Multi-RCCL User’s Guide

John Lloyd and Vincent Hayward
April 1992

McGill Research Centre for Intelligent Machines
McGill University
Montréal, Québec, Canada

Postal Address: 3480 University Street, Montréal, Québec, Canada H3A 2A7
Telephone: (514) 398-6319 Telex: 05268510 FAX: (514) 283-7897
RCCL/RCI Bug Reports: lloyd@curly.mcrcim.mcgill.edu
General Network Address: mercim@Ilarry.mercim.mcgill.edu

RCCL/RCI Release 4.2, December 12,1995

Multi-RCCL User’s Guide

John Lloyd and Vincent Hayward

Abstract

This manual is a tutorial-style document which describes the robot programming system Multi-
RCCL, Release 4.0. The primary sites for this system are MCRCIM (McGill University) and the
Jet Propulsion Laboratory (JPL).

Copyright (©)1988, 1991 by John E. Lloyd and Vincent Hayward.

Permission to use, copy, modify, and distribute this document, and the RCCL/RCI software, is
granted for non-commercial and research purposes only, and providing that (1) no feeis charged
except the minimum necessary to cover copying and shipping expenses, and (2) al copyright no-
tices are preserved and the authors are fully acknowledged. All other rightsare reserved. The com-
mercia sale of RCCL/RCI, its supporting documentation, or a system which contains RCCL/RCI
as a component, is prohibited unless permission is obtained from the authors.

Since RCCL/RCI islicensed free of charge, it isprovided "asis’, without any warranty, including
any implied warranty of merchantability or fitness for a particular use. The authors assume no re-
sponsibility for, and shall not be liable for, any special, indirect, or consequential damages, or any
damages whatsoever, arising out of or in connection with the use of the software.

RCCL/RCI Release 4.2, December 12,1995

Acknowledgements

Support for the development of RCCL has been provided by McGill University (Montreal), the
Jet Propulsion Laboratory (Pasadena), and the General Electric Advanced Technology Laboratories
(Moorestown, N.J.). The original version was written at Purdue University in 1983.

| would liketo put in aword for the numerous people who contributed to RCCL over theyears.

Foremost mention goes to Vincent Hayward, who wrote the first version and provided many
ideas and suggestions for subsequent rel eases.

| would aso like to thank Mike Parker (McGill University) for his continual system support,
suggestions, quips, and document “debugging”. Samad Hayati (JPL) has provided much of the
motivation for further developments of the system. Paul Backes, Tom Lee, and Kam Tso (JPL) im-
plemented numerous applications, and thereby provided much of the motivation for adding extra
features. Rick McClain (General Electric) participated in the design of the multi-robot capabili-
ties, and Jin Lee and Bob Russell (General Electric) implemented many of the tracking and force
feedback applications. Chafye Nemri (McGill) proof read the latest version of this manual.

Thanks should also be extended to those people at McGill who helped me bring up RCCL in
the “early days’: to Thong for (frequent) hardware support, fixing joint 2 when it “blew” and help-
ing us “stretch” the Q-bus, to Frank for convincing us we could stretch the Q-bus, as well as take
other libertieswith the hardware, to Roy for general and moral support, especially the day whenwe
“upgraded” the controller cabinet, to Paul and Gregory who built the VAX-robot “FIFO” interface
(which, despite darker forecasts, operated flawlessly), to Rick and David who took time to disas-
sembl e the code for the joint microprocessors, and to Don Kossman for his trepitudein porting the
early system to iRMX.

Thanksisgivento Larry Alexander and John Day (Digital Equipment Corp.), for their helpin
convincing the rest of DEC that we had, in fact, found a bug in the microvVAX CPU hardware, and
specia thanks

Finally, special thanksisgivento Isobel Mackie, for her frequent helpwith “last minute” chores
during the dead-line crunches.

—JL.

RCCL/RCI Release 4.2, December 12,1995

Contents

1 Introduction 1
11 HIiSlory . . . 1
12 RequiredBackground L 1
1.3 SystemArchitecture. e 2
14 UsingtheSystem 5
15 A SmpleProgramExample 5

2 Basic Data Types 10
21 TheDataTypeFunctions i e 10
22 SomeBasicDefinitions 10
23 Numbers. 11
24 UNitS. e 11
25 VeClors e e 11
26 TransformationS. e e 12
2.7 Allocating Transformations o v it 15
2.8 Differential MotionsandForces e 19
29 Displacements. 21
210 QUALEINIONS o e e e e e e e e 22
211 GenericVector ROULINES o i e 24
212 JointCoordinales e e 25

3 Describing Positionsin Space 28
31 PoStONEQUELIONS o e 28
3.2 Using Position Equationsto Describe Motion Targets 29
33 Frameand TransformNames i 32
34 DeéfiningPositionEquations 33
3.5 Computingwith Position Equations 36

RCCL/RCI Release 4.2, December 12,1995

CONTENTS

4 Controlling a Robot

41
4.2
4.3
4.4

45

4.6
4.7

4.8

4.9

The Create and Delete Primitives i
The MANIPStructure e
Running the Trgjectory Generator
Specifying MOLIONS
441 TheBascMotionMechanism
442 Stoppingat TargetPoints.
Setting Motion Parameters
451 InterpolationMode
452 Setting Velocitiesand MotionTimes
453 SettingAcceleration
454 Moreon Velocity and AccelerationLimits.
Program Example: “box”
MoreMotionParameters
4.7.1 Explicitly SettingMotionTimes
472 OffsettingtheMotionTarget
4.7.3 Changing the Robot Configuration
Synchronization e
48.1 Cancelingand ControllingMotions
4.8.2 Controlling the Current Motion and MotionQueue
4.8.3 Getting UNIX signalson motioncompletion
Program Example: “hex”

410 Program Example: “jmove”

5 Movingto Variable Targets

5.1
52
5.3
54
5.5

TransformBindings
Program Example: “zigzag”
Restrictionsfor Control Level Functions
Ways of Modifying TransformsWith Functions
Communicating with the Control Functions
551 Memoryobjects
552 AccessCollisonand AtOmICACCESS o v v v v v i i e
553 DoubleBuffering
554 Locatingand UsingOtherObjects
555 Synchronizingwiththecontrol level

RCCL/RCI Release 4.2, December 12,1995

CONTENTS

5.6 Control Level SupportRoutines 96
56.1 RCCL systemroutines i i it e e 96
56.2 RClsupportroutines i i e 97
56.3 TheFastMathLibrary 98

5.7 Program Example: “rotat€” 99
58 Program Example: “pivot” 104
59 TheldointBiasFunctions 107
510 PausingtheSystem 108
Interacting with the Environment 110
6.1 TheLow Level RCl Robot Interface 110
6.1.1 TheRCI_RBTStructure i 110

6.1.2 Other waystoget JLS,KYN,andVAR 111

6.1.3 TheHOWBlackboard 112

6.1.4 Robotandl/OCommands 114

6.2 Kinematic Computation Functions 114
6.21 RoutineDescriptions 114

6.22 ExampleProgram. 116

6.3 Control Level Routinesand the Trajectory Generator 118
6.3.1 Monitor Functions 118

6.3.2 Trgectory Generator Computation Sequence 119

6.4 Sensorintegration. e 123
6.4.1 TaskLevel Integration 124
6.42 Tracking 129

6.43 GuardedMotions 135

6.5 TeachingPoSitions 141
6.5.1 TheTeachRoutine 141

6.5.2 KeyboardCommands., 141

6.53 PendantCommands, 143

6.5.4 ProgrammingwiththeTeachRoutine 143

6.6 LoggingData 146

RCCL/RCI Release 4.2, December 12,1995

CONTENTS v

7 Force Control and Motion Limit Detection 151
7.1 Limit SpecificationRoutines 151
7.2 Compliance SpecificationRoutines i 154
7.3 Program Example: “Comply” 157
7.4 ProgramExample: “Cylin” 163

8 Multi-Robot Capabilities 171
8.1 ControllingMultipleRobots 171
8.2 Virtual Manipulalors 172
8.3 Program Example: “Trackll” 177

9 Other Features 181
9.1 ProgranModesand Options 181

911 Options 181
912 Modes. e 182
9.13 TheParameterFile 183
9.2 FError Handlingand Recovery 185
921 TheErrorStack 185
922 Aborting 188
9.23 CachingAbortsYourself 189
924 ProgramCrashes o i 191
93 TheSimulator e 192
931 MakingRCCL UsetheSimulator 193
932 Simulator Features 194
9.3.3 A SampleProgram Runningin Simulation 194
94 Genera NotesontheEnvironment 198
94.1 TheUser’'sUNIX Environment 198
942 StatingThingsUp 198
943 CompilingRCCL programs o v v v it ittt 200
944 TheUtilityPrograms o 202
945 TheUtilityRoutines, 202
94.6 Limitations e e 202

RCCL/RCI Release 4.2, December 12,1995

1. Introduction

Multi-RCCL isaC package for implementing task level robot control applicationsunder UNIX. It
provides datatypes useful for robotics applications, such asvectors and spatia coordinatetransfor-
mations, in combination with routines to specify robot arm motions. Movements can be requested
to target positionsin either Cartesian or joint coordinates, and severa arms can be operated from
the same program. Arm trgjectories are created by a special background task which runs at a fixed
samplerate (usually 50 to 200 Hz., depending on the system). Application routines can be defined
which modify the trajectories based on real-time sensor inputs.

The output fromthetrajectory task consists of a set of joint-level position commands, which are
assumed to be implemented by some low level servo controller (such asthe 1 Khz PID controllers
for the PUMA). RCCL cannot be used to implement algorithms at the joint servo level, although
people doing such work might find it interesting to place RCCL on top of such asystem !. Depend-
ing on the control rates required, it is sometimes possible to implement servo level algorithmsin
RCI (the level beneath RCCL); those interested should consult the RCI User’s Guide.

