change), yes 〉

S: {(sunny,warm,normal,strong,warm,no_change)}

S′: {(sunny,warm,?,strong,warm,no_change)}

G: {(?, ?, ?, ?, ?, ?)}

4. training example x3: 〈 (rainy,cold,high,strong,warm,change), no 〉

S: {(sunny,warm,?,strong,warm,no_change)}

G′: {(sunny,?,?,?,?,?),(?,warm,?,?,?,?), (?,?,?,?,?,no_change)}

G: {(?, ?, ?, ?, ?, ?)}
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CANDIDATE-ELIMINATION

... finds the target concept

• if it exists in H

• if it can be described by a conjunction of constraints

• independent of the order of training examples

• inconsistencies in the training data can be detected

• upper and lower bound converge
• version space becomes empty
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CANDIDATE-ELIMINATION

• remaining ambiguity of results can be monitored

• effective queries can be generated (active learning):

• Try to find a combination of attribute values which satisfies half

of the hypotheses in the version space

• training does not need to converge to a unique hypothesis

• if all hypotheses in the version space agree, classification can

be considered reliable
• degree of agreement can be used as an estimate of

confidence
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CANDIDATE-ELIMINATION

• application to consistency-based diagnosis

• attributes: status of the components of a device
• observations: measurements on the device
• diagnosis: find a combination of attribute values which is

consistent with the observations
• partial observations can be used
• follow-up measurements can be suggested
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Inductive Bias

• version space learning is biased by only allowing conjunctive

representations

• not all possible descriptions can be represented
Example Sky Air Humidity Wind Water Forecast Enjoy sports

x5 sunny warm normal strong cool change yes

x6 cloudy warm normal strong cool change yes

x7 rainy warm normal strong cool change no

• no consistent conjunctive representation for x5...x7

• disjunctive representations allow to express the concept ...

• ... but the CANDIDATE-ELIMINATION algorithm fails to generalize

• result is a simple enumeration of possibilities

• S is a disjunctive combination of positive training examples
• G is a negated disjunction of negative training examples
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Inductive Bias

A learner that makes no a priori assumptions regarding the identity of

the target concept has no rational basis for classifying any unseen

instances.

• a learner L

• is trained on data Dc{〈x , c(x)〉}

• and can be applied to unseen data after learning: L(xi , Dc)

• the learner follows inductively from the data:

(Dc ∧ xi) ≻ L(xi , Dc)

• the inductive inference is not necessarily correct
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Inductive Bias

• to make the inference sound, additional assumptions have to be

added

• the inductive bias is a minimal set of additional assumptions

necessary to make this inference deductively sound

(B ∧ Dc ∧ xi ⊢ L(xi , Dc)).∀xi ∈ X

• inductive bias of the CANDIDATE-ELIMINATION algorithm: c ∈ H
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Inductive Bias

• Learning algorithms can be ranked according to the strength of

their inductive bias

• ROTE-LEARNER

• no inductive bias
• simply stores the examples
• rejection if instance not found

• CANDIDATE-ELIMINATION

• new instances are classified only if all members of the current

version space agree
• rejection otherwise
• stronger inductive bias: target concept can be represented in

its hypothesis space
• can classify more instances
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Inductive Bias

• FIND-S

• uses the most specific hypothesis consistent with the training

examples
• can classify all observations
• additional bias: all instances are classified as negative, if not

subsumed by the most specific hypothesis (closed world

assumption)

• the stronger the inductive bias ...

• the more inductive leaps are made
• the more unseen instances can be classified
• the more risky the decision becomes
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Concept Learning

• extensions

• accomodating noisy data
• merging of version spaces trained to represent different kinds

of constraints
• learning disjuctive concepts (from noisy data)
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Decision Trees

• Representation

• internal nodes: attributes
• edges: attribute values
• leaf nodes: values of the target function

outlook

humidity wind

sunny rainovercast

high normal strong weak

no yes no yes
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Decision Trees

• disjunction of conjunction of constraints on the attribute values

(outlook=sunny ∧ humidity=normal)

∨ (outlook=overcast)

∨ (outlook=rain ∧ wind=weak)

• well suited for classification problems where

• instances can be described by attribute-value pairs
• values are discrete or continuous
• target function has discrete values
• disjunctive descriptions may be required
• training data may be inconsistent
• training data may contain missing attribute values

• training: Which attribute should be chosen first to split the data?
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ID3

• growing the tree top-down

• selecting the next attribute as to maximize the information gain

• greedy algorithm
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ID3

• trivial cases (binary classification (yes/no)):

• all examples are positive: return the single-node tree Root with

value=yes
• all examples are negative: return the single-node tree Root

with value=no
• if the set of attributes / examples is empty return the most

frequent value of the target function in the training data
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ID3

• select the attribute A e.g. according to maximum information gain

• add a new branch for each value vi of the selected attribute

• partition the training data according to the value vi

• call ID3 recursively on each partition
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Information Gain

• information gain (HUNT 1966)

• based on the entropy (impurity) of a data collection

E = −
∑

v∈V

p(v) log2 p(v)

with

V : range of the target function

0 log2 0 =def 0
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Information Gain

• binary case

E = −p(yes) log2 p(yes)− p(no) log2 p(no)

= −p(yes) log2 p(yes)− (1− p(yes)) log2(1− p(yes))

E
1.0

0 0.5 1 p(yes)
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Information Gain

• Information gain: expected reduction in entropy

IG(S, A) =def E(S)−
∑

v∈V

|Sv |

|S|
E(Sv )