1.1 History

RCCL (which stands for Robot Control C Library) was originaly written at Purdue University in
1983 by Vincent Hayward ([Hayward and Paul 1986]). Thismight be called Release 1.0. A dightly
enhanced version (Release 2.0) was produced at McGill University in 1985 ([Lloyd 1985]). Sig-
nificant changes were undertaken between 1987 and 1988, when the multi-robot and multi-CPU
capabilities were added ([LIoyd, Parker, and McClain 1988]). Thiswork was mainly undertaken
at McGill University and at the General Electric Advanced Technology Laboratory (New Jersey)
under contract to the Jet Propulsion Laboratory (JPL). The version delivered to JPL in the fall of
1988 was defined to be Release 3.0. The work done in creating the current Release 4.0 consisted
mostly of fixing bugs, improving the documentation, and doing ageneral “cleanup”. Thiswasdone
mostly during the fall of 1989.

Multi-RCCL isthe “official” name applied to RCCL releases 3.0 and 4.0.

1.2 Required Background

It is always difficult to describe the necessary background for using a technically oriented sys-
tem like RCCL. One should certainly be familiar with the C programming language [Kernighan
and Ritchie 1978], and also with the UNIX operating system. A thorough understanding of the

'RCCL could then be used to drive the servo level. This hasin fact been done at the Jet Propulsion Laboratory.
Interfacing RCCL to alower level system entails some code work and is beyond the scope of this manual, but is not
technically difficult. Consult the RCI User’s Guide and the RCCL/RCI Startup and Installation Guide for details on
what thelow level interface lookslike.

RCCL/RCI Release 4.2, December 12,1995

2 1. INTRODUCTION

robot control and programming techniques described by Paul in [Paul 1981] is also highly desir-
able. Paul’sbook is particularly important, since RCCL isin many ways just an implementation of
the ideas described there (although one can probably omit chapters 6, 7, and 10 on first reading).
Some concepts relating to real-time programming might also be useful; for instance, it would be
good if the user were familiar with the terms “data access collison” and “re-entrant code”’. There
are many books available on this subject; this author’sfavorite is [Allworth 1981].

1.3 System Architecture

An RCCL program, when it runs, sets up areal-time background task that generatesthe tragjectories
necessary to satisfy the motion requests specified by the main part of the program. The background
task, which we will generaly refer to as the trajectory generator, executes independently of the
main program at a periodic sample rate (50 Hz. is common), and is mostly invisible to the RCCL
programmer. However, there are ways for an RCCL program to provide application routines that
are executed within the trgjectory generator. Such routinesare run in real-time, periodically, at the
same rate used by the trajectory generator, and can be used for applications involving control or
sensor feedback.

The main RCCL program, which executes like any other UNIX program, is often referred to
asthe planning level, or planning task. The trajectory generator, plus any application routines run-
ning withinit, isusually referred to as the control level. Communication between the planning and
control level isimplemented using shared memory (see figure 1).

Thetrgjectory generator isimplemented using RCI (Real-time Control Interface), whichisafa
cility for spawning high-priority real-timetasks fromaUNIX program (see the RCI User’s Guide).
The code that implements the trajectory task is loaded into the RCCL program aong with all the
other library routines. However, the task is not a UNIX process, and does not have access to the
UNIX system services. Asaconsequence, RCCL routinesexecuting at the control level do not have
access to UNIX system services either. The restrictions which apply to control level functionsare
summarized in section 5.3.

Some implementations of RCI permit control tasks to be run on auxiliary CPUs attached to the
same backplane asthe UNIX CPU. If thisisthe case, then the trajectory generator can be split into
several control tasks, each one running on a separate CPU. Figure 2 shows this for a system with
oneauxiliary CPU available. Onetrgectory task iscreated per CPU, and the computationisdivided
up on a per-robot basis, i.e., any given robot is sill controlled by only one trajectory task, but the
computation for several robots can be done concurrently by tasks on different CPUs. All the tasks
run in sync, at the same rate, and so to the planning level they look very much like onetask. The
increase in available CPU power can be used in two ways: (1) to run the trgjectory generator at a
faster rate, and (2) to permit the execution of more complex control level applications. Extra CPUs
can also be used to drive virtual manipulators, which are not attached to any physical robot (see
section 8.2).

To run atragjectory task on an auxiliary CPU, the system simply copies the necessary parts of
the RCCL program into that CPU and executes it using a small kernel that is provided by RCI (it
is assumed that the auxiliary CPUs are instruction compatible with the host CPU). This happens
automatically: as an RCCL program identifies the different robots it wants to control, the system

RCCL/RCI Release 4.2, December 12,1995

1.3. SYSTEM ARCHITECTURE 3

main RCCL

program

:

shared
memory

:

application
routines

trajectory
generator

Figurel: Themain RCCL program and the trgjectory generator.

assigns each robot to atrajectory task, and (in the absence of explicit requests from the RCCL pro-
gram) triesto spread the total number of tragjectory tasks out among as many CPUs as are available.
At present, multi-CPU capabilities exist only for MicroVAX systems.

Each trgjectory task drives one or more robots. To exchange information with arobot, it uses a
communication driver (provided by RCI) to speak to an interface device provided for that robot on
the system backplane. Generally, thisinterface in connected to alow level servo controller, which
implements simple joint-level position (and possibly torque) commands. Robot state and sensor
information is read in from the servo controller at the beginning of every control cycle, and set-
points and commands are written out to it at some point during the control cycle. A more detailed
description of this sequence of operationsis given in section 6.3.2.

Within an RCCL program, most of these details concerning trajectory generation are hidden
from the user. Communication with the trajectory generator is done through functions and a few
specia data structures. The control level application functions that a program can set up fall into
the following classes:

e transform functions— These are specia functions which are specifically intended to modify

RCCL/RCI Release 4.2, December 12,1995

1. INTRODUCTION

UNIX Auxiliary
(CPU 0) CPU1
main RCCL
program
TRAJECTORY GENERATOR

trajectory
task O

trajectory
task 1

backplane (Q-bus for uvVAX version)

{

1st robot 2nd robot
interface interface
controller controller
interface interface
servo level servo level
controller controller

{4

N A

Figure2: RCCL system, connected to two robots, with trgjectory tasks running
on two CPUs.

RCCL/RCI Release 4.2, December 12,1995

1.4. USING THE SYSTEM 5

gpatial coordinate frames. They provide an easy way to integrate sensor information into a
program, and are used to implement things such as tracking (see section 5.1).

¢ Monitor functions—these are general purpose functionsthat can be set up to do pretty much
anything (see section 6.3.1).

We repeat that the programmer should read section 5.3 before writing control level functions.

1.4 Using the System

Using RCCL to control arobot consists of setting up a few environment variables (section 9.4.1),
starting up the robot controller (and calibrating it if necessary; section 9.4.2), compiling an RCCL
program, and running it. Depending on the specific installation, it may also be necessary to turnthe
robot arm power on after the program is started; the system will prompt the user to do o if thisis
the case.

RCCL programsshould be compiled with the special system command rcc, instead of the usual
UNIX command cc. Thisisaspecial “front-end” to the C compiler that takes care of afew things
necessary for the system to be able to create the control tasks. Itisused amost identically tothe cc
command, except that modul es containing control level functionshaveto be specified in aparticular
way (section 9.4.3).

1.5 A Simple Program Example

We will get thingsrolling immediately by presenting a smple RCCL program. The description of
thingsmight not be clear onfirst reading, but everything presented hereisdescribed in much greater
detail later on. The program movesthe robot to a suitable starting position, then movesin astraight
line to a nearby target point, and finally returnsto the starting position.

The program looks like this:

#include <rccl.h>
#include '"manex.560.h"

main()

{
TRSF_PTR p, t; /*1%/
POS_PTR pos; /*2%/
MANIP *mnp; /*3%/
JNTS rcclpark; /*4x/
char *robotName; /*5%/
rcclSetOptions (RCCL_ERROR_EXIT); /*6%/
robotName = getDefaultRobot(); /*T*x/

if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");

RCCL/RCI Release 4.2, December 12,1995

6 1. INTRODUCTION

exit(-1);
¥
/*8%/
t = allocTransXyz ("T'", UNDEF, -300.0, 0.0, 75.0);
p = allocTransRot ("P", UNDEF, P_X, P_Y, P_Z, xunit, 180.0);

pos = makePosition ("pos", T6, EQ, p, t, NULL); /*9%/
mnp = rcclCreate (robotName, 0); /*10%/
rcclStart();

movej (mnp, &rcclpark); /*11%/
setMod (mnp, ’c’); /*12%/
move (mnp, pos); /*13%/

stop (mnp, 1000.0);

movej (mnp, &rcclpark); /*14%/
stop (mnp, 1000.0);

waitForCompleted (mnp); /*15%/
rcclRelease (YES); /*16%/

NOTE - this example has been coded for the PUMA 560 robot, and lives at
$RCCL/demo.rccl/simple.560.c. An equivalent programfor the PUMA 260 is contained in
simple.260.c. Torun this program, set up your RCCL environment as described in section
9.4.1, start up the robot and controller (section 9.4.2), compile the program using the rcc
command (section 9.4.3), and execute it.

Figure 3 shows the two motions which are performed after robot has moved to the starting po-
sition. Two coordinate frames areillustrated: the base frame of the robot’s T6 transform?, situated
inits shoulder, and the T6 coordinate frameitself, situated in the last link.

The include file <rccl.h> contains C structure type definitions and external entry points the
same way the include file <stdio.h> does. It provides the necessary definitions for the RCCL
functions, structures, and variables. Thefile "'manex .560.h'" contains declarations specific to the
PUMA 560 demo programs used in this manual.

The program will make use of two 4 x 4 homogeneous transforms described by the TRSF data
type. The variables p and t are declared as pointers to these transforms, using the pointer type
TRSF_PTR (/*1*/) (which is equivalent to TRSF*). The program will describe the target for one
of its motions using a position equation, which is described by a data type POS. pos isdeclared as
a pointer to the position equation using the type POS_PTR (/*2*/) (which is equivalent to POS*).
Within the program, the robot is described by a MANIP structure, pointed to by mnp (/*3+/) (the
equivalent type MANIP_PTR isalso available). Thefirst step isto move the robot to a known initial
position; thispositionisdescribed by aset of joint anglesstored inthevariablercclpark, whichisa
JNTS datatype (/*4*/) (these datatypes are not generally allocated by system routines, so we have

2Thisisthe4 x 4 transformation from the robot’s base frame to a coordinate frame located inits last link. It will
be described in detail | ater.

RCCL/RCI Release 4.2, December 12,1995

1.5. A SIMPLE PROGRAM EXAMPLE 7

manipulator
base
frame

Figure 3: Moving to position “pos’ using Cartesian interpolated motion, and
moving back using joint interpol ated motion.

to provide our own; that iswhy rcclpark isthe actual structure rather than a pointer). Finaly, a
string describing the name of therobot to be controlledisstored inthevariablerobotName (/*5%/).

Thefirstcommandisacall torcclSetOptions () tosettheoptionRCCL_ERROR_EXIT (/*6%*/).
When thisoption isset, most RCCL primitiveswill smply print out diagnostic messages and abort
the program upon encountering arun-timeerror. This savesthe programmer from having to explic-
itly check each primitive'sreturn value for an error condition (typically indicated by NULL or -1,
depending on whether the primitive normally returns a pointer or not), and is useful for top level
applications or code development.

The next thing the program does (at /*7*/) isget the name of the robot it isgoing to control and
theinitial position it will moveit to. getDefaultRobot () returns the name of the system default
robot, which is stored in the file $RCCL/conf/defaultRobot. With this name, the program then
uses getRobotPosition() to look up the joint angles corresponding to the name "rcclpark".
This routine checks the file $RCCL/conf/<robotName> . pos for the named set of angles and re-
turns 1 if found and O otherwise (not finding the position is not considered to be an error per se,
so the function’s return value is checked explicitly). The joint angles are read into the v field of

RCCL/RCI Release 4.2, December 12,1995

8 1. INTRODUCTION

rcclpark, whichisjust an array of floats describing the joint values.

Next, theprogram allocatesand instantiatesthe4 x 4 transforms(/*8+ /). Thetransform pointed
to by t isused to specify atarget position relativeto the end effector coordinatesof the "rcclpark"
position. Itiscreated withacall toallocTransXyz (), which allocatesaTRSF datatype, givesit the
name "T", setsit to have atrandational component of —300.0, 0.0, and 75.0, and returns a poi nter
to it. The rotational component is set to the identity matrix. The routine’s second argument allows
the programmer to specify the memory pool from which the transformis allocated; thisisnormally
left undefined (by specifying UNDEF), asis done here.

Thetransformp isset equal to thevalue of the manipulator’sT6 transform at theinitial position.
Although it is possible to determine this value directly by reading it back when the robot arrives at
theinitial position (which will bedonein later examples), we here set it explicitly. Thetransformis
created using allocTransRot (), isgiventhe name"P", and isbuilt of trandational component of
P_X,P_Y,and P_Z (defined in manex .560.h) aong the corresponding axes and a rotational com-
ponent equal to arotation of 180.0 degrees about the = axis. (xunit isabuilt-in variable of type
VECT whose val ue describes the unit vector (1,0, 0). Sincetransform "P'" isreferenced to the same
base frame as T6 (i.e., the robot shoulder), this rotation causes the » axis of the frame following
"P'" to point downward (see the figure).)

The two transforms are now used in a call to makePosition() (/*9%/), which constructs a
kinematic position equation (as described in [Paul 1981]) and returns a pointer to it. makePosi-
tion() accepts avariable number of arguments, the first being the name of the position. The re-
maining arguments, up to the special argument EQ, are transforms making up the left hand side of
the position equation. The arguments after EQ are transforms making up the right hand side. The
argument list is terminated by NULL. The manipulator T6 transform isindicated by the specia ar-
gument T6. The call to makePosition() inthisexample declares the following equation:

T6 = BT

If we interpret this as atarget for arobot motion, we can say that the robot should be moved until
its T6 transform satisfies the equation. Inthiscase, T6 will be set equal to B (thevalue of T6 at the
park position) multiplied by the transform T.

The next group of functionsinitialize and turn on the trajectory generator (/*10%*/). rcclCre-
ate() alocates the structures necessary to control a particular robot. It takes two arguments. a
string describing the name of arobot to be controlled and a bit mask specifying which CPUs may
be used to run that robot’s trgjectory generator. Thislast argument isrelevant only for RCCL/RCI
systems with multi-CPU capability and may left undefined (as is done here) by specifying 0. rc-
clCreate() returns a pointer to a MANIP data structure which is used by the rest of the program
to reference and control the robot in question. rcclStart () starts the trgjectory generator task
running; motion requests will not have any effect unlessthisis done.

The programis now ready to move the robot. The first motion request is made with movej (),
which requests that the manipulator move to the joint angles contained in rcclpark (/*11%/).

RCCL alows motion targets to be specified using either joint coordinates (asis done here with
movej ()) or Cartesian coordinates (as will be done next, with move ()). Furthermore, if the mo-
tion target is specified in Cartesian coordinates, the system offers a choice as to how the path to
that target is computed. By default, RCCL computes the path to the target using joint interpolated

RCCL/RCI Release 4.2, December 12,1995

1.5. A SIMPLE PROGRAM EXAMPLE 9

motions. This can be changed to Cartesian straight line motion by calling setMod (mnp, ’c’)
(/*12%/). Inthismode, the manipulator TOOL frame (equivalent in this programto T6) ismoved
along a straight line in Cartesian coordinates to the target position. The difficulty with Cartesian
mode is that sometimes a straight line path from A to B cannot be followed, typically because it
would place the robot in an impossible position. What we usually do (and have done here) isto use
joint mode for our initial motion; local Cartesian motions are then less likely to fail.

Thenext call (tomove ()) tellsthe robot to move to atarget point defined by solving the position
equation pos for T6 (/*13x*/). The following cal to stop () instructs the robot to stop therefor 1
second (specified as 1000 milliseconds) before continuing.

Finally, we request a move back to the initial position with another call to movej () (/*14*/)
(movesrequested withmovej () are always computed in joint mode, regardless of the interpolation
mode selected by setMod ().

Motion requests are not synchronized with the actual motion of the arm. Instead, they smply
place amotion request packet on agueue, wherethey wait to be serviced by the trgjectory generator
as soon aspossible. After the callstomovej () andmove () inthe program have returned, the robot
has probably not even completed thefirst movej () request. To synchronize the main programwith
the motion of the arm, different methods are available. The smplest of these, used in the example
here, isto wait for the manipulator to finish servicing al of its motion requests and come to rest.
Thisis accomplished by the macro waitForCompleted (mnp) (/*15%/).

The last call in the program, rcclRelease() (/*16%/), turns the trgjectory generator off. It
takes a binary argument which, if true, specifies that the robot arm power should be turned off as
well.

RCCL/RCI Release 4.2, December 12,1995

10 2. BASIC DATA TYPES

2. Basic Data Types

We shall now describein detail some of the RCCL datastructures, in particular vectors, transforma-
tions, differential motions, and forces. We shall also indicate how they can be used in manipulator
programs.

2.1 The Data Type Functions

Each RCCL datatypeis generally associated with acluster of functions for modifying instances of
that type, or converting it to another type. (Itisinthese casesthat RCCL would most greatly benefit
from being implemented in a more “object oriented” language, such as C++; if anyone decides to
do this, the authors would be interested in knowing.)

The data type functions follow a parameter passing convention where (1) a pointer to the type
being modified is passed in as the leftmost argument, and (2) the function returns the value of this
pointer (in the same style as the the string manipulation functions described in string(3).) This
permits calls to be nested in the following way:

trans2 = rotToTrsf (xyzToTrsf (tramsl, 1.0,2.0,3.0), zunit, 90.0);
which, in one line, sets the trandational components of a transform to 1.0, 2.0, and 3.0, and then
sets the rotational component to describe a turn of 90° about -.

Structure arguments are passed by reference to save execution time.

Most of the special datatypes are defined in thefile <robotTypes.h>, which isincluded auto-
matically by <rccl.h>.

2.2 Some Basic Definitions

The include file <rccl.h> references <cdefs.h>, which defines a few very basic things used by
most of the system:

#tdefine NULL 0
#define NULLF (int(*)())0

#define YES 1
#define NO
#tdefine UNDEF (-1)

#define MIN(x,y) (x) <y 7?2 &® : G
#define MAX(x,y) (x> @y 7?2 &® : G
#define ABS(x) ((x) <07 -(x) : (x)

RCCL/RCI Release 4.2, December 12,1995

2.3. NUMBERS 11

#define NINT(x) ((int) (((x)<0) ? ((x)-0.5)) : ((x)+0.5))

#define ARRAY_SIZE(a) (sizeof(a)/sizeof(al0]))

NULL and NULLF are used for identifying null pointers, YES and NO are “user friendly” booleans,
UNDEF isused to indicate that some (normally non-negative) quantity is undefined, MAX (), MIN(),
ABS(),andNINT () areobvious, and ARRAY _SIZE() isused for automatically determining the num-
ber of elementsin an array.

There are some other thingsin <cdefs.h>, but they won't be referred to in this manual.

2.3 Numbers

Thefile<rccl.h> aso references <robotMath.h>, which defines several numeric constants:

PI

PIB2
PIT2
DEGTORAD
RADTODEG

These are, respectively, =, 7 /2, 2x, 7 /180, and 180 /7.

2.4 Units

Distancesin RCCL are expressed in millimeters. Rotational unitsare expressed in either degrees or
radians; thereis some occasional inconsistency, which ishistorical in origin but can be abit bother-
some. Rotations are always expressed internally in radians, and functionswhich accept (or output)
degrees convert to (or from) the radian representation at the highest level.

Forceis expressed in Newtons and torque is expressed in Newton-millimeters.
Timeis expressed in milliseconds.