S : Sample

A : Attribute to be selected

V : Domain of A

Sv : {s ∈ S|value(A) = v}
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Information Gain

day outlook temperature humidity wind tennis

D1 sunny hot high weak no

D2 sunny hot high strong no

D3 overcast hot high weak yes

D4 rain mild high weak yes

D5 rain cool normal weak yes

D6 rain cool normal strong no

D7 overcast cool normal strong yes

D8 sunny mild high weak no

D9 sunny cool normal weak yes

D10 rain mild normal weak yes

D11 sunny mild normal strong yes

D12 overcast mild high strong yes

D13 overcast hot normal weak yes

D14 rain mild high strong no
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Information Gain

day outlook temperature humidity wind tennis

D1 sunny hot high weak no

D2 sunny hot high strong no

D3 overcast hot high weak yes

D4 rain mild high weak yes

D5 rain cool normal weak yes

D6 rain cool normal strong no

D7 overcast cool normal strong yes

D8 sunny mild high weak no

D9 sunny cool normal weak yes

D10 rain mild normal weak yes

D11 sunny mild normal strong yes

D12 overcast mild high strong yes

D13 overcast hot normal weak yes

D14 rain mild high strong no
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Information Gain

Example
wind w s w w w s s w w w s s w s

target n n y y y n y n y y y y y n

weak strong
∑

yes 6 3 9

no 2 3 5∑
8 6 14
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Information Gain

weak strong
∑

yes 6 3 9

no 2 3 5∑
8 6 14

E(S) = −
9

14
log2

9

14
−

5

14
log2

5

14
= 0.940286

E(Sw ) = −
6

8
log2

6

8
−

2

8
log2

2

8
= 0.811278

E(Ss) = −
3

6
log2

3

6
−

3

6
log2

3

6
= 1.0

G(S, wind) = E(S)−
1

|S|
(|Sw |E(Sw ) + |Ss|E(Ss)) = 0.0481271
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Information Gain

IG(S, outlook) = 0.246

IG(S, humidity) = 0.151

IG(S, wind) = 0.048

IG(S, temperature) = 0.029
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Information Gain
• after having chosen outlook as the first splitting attribute

value samples yes no

sunny {D1, D2, D8, D9, D11} 2 3

overcast {D3, D7, D12, D13} 4 0

rain {D4, D5, D6, D10, D14} 3 2
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Information Gain
• after having chosen outlook as the first splitting attribute

value samples yes no

sunny {D1, D2, D8, D9, D11} 2 3

overcast {D3, D7, D12, D13} 4 0 → no further splitting

rain {D4, D5, D6, D10, D14} 3 2
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Information Gain
• after having chosen outlook as the first splitting attribute

value samples yes no

sunny {D1, D2, D8, D9, D11} 2 3

overcast {D3, D7, D12, D13} 4 0

rain {D4, D5, D6, D10, D14} 3 2

• compute the information gain of the remaining attributes on the

subsets of the sample as defined by its values, e.g. for

value(outlook)=sunny

IG(Ssunny , humidity) = 0.970

IG(Ssunny , temperature) = 0.570

IG(Ssunny , wind) = 0.019
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Information Gain
• after having chosen outlook as the first splitting attribute

value samples yes no

sunny {D1, D2, D8, D9, D11} 2 3

overcast {D3, D7, D12, D13} 4 0

rain {D4, D5, D6, D10, D14} 3 2

• compute the information gain of the remaining attributes on the

subsets of the sample as defined by its values, e.g. for

value(outlook)=sunny

IG(Ssunny , humidity) = 0.970

IG(Ssunny , temperature) = 0.570

IG(Ssunny , wind) = 0.019

→ choose humidity as the next splitting attribute for

value(outlook)=sunny
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Information Gain

• information gain favors attributes with many values

• such attributes rarely contribute to a sensible generalizations

• e.g. date, address, name, ...

• results in flat trees

• with a high number of branches
• which classifies the training data perfectly
• but poorly predicts the target function for unseen instances

→ alternative measures

→ alternative representations
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ID3

• hypothesis space: all possible decision trees

• every discrete-valued function can be represented

• simple-to-complex hill climbing search

• guided by the information gain

• maintains only a single hypothesis

• no awareness of alternative hypotheses
• no possibility for active learning

• greedy search

• no possibility to revise decisions
• optimal tree cannot be guaranteed

• robustness against noisy data
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ID3

• (approximate) inductive bias:

• prefer short trees over larger ones
• prefer to place attributes with large information gain higher up

in the tree

• ID3: preference / search bias

• complete hypothesis space
• incomplete search

• CANDIDATE-ELIMINATION: restriction / language bias

• incomplete hypothesis space
• complete search

• Which one is desirable?
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Occam’s Razor

• prefer the simplest hypothesis that fits the data

• general scientific principle

• but weakly justified

• short hypotheses are less likely to be spurious
• and therefore are more likely to generalize to unseen data

• but many arbitrary hypothesis sets of small size can be

defined which are not preferred at all

• size is a purely internal measure

• representations can be changed: different learners might

lead to contradicting hypotheses, although both are based

on Occam’s razor

• better justification: minimal description length

→ Bayesian learning
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Overfitting
• generating too many nodes for a given learning problem might

lead to ”learning off by heart”
• producing branches for individual training items

→ overfitting
• overfitting: given a hypothesis space H a hypothesis h is said to

overfit the training data if there is a hypothesis h′ which performs

worse on the training data but better on the entire distribution of

instances.
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Overfitting

• countermeasures

• stop growing the tree early enough
• post-prune the tree

post-pruning is usually more successful, because it has the

complete tree available

• criteria for stopping growth

• monitoring performance on held out data (validation set)
• application of statistical tests to estimate the likelihood of a

further improvement on the test set
• minimizing an explicit measure of the complexity for encoding

the training data and the decision tree

→ Minimum Description Length principle

• pruning: two possibilities

• reduced error pruning
• rule post-pruning
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Reduced Error Pruning

• removal of a node

• remove a subtree rooted in a node
• make that node a leaf node
• assign the new leaf node the most common classification for

the examples associated with that node

Algorithm

• repeat as long as this improves the performance on the validation

set

• choose the subtree which improves accuracy most if removed

...
• ... and remove it
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Reduced Error Pruning

• impact of reduced error pruning

• accuracy on the validation set is not shown
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Rule Post-Pruning