2.5 Vectors

Spatial 3-vectors are described by the type VECT:

typedef struct {
float x, y, 2;
} VECT, *VECT_PTR;

A pointer to a vector variable can either be defined as VECT *pk or VECT_PTR pk, depending
on the programmer’s taste and coding style. This paradigm will be followed with the other data

types.
Vectors are assigned and manipulated by the following functions:

RCCL/RCI Release 4.2, December 12,1995

12 2. BASIC DATA TYPES

float dotVect (v1, v2)
VECT_PTR v1, v2;

VECT_PTR crossVect (vr, vl, v2)
VECT_PTR vr, v1, v2;

VECT_PTR unitVect (vr, vl)
VECT_PTR vr, vi;

Thefunction dotVect () returnsthe dot product of two vectors. The function crossVect () com-
putes the cross product of v1 with v2, and returnstheresult in vr. The functionunitVect () com-
putes aunit vector parallel to vi and returnsthisin vr.

For convenience, RCCL pre-defines the three VECT_PTR typeSxunit, yunit, and zunit, and
sets them to point to unit vectors aong the «, y, and = axes.

2.6 Transformations

A 4 x 4 homogeneous transformation is represented by the structure TRSF:

typedef struct {
VECT n, o, a, p;
} TRSF, *TRSF_PTR;

The entriesin the structure are ssimply the columns of the matrix which comprise the normal, ori-
entation, approach, and position vectors (n, 0, a, and p). The last row of the transform is assumed
tobe 0,0, 0, 1], so these types contain enough information to do only three dimensional coordinate
transformations, not scaling or perspective operations.

Transforms are assigned and manipulated by numerous functions. The most basic include:

TRSF_PTR copyTrsfXyz (tr, t1)
TRSF_PTR tr, t1;

TRSF_PTR copyTrsfNoa (tr, t1)
TRSF_PTR tr, t1;

TRSF_PTR multTrsf (tr, t1, t2)
TRSF_PTR tr, t1, t2;

TRSF_PTR multRiTrsf (tr, t1, t2)
TRSF_PTR tr, t1, t2;

TRSF_PTR multLiTrsf (tr, t1, t2)
TRSF_PTR tr, t1, t2;

TRSF_PTR invertTrsf (tr, t1)

RCCL/RCI Release 4.2, December 12,1995

2.6. TRANSFORMATIONS 13

TRSF_PTR tr, t1;

TRSF_PTR identTrsf (tr)
TRSF_PTR tr;

The functions copyTrsfXyz () and copyTrsfNoa() perform a selective copy of the trandational
(resp. rotational) part, leaving untouched therotational (resp. trandational) part. Thefunctionmult-
Trsf () multipliest1 by t2 and leavestheresultintr. multRiTrsf () multipliest1 by theinverse
of t2 and leavestheresult in tr. The functionmultLiTrsf () multipliesthe inverse of t1 by t2
and leavestheresultin tr. Thefunction invertTrst () takestheinverseof t1 and leavesitintr.
The function identTrsf () convertstr to an identity transform.

Again, al of these routines return a pointer to their result argument.

Thefollowing additional functionsare avail ableto selectively set variouscomponentsof atrans-
formation:

TRSF_PTR xyzToTrsf (tr, px, py, pz)
TRSF_PTR tr;
float px, py., pz;

TRSF_PTR vaoToTrsf (tr, ax, ay, az, 0x, oy, 0Zz)
TRSF_PTR tr;
float ax, ay, az, ox, oy, oz;

TRSF_PTR rotToTrsf (tr, k, h)
TRSF_PTR tr;
VECT_PTR k;
float h;

TRSF_PTR eulToTrsf (tr, phi, the, psi)
TRSF_PTR tr;
float phi, the, psi;

TRSF_PTR rpyToTrsf (tr, roll, pitch, yaw)
TRSF_PTR tr;
float roll, pitch, yaw;

All these functions use a transformation pointer as left argument; as usual, this pointer is also re-
turned by the function.

The function xyzToTrsf () sets the terms of the p vector of tr and leaves the rotational part
untouched.

The function vaoToTrsf () setsthen, o, and a vectors of tr. Sincethevectorsn, o and a are
orthogonal, vaoToTrsf () takes only the componentsof o and a and buildsthe vector n itself. The
vectors whose components are input as arguments do not need to be orthogonal, since the rotational
part of thetransformisbuilt asfollows: take the user’s supplied a vector, normalizeit and useit as
thefinal a vector; take the user’s supplied o vector (which need not be orthogonal to a) and build a

RCCL/RCI Release 4.2, December 12,1995

14 2. BASIC DATA TYPES

(possibly non-unit) vector n that isorthogonal to both o and a; reconstruct o to be orthogonal with
n and a, normalizeit, and finally, compute n from the cross product of o and a'.

Thefunction rotToTrsf () setstherotational part of tr to arotation of h degrees about a (pos-
sibly non-unit) vector k.

The function eulToTrsf () setstherotational part of tr to arotation expressed with the three
Euler angles (in degrees).

Finally, thefunction rpyToTrsf () setstherotational part of tr to arotation expressed with the
three roll-pitch-yaw angles (in degrees).

The next set of functions are exactly analogous to the previous ones, except that the transform
argument is post-multiplied by another transform defined by the other parameters of the function.
Asusual, apointer to the result transformis returned as the value of the function.

TRSF_PTR multTrsfXyz (tr, px, py, pz)
TRSF_PTR tr;
float px, py., pz;

TRSF_PTR multTrsfVao (tr, ax, ay, az, ox, oy, 0z)
TRSF_PTR tr;
float ax, ay, az, ox, oy, oz;

TRSF_PTR multTrsfRot (tr, k, h)
TRSF_PTR tr;
VECT_PTR k;
float h;

TRSF_PTR multTrsfEul (tr, phi, the, psi)
TRSF_PTR tr;
float phi, the, psi;

TRSF_PTR multTrsfRpy (tr, roll, pitch, yaw)
TRSF_PTR tr;
float roll, pitch, yaw;

It may sometimes be desirableto convert the rotational component of aTRSF datatype back into
Euler angles, roll-pitch-yaw angles, or rotation angle/axis parameters. The functionsto do thisare:

trsfToEul (phi, the, psi, t1)
float *phi, *the, *psi;
TRSF_PTR t1;

trsfToRpy (roll, pitch, yaw, t1)
float *roll, *pitch, *yaw;
TRSF_PTR t1;

! Check the reference manual for the corresponding equations.

RCCL/RCI Release 4.2, December 12,1995

2.7. ALLOCATING TRANSFORMATIONS 15

trsfToRot (k, h, t1)
VECT_PTR k;
float *k;
TRSF_PTR t1;

The Euler or roll-pitch-yaw angle representations for arotation are not necessarily unique. The
rotation angle/axisrepresentationis unique sincethereturned value of h isdefined tolieintherange
0 < h < 180°. Note also that scalar values are returned through pointers, in a manner anal ogous
tothe UNIX routine scanf ().

2.7 Allocating Transformations

Structures of the TRSF data type described in the previous section may be defined or alocated in
any of the ways normally available for creating C objects (static or automatic declaration, use of
malloc(),€tc.). However, if onewishesto create atransformwhichisshared between the planning
and control levels, then it must not be a static or automatic variable, nor can it be malloc()ed;
instead, it must be allocated viaa set of special RCCL primitives. Transformsallocated in thisway
can be bound to real-time functions, and can also be used to form position equations as described
later.

The basic primitivesfor creating and deleting transforms are

TRSF_PTR allocTrans (name, pool)
char *name;
int pool;

freeTrans (t)
TRSF_PTR t;

allocTrans() alocates atransformation, givesit the indicated name, setsitsvalueto theidentity,
and returnsapointer toit. Thevariablepool alowsthe programmer to specify which memory pool
the transform should be allocated from. Under the current implementation, the pool number corre-
spondsto a CPU number; i.e., specifying pool number 2 would mean that the transformisallocated
from memory on CPU 2. Obvioudy, thisis relevant only on multi-CPU versions of RCCL/RCI.
Typically, the pool argument isleft undefined (UNDEF) and the system chooses the allocation pool.
It also is not necessary to give the transform aname; if no nameis desired, then that argument may
be specified asNULL. Names are useful sometimeswhen one wishesto obtain a pointer to the trans-
form from the control level.

The function freeTrans () returnsatransform to the pool from which it was all ocated.
If aprogrammer wishes to make a compile-time declaration of atransform, asin

function()

{
TRSF base;

RCCL/RCI Release 4.2, December 12,1995

16 2. BASIC DATA TYPES

+
or the declaration
static TRSF base;

then the following should be noted:

e Firdt, transforms created thisway cannot be accessed by the control level. They must not be
used in aposition data structure (created by the functionmakePosition (), described |ater).

e Structure datatypes are passed by reference, so literally declared transformations need to be
prefixed with the & (address) operator when passed to a function.

e Itisup tothe programmer toinitializetransformsdeclared in thisway (for instance, by using
identTrsf()).

InadditiontoallocTrans(),thereisagroup of other functionswhich allocate anew transform
and at the sametimeinitializeit to desired values:

TRSF_PTR allocTransXyz (name, pool, px, py, pz)
char *name;
int pool;
float px, py., pz;

TRSF_PTR allocTransRot (name, pool, px, py, pz, k, h)
char *name;
int pool;
float px, py, pz, h;
VECT_PTR k;

TRSF_PTR allocTransPao (name, pool, px,py,pz,ax,ay,az,0X,0y,0Zz)
char *name;
int pool;
float px, py, pz, ax, ay, az, OX, Oy, OZ;

TRSF_PTR allocTransEul (name, pool, px, py, pz, phi, the, psi)
char *name;
int pool;
float px, py, pz, phi, the, psi;

TRSF_PTR allocTransRpy (name, pool, px, py, pz, roll, pitch, yaw)

RCCL/RCI Release 4.2, December 12,1995

2.7. ALLOCATING TRANSFORMATIONS 17

char *name;
int pool;
float px, py, pz, roll, pitch, yaw;

All of these functionsreturn apointer to the created transform. Thefirst two argumentsareidentical
to the first two arguments of allocTrans(). The next three arguments specify the trandational
component, the p vector. The remaining arguments, if any, define the rotational component, and
arethe same asthose for the corresponding xxxToTrsf () routines (except for allocTransPao(),
which maps onto vaoToTrsf () instead of paoToTrsf()).