• converting an overfitted tree into If-Then-Rules, one for each path

from the root node to a leaf

• prune (generalize) the rules by removing preconditions from their

antecedents if this improves accuracy on the validation data

• sort the pruned rules by their estimated accuracy

• use them in this sequence when classifying new instances
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Rule Post-Pruning

• rule conversion

• make each attribute test on the path a precondition
• make the classification at the leaf node the consequence

outlook

humidity wind

sunny rainovercast

high normal strong weak

no yes no yes

e.g. If (outlook=sunny ∧ humidity=high)

Then tennis=no
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Rule Post-Pruning

• pruning of the rule

If (outlook=sunny ∧ humidity=high) Then tennis=no

• check whether removing preconditions improves accuracy

If true Then tennis=no

If (outlook=sunny) Then tennis=no

If (humidity=high) Then tennis=no

• do not prune if performance decreases

Algorithmic Learning: Learning Symbolic Structures 69



Continuous-Valued Attributes

• dynamically creating Boolean attributes Ac which are true if A < c

• learning task: determine the optimal threshold c

• optimization criterion: information gain

• can be extended to multiple interval splits
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Continuous-valued Attributes

temperature 40 48 60 72 80 90

tennis no no yes yes yes no

• sort the examples

• generate threshold candidates

• where two adjacent examples differ in their target value
• as the mean of the two attribute values

• evaluate the resulting Boolean attributes as usual, e.g. by

comparing their information gain
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Alternative Gain Measures

• alternative: gain ratio

• normalizing information gain by the split information

GR(S, A) =def
G(S, A)

SI(S, A)

• split information:

SI(S, A) =def −
c∑

i=1

|Si |

|S|
log2

|Si |

|S|

Si : partitions of S according to the values of A

• entropy of S with respect to the values of the attribute A

Algorithmic Learning: Learning Symbolic Structures 72



Alternative Splitting Criteria

• directly determining the impurity

• choose the attribute and the cut-off point(s) which minimize

impurity of the resulting daughter nodes

• impurity is lowest if all instances belong to the same class

• entropy:

E = −
∑

v∈V

p(v) log2 p(v)

E = −p(yes) log2 p(yes)− (1− p(yes)) log2(1− p(yes))
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Alternative Splitting Criteria

• Gini-coefficient/Gini-index: measures the statistical dispersion or

diversity of a population (BREIMAN ET AL. 1984)

• n classes

G = 1−
n∑

i=1

p(ci)
2

• G is minimal (G = 0) if all instances belong to the same class

• G is maximal (G = 1− 1
n ) if the distribution is even

• also used: Gini gain
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Alternative Splitting Criteria

• choose the attribute and the cut-off point(s) which minimize the

sum of the Gini-coefficients of the resulting daughter nodes tj

min

n∑

i=1

p(ci |tj)G(tj)
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Alternative Splitting Criteria

• 2 classes G = p(yes) · (1− p(yes))

• Gini coefficients approximate entropy

− log2 p(ci) ≈ 1− p(ci) for p(ci) < 1

E

4 ·G

E/G

1.0

0 0.5 1 p(yes)
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Alternative Splitting Criteria

• statistical tests (e.g. χ2)

• discriminative criteria

• RELIEF-family (KIRA AND RENDELL 1992, KONONENKO 1994)
• rank attributes according to how well their values distinguish

between instances that are near to each other
• for each instance i determine

• nearest instance with the same class (nearest hit nh(i))
• nearest instance with a different class (nearest miss nm(i))
• scoring an attribute a as

w(a) = P(a(i) 6= a(nm(i)))− P(a(i) 6= a(nh(i)))
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Handling Missing Attribute Values

• assign the most common value among the examples at the node

or

• determine a probability distribution for the values of the attribute

• use the probabilities to compute the information gain
• can be further propagated down the tree
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Handling Attributes with Different Costs

• measurement for an attribute can be expensive

• cost: C(A)

• cost sensitive selection measures, i.e.

(G(S, A))2

C(A)
or

2G(S,A) − 1

(C(A) + 1)w
w ∈ [0, 1]
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C4.5

• extensions

• numerical attributes
• statistical test for pruning decisions
• using probability distributions in case of missing values

• fundamental drawback of decision trees

• no dependencies (e.g. linear ones) between arguments can be

represented
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Ensemble-based Methods

• usually

• alternative approaches for a learning task available
• training can be done with different parameter settings

• under certain conditions a (partly) complementary behaviour can

be expected

• differences in accuracy
• different kind of errors

• combining the outcome of differently trained systems migth lead

to synergy

• combination is easiest for simple classifiers
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Ensemble-based Methods

C∗

C1 C2 CT
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Ensemble-based Methods

• different kinds of combination possibilities

• voting

• e.g. single vote majority voting: decide for the class which was

chosen by the majority of classifiers in the ensemble

• weighted voting

• reliability of the classifier
• class-specific reliability of the classifier
• confidence estimation
• cost-balanced confidence estimation

R(i |x) =
n∑

j=1

P(j |x)c(i , j)−1

c(i , j): estimated costs for substituting class i by class j
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Ensemble-based Methods

• stacking

• train a second stage classifier, which learns to decide which

first-stage classifier to trust most under certain conditions

• co-training

• enrich the training data of one classifier with the output of a

second one
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Ensemble-based Methods

• How to create an ensemble of classifiers?

• use different classification paradigms:

• decision trees
• probabilistic approaches
• neuronal networks
• ...