For example, the code fragment

TRSF_PTR t1, t2, t3; /* declare transform pointers */

t1

xyzToTrsf (eulToTrsf (allocTrans ("T1", UNDEF),
10.0, 20.0, 30.0),
1.0, 2.0, 3.0);

t2

allocTransEul ("T2'", UNDEF, 1.0, 2.0, 3.0, 10.0, 20.0, 30.0);

t3 = allocTransXyz ("T3", UNDEF, 1.0, 2.0, 3.0);
eulToTrsf (t3, 10.0, 20.0, 30.0);

produces three identical transforms.
Finally, there are functionsfor printing the value of atransform:

printTrsf (fmt, tr);
char *fmt;
TRSF_PTR tr;

fprintTrsf (fp, fmt, tr);
FILE *fp;

char *fmt;

TRSF_PTR tr;

rciPrintTrsf (fmt, tr);
char *fmt;
TRSF_PTR tr;

All of these accept a pointer to atransform and aformat string describing how the transform should
be printed. Typical format stringsare "%m\n", which prints the transform in matrix form followed
by anewline, "% r\n%p\n", which printsthe transformin termsof theroll-pitch-yaw anglesand the
translational component followed by an newline, and "%q\n%p\n", which prints the transformin
terms of a quaternion and the trandational component (again, followed by a newline). Preceding
one of the format characterswith a > L’ causes one of the labels

RCCL/RCI Release 4.2, December 12,1995

18 2. BASIC DATA TYPES

QTRN
RPY
XYZ
EUL

to be printed in front of the quaternion, roll-pitch-yaw, trandational, or euler angle representation.
Non-format characters which appear in the format string are printed literally (hence the new lines
in the above examples).

For exampl e, the code fragment

TRSF_PTR t1, t2, t3;

t1 = allocTransEul ("T1", UNDEF, 10., 20., 30., 11., 12., 13.);
printTrsf ("T1 %m\n", t1);

t2 = allocTrans ("T2", UNDEF);
rotToTrsf (t2, yunit, 90.);
multTrsfXyz(t2, 10., 20., 30.);
putchar (°\n’);

printTrsf ("T2 YLr\n %Lp\n", t2);

t3 = allocTrans ("T3", UNDEF);
putchar (°\n’);
printTrsf ("T3 Ym\n", multTrsf (t3, t1, t2));

putchar (’\n’);
printTrsf ("T3 %q\n ’p\n", t3);

will produce the output

T1 0.89264 -0.40191 0.20409 10.00
0.40267 0.91448 0.03967 20.00
-0.20258 0.04677 0.97815 30.00

T2 RPY: 0.000 90.000 -0.000
XYZ: 30.00 20.00 -10.00

T3 -0.20409 -0.40191 0.89264 26.70
-0.03967 0.91448 0.40267 49.97
-0.97815 0.04677 -0.20258 15.08

T3 0.61396 -0.14492 0.76177 0.14750
26.70 49.97 15.08

Much more detailed information on the format string syntax can be found in the manual page
for printTrsf().

RCCL/RCI Release 4.2, December 12,1995

2.8. DIFFERENTIAL MOTIONS AND FORCES 19

Thefunctions fprintTrsf () and rciPrintTrsf () areidentical to printTrsf () except that
thefirst allowsafile stream to specified for output and thelatter can be called from the control level
(with the output going to the same place asfor rciPrintf ()).

2.8 Differential Motions and Forces

NOTE: The background to this material is described in [Paul 1981]; this section can probably be
omitted on first reading.

A differential motion is expressed in terms of a differential trandation vector and differential
rotation vector. A generalized force is expressed in terms of a linear force vector and a moment
vector. The corresponding structures are:

typedef struct {
VECT t, r;
} DIFF, *DIFF_PTR;

typedef struct {
VECT £, m;
} FORCE, *FORCE_PTR;

Sincevelocity issmply adifferentia displacement divided by adifferentia time change, the DIFF
data type can also be used to represent velocities.

The functions associated with these data types are:

TRSF_PTR diffToTrsf (tr, di)
TRSF_PTR tr;
DIFF_PTR di;

DIFF_PTR trsfToDiff (dr, t1)
DIFF_PTR dr;
TRSF_PTR t1;

DIFF_PTR transDiff (dr, di, t)
DIFF_PTR dr, di;
TRSF_PTR t;

FORCE_PTR transForce (fr, f1, t)
FORCE_PTR fr, f1;
TRSF_PTR t;

The function diffToTrsf () convertsaDIFF type into the corresponding transform; the rota-
tional displacement described by DIFF isassumed to be small enough so the conversion is reason-
ably well behaved. Thefunction trsfToDiff () convertsatransforminto aDIFF type (again, the
rotational displacement is assumed to be small).

RCCL/RCI Release 4.2, December 12,1995

20 2. BASIC DATA TYPES

ThefunctiontransDiff () transformsadifferential motion expressed with respect to oneframe
into the same differential motion expressed with respect to another frame. Suppose the original
frame P1 is described by a homogeneous transform P1 and the destination frame P2 is described
by another transform P2. The transform argument t is then defined to link these so that

P2 = P1T.

Theinput differential motion d1 isdescribed with respect to P1 and the output dr is described with
respect to P2.

The function transForce () perform the analogous transformation on FORCE types.

To print out the values of DIFF or FORCE structures, the RCI utility routine printVf () can be
used. Thisisageneral purpose function used for printing avector (or array) of floats. It isdeclared
asfollows:

printVf (fmt, v, n)
char *fmt;
float *v;
int n;

where fmt isaformat string, v is a pointer to the vector, and n is the number of elementsin the
vector. The format string accepts the usual constructs used by printf () for outputting floating
point numbers (such as "%£" and "%g"), except that the number of output fields is set equal to the
number of elementsin the vector. The DIFF and FORCE structures can usually be printed by this
routine, if the number of elementsis set to 6°.

For example, the following sequence of program statements

DIFF Dpl, Dp2;
FORCE Fpl, Fp2;
TRSF *t;

t = allocTransPao ("T", UNDEF, 10.,5.,0.,1.,0.,0.,0.,0.,1.);
printTrsf ("%m\n", t);

Dp2.
Dp2.
Dp2.
Dp2.
Dp2.
Dp2.r.
printVE ("DP2: %6.2f\n", (float*)&Dp2, 6);

printVf ("DP1: %6.2f\n", (float*)transDiff (&Dpl, &Dp2, t), 6);

H B o ¢

N < X N <9 M
1}

O O O O O =

2|t is possible (though unlikely) that the internal representation of these data types on some machines will not be
equivalent to an array of floats, in which case thiswill not work. Casting the address of the structure to afloat pointer
can also fail, but again thisisimprobable on most systems likely to run RCCL.

RCCL/RCI Release 4.2, December 12,1995

2.9. DISPLACEMENTS 21

Fp2.f.x = 10.0;
Fp2.f.y = 0.0;
Fp2.f.z = 0.0;
Fp2.m.x = 0.0;
Fp2.m.y = 100.0;
Fp2.m.z = 0.0;

printVE ("FP2: %6.2f\n", (float*)&Fp2, 6);
printVf ("FP1: %6.2f\n", (float*)transForce(&Fpl, &Fp2, t), 6);

will yield the following outpuit:

0.00000 0.00000 1.00000 10.00

1.00000 0.00000 0.00000 5.00

0.00000 1.00000 0.00000 0.00
DP2: 1.00 0.00 0.50 0.00 0.10 0.00
DP1: 0.00 -0.50 1.00 0.10 0.00 0.00
FP2: 10.00 0.00 0.00 0.00 100.00 0.00
FP1: 0.00 0.00 10.00 100.00 50.00 0.00

Much more detailed information on printVf () can be found in the manua pages.

For printing values to afile, or doing diagnostic printing from the control level, the functions
fprintVf () and rciPrintVf () can beused; these areidentical to print Ve () except that thefirst
allows afile stream to specified for output, and the latter can be called from the control level (with
the output going to the same place asfor rciPrintf ()).

2.9 Displacements

Any displacement in Cartesian coordinates can be represented as atrandation followed by asingle
rotation about some axis. RCCL provides a data type for representing displacements this way:

typedef struct {
VECT p;
float a;
VECT u;

} DSPL, *DSPL_PTR;

The p field describes the trandation, the a field describes the rotation angle (in radians), and the
u field isa unit vector paralel to the axis of rotation. The rotational representation is potentialy
ambiguous. if the a and u fields describe ¢ and u, then —a and —u represent the same thing. To
resolve this, therange of « isrestrictedto 0 < « < 7. (The rotation representation is the same as
that used by rotToTrsf().)

The DSPL data type contains al the information described by a TRSF datatype, and vice-versa.
It is sometimes the preferred representation because the associated parametersare easy to scae: all
one needsto do is multiply the trandation vector p and the rotation angle a by some factor.

The following functions are available for manipulating DSPL data types:

RCCL/RCI Release 4.2, December 12,1995

22 2. BASIC DATA TYPES

DSPL_PTR trsfToDspl (dr, t1)
DSPL_PTR dr;
TRSF_PTR t1;

TRSF_PTR dsplToTrsf (tr, di)
TRSF_PTR tr;
DSPL_PTR di;

DSPL_PTR scaleDspl (dr, s, d1)
DSPL_PTR dr;
float s;
DSPL_PTR di;

TRSF_PTR extrapTrsfByDspl (tr, s, d1)
TRSF_PTR tr;
float s;
DSPL_PTR di;

DSPL_PTR unitDspl (dr, d41)
DSPL_PTR dr, di;

ThefunctionstrsfToDspl () anddsplToTrst () convert between TRSF and DSPL representations.
The function scaleDspl () scales the values of d1 by s and puts the result in dr. The function
extrapTrsfByDspl () isacombination of scaleDspl () and dsplToTrst (): it scalesthe values
of d1 by s and then convertstheresultinto thetransform tr. ThefunctionunitDspl () normalizes
the values of the a and u fields of d1 and placestheresultin dr.

Because its parameters scale easily, DSPL data types are useful for representing velocities. A
general Cartesian velocity described by the vectors v and w can be represented with a DSPL data
type by setting the p field to v, the a field to |w|, and the u field to w/|w|. The function scaleD-
spl () canthen be used to determinethe net displacement achieved by thisvelocity over sometime
interval ¢. The equivalent transform representation of the same displacement can be computed with
extrapTrsfByDspl():

DSPL vel;
TRSF delta;
float time;

. variables are set ...

extrapTrsfByDspl (&delta, time, &vel);

2.10 Quaternions

RCCL has another datatype for describing quaternionswhich are useful for representing rotations.

RCCL/RCI Release 4.2, December 12,1995

2.10. QUATERNIONS 23

typedef struct {
float c;
VECT v;

} QTRN, *QTRN_PTR;

A rotation can be represented as a single rotation # about aunit vector v. A quaternionisafour tu-
ple; when normalized to have unit length, it represents arotation such that the first valueisequal to
cos(6/2) and the last three values form a vector equal to sin(6/2)v. Since multiplication of quater-
nionsis equivalent to successive rotation operations and quaternion multiplication isfaster that ho-
mogeneous transform multiplication, the use of quaternions can sometimes be desirable.

Quaternions used by RCCL are assumed to be unit quaternions. They are assigned and manip-
ulated by the following functions:

QTRN_PTR multQtrn (qr, ql, q2)
QTRN_PTR qr, qi1, qZ2;

QTRN_PTR multRiQtrn (qr, ql, g2)
QTRN_PTR qr, qi1, qZ2;

QTRN_PTR multLiQtrn (qr, ql, g2)
QTRN_PTR qr, qi1, qZ2;

QTRN_PTR invertQtrn (qr, ql)
QTRN_PTR qr, qi;

float normQtrn (qr)
QTRN_PTR qr;

QTRN_PTR unitQtrn (qr)
QTRN_PTR qr;

The function multQtrn() multipliesq1 by q2 and leavesthe result in qr. multRiQtrn() multi-
pliesq1 by the inverse of g2 and leaves the result in qr. The function multLiQtrn() multiplies
theinverse of q1 by q2 and leaves theresult in qr. The function invertQtrn() takesthe inverse
of q1 andleavesitinqgr. ThefunctionnormQtrn () returnsthe magnitude of the quaternion (which
should normally be 1). The function unitQtrn () normalizesthe quaternion qr.

Thefollowing additional functionsare used to convert between quaternionsand other datatypes:
TRSF_PTR qtrnToTrsf (tr, ql)

TRSF_PTR tr;
QTRN_PTR q1;

QTRN_PTR trsfToQtrn (qr, t1)

QTRN_PTR qr;
TRSF_PTR t1;

RCCL/RCI Release 4.2, December 12,1995

24 2. BASIC DATA TYPES

VECT_PTR gtrnToVect (vr, ql)
VECT_PTR vr;
QTRN_PTR q1;

The function qtrnToTrst () sets the rotational component of the transform tr to the rotation de-
fined by the quaternion q1. The function trsfToQtrn () Setsthe quaternion qr to the rotation de-
fined by the rotational component of thetransform tr. Thefunction gtrnToVect () setsthe vector
vr to the rotational velocity indicated by the quaternion q1 (where the magnitude of the rotationis
assumed to be small).

The printing of quaternion values can be done using printVf (), with the number of elements
in the “vector” being specified as 4.

2.11 Generic Vector Routines

There are several routinesavailable for doing simple operationson arbitrarily sized vectors of floats
(i.e., arrays of floats). These routines are imported directly from RCI, and this description also ap-
pearsin the RCI user’s guide.

To add, element by element, two equal sized vectors of floats, the routine
addVf (vr, v1i, v2, size)

can be used, where vr isthe result vector, v1 and v2 are the input vectors, and size isthe number
of elementsin the vector. The £ at the end of the routine name indicates that the procedure handles
vectors of floats. An analogous routine, addvd, exists for vectors of doubles.

Similar routines do other arithmetic operations:
subtractVf (vr, vl, v2, size)
scaleVf (vr, a, vl, size)
combineVf (vr, a, vl, b, v2, size)

dotVf (v1, v2, size);
normVf (vl1, size);

subtractVf () subtractsvi fromv2, scaleVf () multipliesvi by thescalar a, combineVf () forms
the linear combination
VvV, =avy+bvy,

dotVf () returnsafloat equal to the dot product of v1 and v2, and normVf () returnsafloat equal
to the 2-norm of v1.

To copy vectors, we can use the routine
copyVf (vr, vi, size);
and to zero a vector, we can use

zeroVf (vr, size);

RCCL/RCI Release 4.2, December 12,1995

2.12. JOINT COORDINATES 25

Printing a vector can be done using printVf (), fprintVE (), or rciPrintVE (), described
above. Reading a vector in can be accomplished using either of

scanVf (vr, size);
fscanVf (fp, vr, size);

which input avector of size elements either from stdin or the stream £p, respectively.

2.12 Joint Coordinates

The datatype JNTS is used to describe sets of joint coordinates for a particular manipulator. The
structureis presently defined as

typedef struct {
float v[NUM_JNTS];
char type[NUM_JNTS];
int num;

} JNTS, *JNTS_PTR;

where NUM_JNTS is, at the time of thiswriting, 6. The field v contains the value of each joint coor-
dinate, with the field type describing itstype (’R’ for revolute jointsand * P’ for prismatic ones).
The field num gives the total number of joints, whereit is assumed that num is less than or equal to
NUM_JNTS. The units are normally assumed to be radians for rotational joints and millimeters for
trandational joints.

A set of basic routines for manipulating JNTS typesis:

JNTS_PTR addJnts (jr, j1, j2)
INTS_PTR jr, ji, j2;

JNTS_PTR subtractJnts (jr, ji, j2)
INTS_PTR jr, j1, j2;

JNTS_PTR scalelJnts (jr, a, ji1)
INTS_PTR jr, ji;
float a;

JNTS_PTR combineJnts (jr, a, jil, b, j2)
INTS_PTR jr, j1, j2;
float a, b;

JNTS_PTR zeroJnts (jr)
JNTS_PTR jr;

The function addJnts () addsthe joint values j1 to j2 and places the result in jr. The function
subtractJnts () subtracts the joint values j2 from j1 and places the result in jr. The function

RCCL/RCI Release 4.2, December 12,1995

26 2. BASIC DATA TYPES

scaleJnts () multiplesthejoint values j1 by a and placestheresult in result in jr. The function
combineJnts () computes

jr=ajl+bj2
and placestheresultin jr. zeroJnts () zerosthevaluesof jr.

The aboveroutinesdo not change either thetype or num field of their result arguments (although
thismay change). Since the contents of type and num fields are robot specific, there must be away
to initialize them for a particular manipulator. Two routines are available to do this:

initJntsByName (jr, name)
JNTS_PTR jr;
char *name;

initJntsByManip (jr, mnp)
JNTS_PTR jr;
MANIP_PTR mnp;

initJntsByName () instantiates num and type for the manipulator with the indicated name. This
routine can be called only fromtheplanning level. initJntsByManip () instantiateSnum and type
for arobot described by a MANIP structure (MANIP isthe RCCL data type used to reference and
control arobot from within a program, and will be introduced in section 4.1).

The printing of joint values can be done using printVf (), with the number of elementsin the
“vector” being specified by the num field. If one wantsto first convert the angle values to degrees,
the following piece of code will do the job, assuming that all joints are revolute:

JNTS jnts; /* initialized somewhere */

{ JNTS deg;
scaleJnts (°, RADTODEG, &jnts);
printVf ("%8.3f\n", deg.v, jnts.num);
t

Notice that in the call the printVf () thejoint angles are referenced by the v field of the structure,
since this routine expects an array of floats.

A more complicated version that considers whether or not the joints are prismatic is

JNTS jnts; /* initialized somewhere */
int j;

for (j=0; j<jnts.num; j++)

{ if (jnts.typelj]l == ’r?)
{ printf ("%8.3f ", RADTODEG*jnts.v[j]l);
by
else
{ printf ("%8.3f ", jnts.v[jl);
by
by

RCCL/RCI Release 4.2, December 12,1995

2.12. JOINT COORDINATES

putchar (°\n’);

Caveat: The addition of the type and num fields to the JNTS data structure is new,
and not al RCCL code has been updated to use them. Prior to their introduction, the
number of joints was assumed to be described by the constant NUM_JNTS.

RCCL/RCI Release 4.2, December 12,1995

27

28 3. DESCRIBING POSITIONS IN SPACE

3. Describing Positions in Space

Describing a manipulator task typically requires specifying positions to be reached in space (the
where) as well as specifying aspects of the trgjectory (the how). RCCL describes target positions
using either Cartesian position equations or sets of joint angles. This chapter describes the former.

3.1 Position Equations

Position equations remove the need for absol ute reference coordinates; they are also one represen-
tation of the more general concept of transformation graphs. The position relationships of a set of
coordinateframesF;,: = 1,...,n, can be expressed in terms of transformation products. Let the
transformation matrix T; describe the position of the frame I, ; relative to the frame F;, with T,
describing the transformation from frame F,, to F;. Thisisrepresented by the equation

T1T2 Tn — I

where | isthe identity matrix. A closed path of transformations from frame F; back to frame F,
viatheframesF;,: = 2, ..., n, describesthe position of F; with respect to itself. The situation can
beillustrated using adirected closed graph, as shown in figure 4, where the vertices are framesand
the arcs are transforms.

FF—=F, > — ™F

Figure4: A directed closed transform graph.

Given a set of frames, containing two frames A and B, we can always find more than one path
connecting A to B. Denoting the frames on one path by F;, « = 0,...,n, and the frames on the
other pathby G;,7 =0, ..., m, we show such agraph in figure5.

The corresponding transformation equation is.
TOT1 T2 Tn — ROR2 Rm

Closed transformation graphs can be expressed in terms of a set of transformation equations.