• bagging
• boosting
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Bagging

• BREIMAN (1996)

• T random samplings (”trials”) of the training data with

replacement

• all training sets have the same size as the original one
• some training instances are not used, some appear multiple

times

• T different classifiers are trained

• classifier output is combined using a (unit) majority vote
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Bagging

• at least ten classifiers used; typically 100 or more

• reduction of the error rate up to a factor of 0.5

• prerequisite: instability of the prediction method

• small changes of the training set should result in significant

changes of a classifiers’ output

• increase of the error rate in some cases

• ”poor predictors can be transformed into worse ones”
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Boosting

• AdaBoost FREUND AND SCHAPIRE (1996)

• using all training data but maintaining a weight w t
x for each

training instance x at trial t , initially w1
x = N−1

• the weight reflects the importance of the training item

• the error of the classifier is estimated

et =
∑

x∈M

w t
x

where M is the set of misclassified training instances
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Boosting

• each misclassification causes the weight to be increased:

• reduce weight of the correctly classified items by a factor

βt =
et

1− et

• renormalizing according to

∑

x

w t+1
x = 1

• different weights cause the learning procedure to emphasize

different training instances and therefore create different

classifiers

→ weight-sensitive splitting criteria

p(ci) =
∑

x |c(x)=i

w(x)
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Boosting

• boosting continued until

• if either t > T , et > 0.5 or et = 0 (all instances are classified

correctly)

• no real boosting but adaptation to the training data

→ reduction of the variance

• combination of all T classifiers by a weighted vote based on the

accuracy of the individual trial

v t = log
1

βT
= log

1− et

et
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Random Forests

• N training instances with M variables

• T random samples (with replacement) with a sample size

S ≈ 0.66N; the remaining instances are used for estimating the

prediction error (out-of-bag evaluation)

• for each node of the tree m≪ M variables are selected randomly

to take the decision at that node

• no pruning is applied
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Random Forests

• highly accurate classifiers without much prior knowledge

• fast training

• highly parallel classification

• can deal with very large problems (training data, number of

variables, number of classes)

• estimates the importance of the different variables

• build-in evaluation; no separate test data required
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Random Forests

• prone to overfitting, in particular for noisy data sets

• does not handle large amounts of irrelevant features

• sensitive to correlations between trials: ”small heterogeneous is

better than large homogeneous” (GASHLER ET AL. 2008)

• growing too many trees might reduce the accuracy
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Rule Induction

• direct approaches

• rule generation (representational bias)
• rule assessment
• rule selection
• rule reranking

Algorithmic Learning: Learning Symbolic Structures 96



Rule Induction

• direct approaches

• propositional descriptions:

→ sequential covering algorithms
• first-order descriptions:

→ inductive logic programming
• typical common occurence:

→ association rules
• context sensitive classification:

→ transformation rules
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Rule Induction

• indirect approaches

• transforming a trained model into a rule format
• e.g. decision trees
• e.g. neural networks
• ...
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Sequential covering algorithms

• find a rule that covers many positive examples and few negative

ones

• high accuracy
• not necessarily high coverage

• remove the positive examples from the training data

• sort the rules according to their accuracy

• greedy approach

• optimal (smallest, most accurate, ...) set of rules cannot be

guaranteed
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Sequential covering algorithms

If true
Then tennis=yes

If wind=weak
Then tennis=yes If wind=strong

Then tennis=no
If humidity=normal
Then tennis=yes

If humidity=high
Then tennis=no

...

If humidity=normal
∧ wind= weak

Then tennis=yes

If humidity=normal
∧ wind=strong

Then tennis=yes

If humidity=normal
∧ outlook=sunny

Then tennis=yes

If humidity=normal
∧ outlook=rain

Then tennis=yes

...
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Sequential covering algorithms

• general to specific beam search

• start with the most general precondition (the empty one)
• add more attribute tests to the precondition
• sort the attribute tests according to improvement of rule

performance
• select the k-best candidates
• call recursively as long as performance is still improving
• (post-prune the rules by removing attribute tests if this

improves performance)
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Performance measures

• relative frequency:
nc
n

nc : rule applies correctly; n: rule applies

• m-estimate (for scarce data):
nc+mp
n+m

m: weighting factor

• biased towards the prior probability p of the outcome of the

rule
• m = 0 → relative frequency / m→∞ → prior probability

• negative entropy: uniformity of the target function for the sample

set S covered by the rule

NE(S) =
c∑

i=1

pi log2 pi
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Comparison

• SCA chooses attribute-value pairs by comparing the subsets of

the training data they cover

ID3 chooses attribute tests

→ ID3 has to make fewer choices

→ SCA requires more training data

• general-to-specific search has a unique starting point

specific-to-general methods have not

• SCA is hypothesis driven

training data are considered only after rule generation
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Inductive Logic Programming

• learning first-order rules (Horn clauses)

• general knowledge cannot be expressed solely by attribute-value

assignments

• e.g. family relationships

• → relationships between data items

If father(x,y) ∧ female(y) Then daughter(y,x)
• → dependencies between antecedent and consequence

If father(x,y) ∧ mother(y,z) ∧ female(z) Then

granddaughter(z,x)
• → recursive rules, e.g. ancestor(x,y)
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Inductive Logic Programming

• different approaches

e.g.

• extended sequential covering
• inverted deduction
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Sequential Covering for First-Order Rules

• simplified Horn clauses

• no function symbols (deductive databases)

• extended Horn clauses

• literal in the body can be negative

• uses only positive data
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Sequential Covering for First-Order Rules

• extension of rule generation to accomodate variables (FOIL)

• given:

• Q set of predicate names which can be used
• training data

• start with the most general clause, i.e. with an empty antecedent

p(x1, ..., xk )← true

• generate new literals Li to be added to the preconditions of a

clause p(x1, ..., xk )← L1, ..., Ln

• q(v1, ..., vr ) with q ∈ Q and vi new or already existing

variables; at least one vi must already exist
• equal(xj , xk ) with xj and xk are variables already present in the

rule
• the negation of the above

• terminates if all positive training instances are covered by the rule
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Sequential Covering for First-Order Rules

• example

• training data:

granddaughter(sharon,victor), father(bob,sharon),

father(victor,bob), father(bob,tom), female(sharon)

• initial hypothesis:

• granddaughter(x,y)← true

• candidate literals for specialization

equal(x,y), female(x), female(y), father(x,y), father(y,x),

father(x,z), father(z,x), father(y,z), father(z,y),

and their negations

• most promising candidate: father(z,x)

• specialized hypothesis:

granddaughter(x,y)← father(z,x)
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Sequential Covering for First-Order Rules

• example (cont.)