RCCL/RCI Release 4.2, December 12,1995

3.2. USING POSITION EQUATIONS TO DESCRIBE MOTION TARGETS 29

TO Tl T2 Tn
r—» F1—> F2—>— - — —» Fnﬁv
A B
L>Gl—> GZ—>— - - —»Gm—)

RO R1 R2 Rm

Figure5: Transform graph containing two distinct paths between frames A and
B.

RCCL uses transformation equations as one means of describing positions the manipulator has
to reach. These positions always include the special manipulator transform T6, which we will de-
scribe next.

Assume that we have a manipulator with 6 links, labeled from 1 to 6, and a base link, labeled
0. Each of the manipulator linksis assigned aframe A;, and the transform matrix A; describesits
position with respect to the previous link’s frame as a function of the joint variable. The position
of link 1 is described with respect to the base. The transformation product

T6 — A1 A6

describes the position of the last link with respect to the base. Current convention is to define the
transformations A; according to the procedure specified by Denavit and Hartenberg [Lee 1982].
This generaly will not place thelast frame, Ag, directly at the end effector. Instead, to “reach” the
end effector frame, it is usually necessary to provide an additional tool transform.

3.2 Using Position Equations to Describe Motion Targets

Let usnow set up a position equation which describes a situation where the manipulator isto grasp
an object lying on atable. First we must assign framesto each of the elements involved:

Frame B is assigned to the manipulator base.

Frame M islocated in the last link of the manipulator.

A tool is attached to link 6 and the frame T is assigned to its tip.

e Frame W describes the position of the work table.

RCCL/RCI Release 4.2, December 12,1995

30 3. DESCRIBING POSITIONS IN SPACE

e The position of an object lying on the table is described by frame O.

e A grasp position is described by the frame G.

Suppose that the manipulator is moving so asto grasp the object. The associated frames can be
grouped together into the graph shown in figure 6.

~ M T B
B G
_ W o),

Figure6: Example frames for a manipulator grasp task.

To obtain atransformation equation fromthisgraph, the arcsare oriented and |abel ed with trans-
forms. The choiceis arbitrary but a reasonable selection is shown in figure 7, where END, BASE,
GRASP, and OBJ are predetermined transforms, and T6 connects the manipulator base to link 6.
The transform DRIVE, which will be discussed in more detail below, relates the current position

of the tool tip to itsfinal desired position. A diagram of where all these frames might actually be
located in the workspace is given in figure 8.

wW O
BASE OoBJ GRASP

Figure7: Exampleframes, plustransforms, for amanipulator grasp task.

In making the manipulator travel to its destination, it is necessary to vary T6 from its starting
value to the one defined by the position equation, which amounts to changing the value of DRIVE
fromitsinitial valueto theidentity matrix. DRIVE isthereforetime-varying, and when appropriate
will be denoted asDRIVE(t). If we define the time at the beginning of the motion to be 0 and the

RCCL/RCI Release 4.2, December 12,1995

3.2. USING POSITION EQUATIONS TO DESCRIBE MOTION TARGETS 31

HIL R |

Figure 8: Example frames for grasp task superimposed on a diagram of the
workspace.

time at the end of the motion to be o, then the kinematic situation is described at the beginning of
the motion by

BASE Té6(0) END = OBJ GRASP DRIVE(0)
and at the end of the motion by

BASE Té6(c) END = OBJ GRASP Q)

By definition, DRIVE(s) = L

The two common methods of achieving thisarejoint interpolation and Cartesian interpolation.
Joint interpolation involves solving for the target value of T6 (i.e., the value with DRIVE = 1),
solving for the corresponding joint values, and then interpolating to these from theinitial joint val-
ues. This produces a “straight line” motion in joint coordinates. The transform DRIVE changes
implicitly during thisprocess, but notin away that isnecessarily obvious. On the other hand, Carte-
sian interpolated motion is achieved by explicitly modifying DRIVE so that it tracesastraight line
in Cartesian coordinates, and then solving for T6 and the associated joint val ues during each control

RCCL/RCI Release 4.2, December 12,1995

32 3. DESCRIBING POSITIONS IN SPACE

cycle. Thisproducesa*“straight line” in Cartesian coordinates. Rotations are handled by interpola-
tion about one or two principal axes, as described in [Paul 1981], Chapter 5. Both forms of motion
interpolation are supported by RCCL.

Transform equations can be rewritten, solved for any of the terms, or replaced by equivalent
ones. For example, equation 1 can be rewritten as

BASE T6 = OBJ GRASP END™

or as
T6é = BASE™' OBJ GRASP END™

Internally, when RCCL istold to move the manipulator to a given target position, it converts
the corresponding equation into the canonical form

T6 TOOL = COORD)

where TOOL and COORD can be composed of arbitrary numbersof sub-transforms. For equation
1, wewould have

TOOL = END
COORD = BASE' OBJ GRASP

Thisinternal representation tells the trgjectory generator where to place the DRIVE transform for
Cartesian motions. It isinserted after the tool component:

T6é TOOL = COORD DRIVE

More detailed information on how RCCL generates trajectories can be found in the paper Tra-
jectory Generation in Multi-RCCL, which is part of the document set.

3.3 Frame and Transform Names

T . ToOL __ . P

o DR
B C
_ B

C

Figure9: Transform graph where someframes havethe samename asoneof their
incident transforms.

RCCL/RCI Release 4.2, December 12,1995

3.4. DEFINING POSITION EQUATIONS 33

It isoften possibleto equate the name of atransform and the frameit mapsto without causing confu-
sion. For instance, infigure9, framesT6, TOOL, and C are given the same names asthe transforms
T6, TOOL, and C. It isalso often possible to dispense with frame names entirely.

When describing program examples, transforms may be referred to either mathematically (e.g.,
T1) or by the name of their corresponding variablewithinthe program(e.g., t1). A framewill often
be named after one of itsincident transforms (e.g., T1).

By historical continuity, RCCL usesthe name T6 (and T6) to denote the base-to-last-link trans-
form product (and associated frame) for any manipulator, regardless of whether or not it actually
has 6 links.

3.4 Defining Position Equations

Within an RCCL program, position equationslike the ones described above can be defined with the
primitivemakePosition(). Thistakesavariablenumber of argumentswhich definethe equation’s
name, left hand side, and right hand side. The function definition looks like

POS *makePosition (name, lhs [, lhs] ..., EQ,
rhs [, rhs]l ..., [, TL, t1] , NULL)
char *name;
TRSF_PTR 1lhs ..., rhs ..., t1;

The first argument is a string naming the position. This name is optional, and can be declared as
NULL if desired; its main purpose isto provide a key for referencing the equation from some other
part of the program (section (5.5.4)). The remaining argumentsare pointersto the transformswhich
comprise the equation. All the specified transforms must have been alocated using one of the a1-
locTrans () routines; thisensuresthat the control level can access them when necessary. To create
aposition equation, smply list asargumentsall the transformsforming the | eft-hand and right-hand
sides, separate them with the predefined variable EQ, and terminate the argument list with NULL. For
instance, consider the ssimple position equation

AB =CD

Y

which is equivalent to the graph shown in figure 10.
Assuming that the necessary transforms have been all ocated, and pointersto them are contained
inthevariables a, b, ¢, d, this can be created with the following call:

POS_PTR p;

p = makePosition ("loop", a, b, EQ, ¢, 4, NULL);

Thefunction allocatesadatastructure representing the kinematic loop, givesit astringname " Loop",
and returns a pointer to it. The transforms which lie on the left-hand side of the equation are as-
sumed to be directed clockwise, while the transforms on the right-hand side are directed counter-
clockwise. An arbitrary number of transform arguments may be specified tomakePosition(), a-
though a“safety limit” of 100 isimposed at the time of thiswriting.

RCCL/RCI Release 4.2, December 12,1995

34 3. DESCRIBING POSITIONS IN SPACE

Figure10: A sample position loop.

What can we now do with this position equation? The principal thing we can do is solve for
any one of its component transforms in terms of the values of the other transforms. We can also
multiply together any set of transformswhich constitutes a sub-chain of the equation. The routines
to do these operations are described in section 3.5.

It should be noted that it is not necessary for the component transforms of a position equation
to be set to any particular value when the position is defined. This only needs to be done beforethe
position is actually used within the program. The equation structureitself containsonly pointersto
the component transforms; these pointers are used to look up the actual values “on the fly” when
the equation is referenced.

The above position equation ("Loop') cannot be used to specify the target of a manipulator
motion because it does not contain the transform T6. To include T6 in an equation definition, the
predefined variable T6 should be inserted at the appropriate point into the argument list to make-
Position(). Moreover, if we want to specify a TOOL framethat is different from the T6 frame,
then the predefined variable TL should be placed at the end of the argument list (before the NULL)
and followed by apointer t1 to atransform denoting this TOOL frame. The transform referenced
by t1 must be one of the equation’s component transforms. Sometimes, the TOOL component of
a position equation is composed of more than one transform. If thisis the case, t1 should be the
transform adjacent to the TOOL frameitself. The system will then define the total TOOL compo-
nent to be the product of all the transformslying between T6 (exclusive) and t1 (inclusive), in the
same direction as T6.

When aTOOL frameis specified with TL, we can omit the NULL at the end of the argument list.

For example, suppose we wish to create the position equation in 1. Assume that the transforms
BASE, TOOL, OBJ, and GRASP have been alocated, and pointersto them are stored in the vari-
ablesbase, tool, obj, and grasp. The equation can then be defined by

POS_PTR p;
p = makePosition ("P", base, T6, tool, EQ, obj, grasp, TL, tool);

If an equation definition contains T6 but does not contain a TL specification, then the TOOL
frame will be set equal to the T6 frame (i.e, TOOL = 1in(2)); the same thing can be accom-

RCCL/RCI Release 4.2, December 12,1995

3.4. DEFINING POSITION EQUATIONS 35

plished by using a TL specification and setting t1 to either T6 or NULL. A TL specification will be
ignored if the equation does not contain a T6 transform.