• hypothesis

granddaughter(x,y)← father(z,x)

• additional new candidate literals for specialization

• female(z), equal(x,z), equal(y,z), father(z,w), father(w,z)

and their negations

• most promising candidate: father(y,z)

• specialized hypothesis:

granddaughter(x,y)← father(z,x) ∧ father(y,z)

• ...
• specialized hypothesis:

granddaughter(x,y)

← father(z,x) ∧ father(y,z) ∧ female(x)
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Sequential Covering for First-Order Rules

• large branching factor of the search space

→ effective heuristic guide needed

• performance measure needs to distinguish between different

variable bindings

• Foil_Gain:

• evaluating all possible variable bindings
• estimating the utility of adding a new literal L to a rule R to

obtain a new rule R′

• preference for literals which results in more positive than

negative variable bindings for the rule

• e.g. 16 bindings for the literal granddaughter(x,y)

4 constants (persons) mentioned in the training data

(bob,sharon,victor,tom)
• 1 binding covering positive information: (x/sharon,y/victor)
• 15 bindings covering negative information (not mentioned in

the training data, e.g. x/bob, y/tom)
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Sequential Covering for First-Order Rules

• Foil-Gain

FG(L, R) =def t(log2

p1

p1 + n1
− log2

p0

p0 + n0
)

p0/n0: number of positive/negative bindings of R

p1/n1: number of positive/negative bindings of the new rule R′

t : number of positive bindings of R that remain covered after

adding literal L to R

• reduction of the number of bits needed to encode the positive

bindings caused by the introduction of L
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Sequential Covering for First-Order Rules

• if the target predicate is included into the list of possible literals,

recursive clauses can be learned

• successful sample applications:

• recursive definition of Quicksort
• rules to discriminate legal from illegal chess positions

• learning with noisy data:

• trade-off between accuracy, coverage and complexity
• new literals are added only, if their description length is shorter

than the description length of the training data they explain
• post-pruning of rules to avoid overfitting
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Inverse Deduction

• deduction: deriving theorems (conclusions) from axioms (general

knowledge)

• deduction rules for first order logic: resolution, entailment

• Can resolution/entailment be reversed?

• find a hypothesis h such that the target function f (xi) follows

deductively from h, the observation xi and any available

background knowledge B

∀〈xi , f (xi)〉 ∈ D . B ∧ xi ∧ h ⊢ f (xi)
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Inductive Logic Programming

• example

• xi : male(bob), female(sharon), father(bob,sharon)

• f (xi): child(sharon,bob)

• B: parent(x,y)← father(x,y)

• h1: child(x,y)← father(y,x)

h1 ∧ xi ⊢ child(sharon,bob)

• h2: child(x,y)← parent(y,x)

h2 ∧ xi ∧ B ⊢ child(sharon,bob)

constructive induction: introducing new predicates (based on

background knowledge) which have not been present in the

original description
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Inductive Logic Programming

• description of learning in a framework for logic deduction

• background knowledge can be used to guide the search

• problem: highly sensitive to noisy data: arbitrary theorems can be

derived from inconsistent axioms

• search space is intractable in the general case

• often complexity increases if background knowledge is introduced
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Inductive Logic Programming

• approach: inverting resolution

• resolution

P ∨ L P ∨ L

¬ L ∨ R L→ R

P ∨ R P ∨ R
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Inverse Resolution

c1: knowmaterial → passexam

c2: study → knowmaterial

c: study → passexam

c1: knowmaterial → passexam

c2: study → knowmaterial

c: study → passexam

Algorithmic Learning: Learning Symbolic Structures 118



Inverse Resolution

c1: ¬ knowmaterial ∨ passexam

c2: ¬ study ∨ knowmaterial

c: ¬ study ∨ passexam

c1: ¬ knowmaterial ∨ passexam

c2: ¬ study ∨ knowmaterial

c: ¬ study ∨ passexam
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Inverse Resolution

• inverse resolution (propositional case)

• given clauses c1 and c
• find a literal L ∈ c1 ∧ L /∈ c
• c2 = (c – c3) ∪ {¬ L} with c3 ⊆ c1 – {L}

• non-deterministic choice:

• multiple solutions by adding literals from c1

• heuristics:

• do not allow c and c1 to share common literals

i.e. prefer shorter descriptions over longer ones
• c2 = (c – (c1 – {L})) ∪ {¬ L}
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Inverse Resolution

• extension to the first-order case

• inverse resolution under unification→ inverse substitutions

father(bob,tom)

grandchild(x,y) ∨ ¬ father(y,z) ∨ ¬ father(z,x)

father(tom,shannon)

grandchild(x,bob) ∨ ¬ father(tom,x)

grandchild(shannon,bob)

[bob/y,tom/z]

[shannon/x]

• alternative substitutions possible!
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Association Rules

• prediction of events commonly occurring together
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Association Rules

• prediction of events commonly occurring together

• market basket analysis: which items are often purchased together

• placement of items in a store
• layout of mail-order catalogues
• targeted marketing campaigns

• no complete description is aimed at

• coverage of the most typical cases is sufficient

• association rules: rules of the form

a ∧ b ∧ . . . ∧ c → d ∧ e
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Association Rules

• prediction of events commonly occurring together

• market basket analysis: which items are often purchased together

• placement of items in a store
• layout of mail-order catalogues
• targeted marketing campaigns

• no complete description is aimed at

• coverage of the most typical cases is sufficient

• association rules: rules of the form

a ∧ b ∧ . . . ∧ c → d ∧ e

• finding good combinations of premises is a combinatorial problem
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Association Rules

• example data base:

trans- item

action

001 cola

001 chips

001 peanuts

002 beer

002 chips

002 cigarettes

. . . . . .

trans- items

action

001 {chips, cola, peanuts}

002 {beer, chips, cigarettes}

003 {beer, chips, cigarettes, cola}

004 {beer, cigarettes}
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I

• i-itemset: I i
k ⊆ I, |I i

k | = i
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I

• i-itemset: I i
k ⊆ I, |I i

k | = i

• transaction Tk ⊆ I
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I

• i-itemset: I i
k ⊆ I, |I i

k | = i

• transaction Tk ⊆ I

• data base: D = {(k , Tk )|k = 1, . . . , m}
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I

• i-itemset: I i
k ⊆ I, |I i

k | = i

• transaction Tk ⊆ I

• data base: D = {(k , Tk )|k = 1, . . . , m}

• support of an itemset: share of transactions which contain the

itemset

s(Ii) =
|{Tk |Ii ⊆ Tk}|

|D|
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Association Rules

• set of n different items I = {xj |j = 1, . . . , n}

• itemset: Ik ⊆ I

• i-itemset: I i
k ⊆ I, |I i

k | = i

• transaction Tk ⊆ I

• data base: D = {(k , Tk )|k = 1, . . . , m}

• support of an itemset: share of transactions which contain the

itemset

s(Ii) =
|{Tk |Ii ⊆ Tk}|

|D|

• frequent (strong, large) itemset: s(Ii) ≥ smin
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Association Rules

• downward closure: every subset of a frequent itemset is also a

frequent itemset

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

• every superset of a not frequent itemset is also a not frequent

itemset
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Association Rules

• association rule: X → Y , X , Y ⊆ I, Y ∩ X = ∅
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Association Rules

• association rule: X → Y , X , Y ⊆ I, Y ∩ X = ∅

• support of a rule: share of transactions which contain both,

premise and conclusion of the rule

s(X → Y ) = s(X ∪ Y ) =
|{Tk |X ∪ Y ⊆ Tk}|

|D|
= p(XY )
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Association Rules

• association rule: X → Y , X , Y ⊆ I, Y ∩ X = ∅

• support of a rule: share of transactions which contain both,

premise and conclusion of the rule

s(X → Y ) = s(X ∪ Y ) =
|{Tk |X ∪ Y ⊆ Tk}|

|D|
= p(XY )

• confidence of a rule: share of transactions supporting the rule

from those supporting the premise

c(X → Y ) =
s(X ∪ Y )

s(X )
=
|{Tk |X ∪ Y ⊆ Tk}|

|{Tk |X ⊆ Tk}|
= p(Y |X )
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Association Rules

• strong rule: high support + high confidence
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Association Rules

• strong rule: high support + high confidence

• detection of strong rules: two pass algorithm

1. find frequent (strong, large) itemsets (Apriori)

• necessary to generate rules with strong support
• uses the downward closure
• itemsets are ordered

2. use the frequent itemsets to generate association rules

• find strong correlations in a frequent itemset
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Association Rules

• Apriori: finding frequent itemsets of increasing size

itemsets are ordered!

• start with all itemsets of size one: I1

• select all itemsets with sufficient support
• from the selected itemsets I i generate larger itemsets I i+1

is({i1, . . . , in−2, in−1}) ∧ is({i1, . . . , in−2, in})

→ is({i1, . . . , in−2, in−1, in})

• already blocks some of the non-frequent itemsets, but not

all of them

• remove those itemsets which still contain a non-frequent

immediate subset

• they cannot have enough support (downward closure)

• continue until no further frequent itemsets can be generated
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Association Rules

• example data base again

• assumption: minimum support smin = 0.5

k Tk

001 {chips, cola, peanuts}

002 {beer, chips, cigarettes}

003 {beer, chips, cigarettes, cola}

004 {beer, cigarettes}

I1
k # s(I1

k )

{chips}

{cola}

{peanuts}

{beer}

{cigarettes}
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• example data base again

• assumption: minimum support smin = 0.5

k Tk

001 {chips, cola, peanuts}

002 {beer, chips, cigarettes}

003 {beer, chips, cigarettes, cola}

004 {beer, cigarettes}

I1
k # s(I1

k )

{chips}

{cola}

{peanuts}

{beer}

{cigarettes}

• no non-empty subsets
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Association Rules

• example data base again

• assumption: minimum support smin = 0.5

k Tk

001 {chips, cola, peanuts}

002 {beer, chips, cigarettes}

003 {beer, chips, cigarettes, cola}

004 {beer, cigarettes}

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{peanuts} 1 0.25

{beer} 3 0.75

{cigarettes} 3 0.75

• no non-empty subsets
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Association Rules

• example data base again

• assumption: minimum support smin = 0.5

k Tk

001 {chips, cola, peanuts}

002 {beer, chips, cigarettes}

003 {beer, chips, cigarettes, cola}

004 {beer, cigarettes}

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{peanuts} 1 0.25

{beer} 3 0.75

{cigarettes} 3 0.75

• no non-empty subsets
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Association Rules

• 2-itemsets I2
k

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{beer} 3 0.75

{cigarettes} 3 0.75

I2
k # s(I2

k )

{chips, cola}

{beer, chips}

{chips, cigarettes}

{beer, cola}

{cigarettes, cola}

{beer, cigarettes}
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Association Rules

• 2-itemsets I2
k

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{beer} 3 0.75

{cigarettes} 3 0.75

I2
k # s(I2

k )

{chips, cola}

{beer, chips}

{chips, cigarettes}

{beer, cola}

{cigarettes, cola}

{beer, cigarettes}

• no itemsets to prune
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Association Rules

• 2-itemsets I2
k

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{beer} 3 0.75

{cigarettes} 3 0.75

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigarettes} 2 0.5

{beer, cola} 1 0.25

{cigarettes, cola} 1 0.25

{beer, cigarettes} 3 0.75
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Association Rules

• 2-itemsets I2
k

I1
k # s(I1

k )

{chips} 3 0.75

{cola} 2 0.5

{beer} 3 0.75

{cigarettes} 3 0.75

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigarettes} 2 0.5

{beer, cola} 1 0.25

{cigarettes, cola} 1 0.25

{beer, cigarettes} 3 0.75
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.}

{chips, cigar., cola}
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.}

{chips, cigar., cola}
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.}

{chips, cigar., cola}
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.} 2 0.5

{chips, cigar., cola}
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.} 2 0.5

{chips, cigar., cola}
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Association Rules

• 3-itemsets I3
k

I2
k # s(I2

k )

{chips, cola} 2 0.5

{beer, chips} 2 0.5

{chips, cigar.} 2 0.5

{beer, cigar.} 3 0.75

I3
k # s(I2

k )

{beer, chips, cigar.} 2 0.5

{chips, cigar., cola} 1 0.25
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Association Rules

• resulting frequent itemsets:

{beer, chips, cigarettes}

{chips, cola}

{chips, beer}

{chips, cigar.}

{beer, cigar.}

{beer}

{chips}

{cigarettes}

{cola}
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Association Rules

• generation of strong association rules:

• for all frequent itemsets Ij determine all nonempty subsets Ik
for which

c =
s(Ij)

s(Ik )
≥ cmin

• add a rule Ik → Y , Y = Ij − Ik to the rule set
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Association Rules

• generation of strong association rules:

• for all frequent itemsets Ij determine all nonempty subsets Ik
for which

c =
s(Ij)

s(Ik )
≥ cmin

• add a rule Ik → Y , Y = Ij − Ik to the rule set

• e.g. s({chips}) = 0.75, s({cola}) = 0.5,
s({chips, cola}) = 0.5

rule confidence

{cola}→ {chips} 1.00

{chips}→ {cola} 0.67
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Association Rules

• interesting association rules: only those for which the confidence

is greater than the support of the conclusion

c(X → Y ) > s(Y )

Algorithmic Learning: Learning Symbolic Structures 134



Association Rules

• interesting association rules: only those for which the confidence

is greater than the support of the conclusion

c(X → Y ) > s(Y )

• negative border:

{Ik | s(Ik ) < smin ∧ ∀Ij ⊂ Ik . s(Ij) ≥ smin}

used

• to compute the set of frequent itemsets more efficiently
• to derive negative association rules
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Association Rules

• hierarchical Apriori algorithm

• in addition to the base level of items, determine also frequent

itemsets on a higher level in an is-a hierarchy

food

beverages snacks

cola beer peanuts chips

• sometimes regularities can only be found at higher levels of

abstraction
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Association Rules

• the Apriori algorithm requires several scans of the database
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• goal: reducing the number of scans
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• goal: reducing the number of scans

• partitioned Apriori: two scans

• 1st scan: partition the database and compute locally frequent

itemsets on the partitions
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Association Rules

• the Apriori algorithm requires several scans of the database

• goal: reducing the number of scans

• partitioned Apriori: two scans

• 1st scan: partition the database and compute locally frequent

itemsets on the partitions
• 2nd scan: determine the support of all locally frequent itemsets
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Association Rules

• the Apriori algorithm requires several scans of the database

• goal: reducing the number of scans

• partitioned Apriori: two scans

• 1st scan: partition the database and compute locally frequent

itemsets on the partitions
• 2nd scan: determine the support of all locally frequent itemsets
• heuristics: if an itemset is globally frequent it will be so locally

in at least one partition

→ second scan deals with a superset of possible itemsets
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Association Rules

• sampling: multiple scans
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Association Rules

• sampling: multiple scans

• 1st scan: take a sample and compute frequent itemsets
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Association Rules

• sampling: multiple scans

• 1st scan: take a sample and compute frequent itemsets
• 2nd scan: count their support and the support for their

immediate supersets
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Association Rules

• sampling: multiple scans

• 1st scan: take a sample and compute frequent itemsets
• 2nd scan: count their support and the support for their

immediate supersets

• if the itemset is at the negative border

• all frequent itemsets have been found
• else check supersets of the itemsets for being at the

negative border in subsequent scans

Algorithmic Learning: Learning Symbolic Structures 137



Association Rules

• incremental update: scan only the added transactions, whether

they

• invalidate a former frequent itemset, or
• introduce new frequent itemsets
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Learning Symbolic Structures

• Concept Learning

• Decision Trees

• Ensemble-based Methods

• Rule Induction

• Inductive Logic Programming

• Association Rules

• Transformation rules
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Transformation Rules

• task: context-sensitive classification (sequence labelling)

• e.g. genome analysis, part-of-speech-tagging

• target function with infinitely many values
observation: He wants to work on the job .

target: PRP VBZ TO NN IN DT NN .

• successively correction of erroneous classifications by means of

context-sensitive rules, e.g.

Change NN to VB if the previous tag is TO

• supervised learning of the transformation rules

• rule applications change the preconditions of other rule

applications
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Transformation Rules

Algorithm

1. start with an educated guess (e.g. highest prior probability)

2. run the current rule set over the training data

3. compare its outcome with the target

4. generate a rule which repairs most of the current errors

5. continue with 2 until no further improvement can be achieved
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Transformation Rules

• rule generation restricted by templates

• Change tag a to tag b if . . .

. . . the preceding/following word is tagged z.

. . . the word two before/after is tagged z.

. . . one of the two preceding/following words is tagged z.

. . . one of the three preceding/following words is tagged z.

. . . the preceding word is tagged z and the following

word is tagged w .

. . . the preceding/following word is tagged z and the word

two before/after is tagged w .
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Transformation Rules

• result: ordered list of transformation rules

from to condition example

NN VB previous tag is TO to/TO race/NN → VB

VBP VB one of the 3 prev. tags is MD might/MD vanish/VBP → VB

NN VB one of the 2 prev. tags is MD might/MD not reply/NN → VB

VB NN one of the 2 prev. tags is DT

VBD VBN one of the 3 prev. tags is VBZ
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Transformation Rules

• 97.0% accuracy, if only the first 200 rules are used

• 96.8% accuracy, if only the first 100 rules are used

• achieves the quality of a probabilistic tagger on the same data

(96.7%) with only 82 rules

• extremly time consuming training

≈ 106 times of a probabilistic tagger
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Algorithmisches Lernen/Machine Learning

Part 1: Wolfgang Menzel

• Learning of Symbolic Structures
• (Distance-Based Methods)
• Bayesian Learning

Part 2: Peer Stelldinger

• Connectionist Learning (e.g. Neural Networks)
• Dimensionality Reduction

Part 3: Jianwei Zhang

• Function approximation
• Reinforcement Learning
• Support-Vector Machines
• Applications in Robotics
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Distance-based approaches

• nearest neighbor classifier

• k-nearest neighbor classifier

• instance-based methods

• memorizing the complete training sample

• more data→ better results

• but no proper learning/generalization

• clustering

• grouping of observations

• based on a similarity/dissimilarity measure
• unsupervised learning (without teacher)

• often used for data compression
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Clustering

• hierarchical clustering

• partitioning clustering

• (clustering with neural networks)
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Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches
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Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches

• different clustering algorithms might lead to different clustering

results
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• different clustering algorithms might lead to different clustering

results

x1

x2

b

b

b

b

b
b

b

b

b

Algorithmic Learning: Learning Symbolic Structures 148



Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches

• different clustering algorithms might lead to different clustering

results

x1

x2

b

b

b

b

b
b

b

b

b

Algorithmic Learning: Learning Symbolic Structures 148



Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches

• different clustering algorithms might lead to different clustering

results

x1

x2

b

b

b

b

b
b

b

b

b

Algorithmic Learning: Learning Symbolic Structures 148



Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches

• different clustering algorithms might lead to different clustering

results

x1

x2

b

b

b

b

b
b

b

b

b

x1

x2

b

b

b

b

b
b

b

b

b

Algorithmic Learning: Learning Symbolic Structures 148



Clustering
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Clustering

• computing the optimal clustering is computationally infeasible

→ greedy, sub-optimal approaches

• different clustering algorithms might lead to different clustering

results
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Hierarchical Clustering

• agglomerative hierarchical clustering
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Hierarchical Clustering

• agglomerative hierarchical clustering

• successively merging data sets
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Hierarchical Clustering

• agglomerative hierarchical clustering

• successively merging data sets

• result can be displayed as a dendrogram
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Hierarchical Clustering

• agglomerative hierarchical clustering

• successively merging data sets

• result can be displayed as a dendrogram

x1 x2 x3 x4 x5
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Hierarchical Clustering

• algorithm

• initially each cluster consists of a single data point
• determine all inter-cluster distances
• merge the least distant clusters into a new one
• continue until all clusters have been merged
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Distance Measures

• distance measure for clusters

• single link: minimum of distances between all pairs of data

points
• complete link: e.g. mean of distances between all pairs of data

points
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Distance Measures

• distance measure for clusters

• single link: minimum of distances between all pairs of data

points
• complete link: e.g. mean of distances between all pairs of data

points

• local clustering criterion for data points: minimal mutual neighbor

distance (MND)

• distance depends also on the local context of a data point

dMND(~xi , ~xj) = r(~xi , ~xj) + r(~xj , ~xi)

r(~xi , ~xj): rank of xj according to distance from xi
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Partitioning Clustering

• mutual neighbor distance (MND)

A

B

C

A

B

C

D

E

dMND(A, B) = r(A, B) + r(B, A)

= 1 + 1 = 2

dMND(B, C) = r(B, C) + r(C, B)

= 2 + 1 = 3

dMND(A, B) = r(A, B) + r(B, A)

= 3 + 3 = 6

dMND(B, C) = r(B, C) + r(C, B)

= 4 + 1 = 5
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Partitioning Clustering

• vector quantization

• often used for data compression

• number of resulting clusters is given in advance
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Partitioning Clustering

• vector quantization

• often used for data compression

• number of resulting clusters is given in advance

• each cluster is represented by a centroid
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Partitioning Clustering

• complete segmentation of the feature space

VORONOI- oder DIRICHLET partitioning
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Partitioning Clustering

• global clustering criterion: minimizing the mean square error

• mean vector as centroid

~ck =
1

nk

nk∑

i=1

~xik

• error for one cluster (within-cluster variation)

e2
k =

nk∑

i=1

( ~xik − ~ck )2

• global error

e =

K∑

k=1

e2
k
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Partitioning Clustering

• algorithm for k -means partitioning clustering

• select a randomly chosen initial partitioning with k clusters
• compute the centroids
• assign each sample to the nearest centroid
• compute new centroids
• continue until the clustering stabilizes (or another termination

criterion based on the global error is met)
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Partitioning Clustering

• computation of the prototype vectors ~xi

~xi = cent(i) = arg min
i

E(d(~x , ~xi)|k(~x) = i)

use the centroid of each cluster as prototype vector

estimation of the mean

• vicious circle:

• to determine the centroids a partitioning is needed
• to partition the feature space the centroids are needed

→ recursive approximation
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Partitioning Clustering

• partitioning of the feature space

finding the optimal centroids for a given number of partitions:

1. choose the initial centroids

2. classify the sample according to the nearest-neighbor rule

3. compute the similarity measure for each partition

4. compute the a new centroid for each partition

5. classify the sample according to the nearest-neighbor rule

6. compute the similarity measure for each partition

7. as long as the similarity measure improves, continue with 4
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering

x2

x1

b

b

b

b

b

b

b

b

b

+

+

+

+

Algorithmic Learning: Learning Symbolic Structures 159



Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering

• finding a set of centroids by recursively splitting the partitions:

1. start with a single centroid

(e.g. the mean of all observations)

2. split the centroid(s)

• by a random distortion or
• by choosing two points with maximum distance

3. determine the optimal centroids (s.a.)

4. required number of partitions not yet reached? continue with 2
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering
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Partitioning Clustering

• additional heuristics for partitioning

• if a partition has too many samples, divide it.
• if two partitions are too close to each other, combine them.

• algorithms can also be adapted to incremental clustering
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