Toillustratethe different ways of setting up the canonical components, consider the components
COORD and TOOL that correspond to the following calls to makePosition():

makePosition ("PO", T6, EQ, h, NULL); /* produces ... */
TOOL =1
COORD = H
makePosition ("P1", T6, EQ, h, TL, T6); /* produces ... */
TOOL =1
COORD = H
makePosition ("P2", T6, t, EQ, h, TL, t); /* produces ... */
TOOL =T
COORD = H
makePosition ("P3", T6, a, EQ, h, g, TL, T6); /* produces ... */
TOOL =1

COORD = HG A™!

makePosition ("P4", T6, ti1, t2, EQ, h, g, TL, t2); /* produces ... */

TOOL = T1 T2
COORD = HG

When a position is no longer needed, it can be deallocated with the call

freePosition(p)
POS_PTR p;

Care must be taken that the corresponding position is no longer in use. The equation’s component
transforms are not freed; they must be freed individually using freeTrans ().

RCCL/RCI Release 4.2, December 12,1995

36 3. DESCRIBING POSITIONS IN SPACE

3.5 Computing with Position Equations

The most basic use of position equationsin RCCL isto use them directly in move () as the target
specifications for motion requests. Thiswill be discussed extensively in the following chapters. It
isalso possible to do direct computationswith them. The following primitivesallow aprogrammer
to solve for a particular transform or sub-chain within an equation:

TRSF_PTR solveTrans (tr, p, tl, tx)
TRSF_PTR tr, t1, tx;
POS *p;

TRSF_PTR *solveChain (tr, p, til, t2, tx)
TRSF_PTR tr, t1, t2, tx;
POS *p;

TRSF_PTR *solveInvChain (tr, p, til, t2, tx)
TRSF_PTR tr, t1, t2, tx;
POS *p;

solveTrans() takes position equation p and solvesit for the transform t1 (which must be an el-
ement of p). If p contains a T6 transform, but it is not the transform being solved for, then the
argument tx is used to provide a specific value for T6. Otherwise, tx can be specified as NULL.
solveTrans() returnsapointer to its result argument.

For example, suppose we have the position equation
ZT6 E=ABC (3)

representing the kinematic graph in figure 11.

Figure1l: A sample positionloop containing the manipulator transform T6.

This can be declared with the makePosition() cal
p = makePosition ("p", z, T6, e, EQ, a, b, ¢, TL, e);

If at some later timewe wish to solvefor A, we can call

RCCL/RCI Release 4.2, December 12,1995

3.5. COMPUTING WITH POSITION EQUATIONS 37

solveTrans (r, p, a, tx);

which will compute
A=Z7ZTXEC'B!

and place theresult into r. The origina value of a isleft unchanged.

solveChain() andsolveInvChain () areused to evaluate sub-sectionsof aposition equation.

solveChain() goes clockwise around the kinematic loop described by p and multiplies to-
gether all transforms found between t1 and t2, inclusive (recall that the clockwise-directed trans-
formsarethose that appear on theleft-hand side of the equation). If oneof thetransformsisdirected
counterclockwise, then itsinverse value is used in the multiplication. Again, values for the trans-
form T6 are supplied, if necessary, by the argument tx. For example, in (3), the calls

solveChain (r, p, a, ¢, tx);

solveInvChain (r, p, T6, c, tx);

would compute
R=A"'"ZTXEC

and
R=TX'!'!Z'ABC!

respectively.

solvelInvChain() doesthesamethingassolveChain (), except it goesaround theloop coun-
terclockwise.

Kinematic equation loops comprise a restricted case of transformation graphs. Multi-branch
graphs can be useful in modeling situationswhere several time varying coordinate framesareinter-
related. They can be implemented using the primitives described above, and/or the basic transform
multiplication routines.

As asimple example, consider the following: suppose two manipulators are working together
on atask, with manipulator 1 occasionally putting down an object that manipulator 2 has to pick
up. Assumethat therelativelocation of the two robotsis described by thetransform BASE2, which
maps from the base frame of thefirst robot to the base frame of the second (seefigure 12). Assume
also that thefirst robot is being guided by rea-time sensors, so it is not known in advance exactly
where the object will be put down. Let the “put down” spot be described by the position equation
by

Té E; = PLACE 4

where E; isatool transform and PL ACE locates the object’s grasp point relative to the manipula-
tor’sbase. When the object isactually put down, we can solvefor all the components of (4) exactly.
Now, let the “pick up” spot for the second robot be described by

T6 E, = PICK (5

Picking the object up requires moving the second robot’s TOOL frame to the same spatial location
that was occupied by thefirst robot’sTOOL frame. Thisamountsto findingavaluefor thetransform

RCCL/RCI Release 4.2, December 12,1995

38 3. DESCRIBING POSITIONS IN SPACE

16 16

PLACE

BASE?2

Figure12: Kinematic diagram for a cooperative pick-and-place operation.

PICK. From figure 12, we can see that there is a third position equation,
BASE2 PICK = PLACE, (6)

which can be used to solve for PICK.
Within a program, these three position equations could be defined as follows:

TRSF_PTR pick, place, base2, el, e2;
POS_PTR pickPos, placePos, refPos;

placePos = makePosition ("placePos", T6, el, EQ, place, TL, el);
pickPos = makePosition ("pickPos", T6, e2, EQ, pick, TL, e2);
refPos = makePosition ("refPos", base2, pick, EQ, place, NULL);

placePos can be used as atarget position for the first manipulator’s placing motion. Assume that
the value of the transform PLACE is modified by a sensor until the object is actually put down
(waysof doing thiswill be presented later). When the placement isfinished, we can solvefor PICK
using

solveTrans (pick, refPos, pick, NULL);

and then pickPos can be used as atarget position for the second manipulator’s pickup motion.

This particular example is smple enough that if a programmer were actually implementing it,
he/she would probably dispense with refPos altogether and smply call

RCCL/RCI Release 4.2, December 12,1995

3.5. COMPUTING WITH POSITION EQUATIONS 39

multLiTrsf (pick, base, place);

directly. Whether or not the creation of explicit position equationsis advantageous depends heavily
on the complexity of the task. In particular, position equations provide a compact way to describe
genera kinematic loopsto another module (such as when they are used by themove () primitiveto
describe a motion target to the trgjectory generator).

RCCL/RCI Release 4.2, December 12,1995

40 4. CONTROLLING A ROBOT

4. Controlling a Robot

This section describes the primitives available for doing actual robot control.

4.1 The Create and Delete Primitives

When an RCCL program wishes to control arobot, it must first create aMANIP structure for that
robot. Thisis done using the call

MANIP_PTR rcclCreate (robotName, cpuMask)
char *robotName;
int cpuMask;

which looks up the named robot in the RCI system tables (the robot should be one configured into
RCI), allocates the necessary control data structures for it (including the MANIP structure), and as-
signsthis robot to atragjectory task on one of the CPUs specified by the bitmask cpuMask, creating
that task if necessary. Thelast argument isimportant only if theRCCL/RCI site doesin fact support
multiple CPUs. In either case, it isusually set to O, which tells the system to automatically select a
CPU from those which are available.

The MANIP pointer returned by rcclCreate () isthe handle used for all subsequent control of
that robot. When the robot is no longer needed, itsMANIP structure may be removed with the call
rcclDelete(mnp).

4.2 The MANIP structure

Information about the robot can be obtained from the MANIP structure. The fields which normally
concern the programmer look like this:

typedef struct {
/* Cartesian level information */

TRSF *t6;
TRSF *t6o;
TRSF *here;
TRSF *tool;
TRSF *rest;
TRSF *1lastTC;

POS *park;
POS *last;

RCCL/RCI Release 4.2, December 12,1995

4.2. THE MANIP STRUCTURE 41

/* Joint level information */

JNTS *36;
JNTS *j60;
JNTS *jvel;
int handPos;

/* Robot information */

RCI_RBT *rbt;
HOW *how;

JLS *]jls;

KYN *kyn;
void *var;

} MANIP, *MANIP_PTR;

t6 contains the output value of the manipulator T6 transform computed by the trajectory generator
during the most recent control cycle.

t60 containstheobserved valuesof T6, asread back from therobot during thelast control cycle.
For computational efficiency, thisfield ismaintained only if the mode T60_EVAL is selected for the
manipulator (see section 9.1.2).

here containsthevalue of thet6 field at the point where thelast motion ended (asin“ at theend
of thelast motion, T6 was here”). See section 4.4.1 for adiscussion of just when amotion “ends’.

tool containsthe value of the current target position’s TOOL component, as computed by the
trajectory generator during the most recent control cycle.

rest isafixed read-only transform corresponding to the park position of the manipulator. The
actual definition of thisisalittleup intheair; at the moment, the system looks up the values of the
robot’s “park angles’ in the its JLS structure (see section 6.1.1) and computes the corresponding
T6 transform value.

lastTCisthetarget value of T 6 towardswhich the manipulator was heading at theend of the last
motion (thisdiffersfrom here because of transitioning between path segments; T6 usually comes
closeto 1astTC but does not achieve it; see section 4.4.1).

park isabuilt-in position equation corresponding to the manipulator’s park position:
Té = REST

where REST isthe transform contained in the rest field. This alows moves to the park position
to be smply specified with the following command:

move (mnp, mnp->park);

last isabuilt-in position equation which describes the last target the manipulator was moving
to:
T6 = LASTTC

RCCL/RCI Release 4.2, December 12,1995

42 4. CONTROLLING A ROBOT

where LASTTC isthetransform contained inthe1astTC field. It isparticularly useful in conjunc-
tion with thedistance () primitiveto create relative motions (see below).

j6 containsthe output manipulator joint values computed by the trgjectory generator during the
most recent control cycle (if you apply forward kinematics to these, you will get the valuesin the
t6 field).

j60 contains the actual observed values of the joint values, read back from the robot during the
last control cycle. For computational efficiency, thisfieldismaintained only if the mode T60_EVAL
is selected for the manipulator (see section 9.1.2).

jvel contains the current output (computed) joint velocities.

Thefieldsrbt, how, jls, kyn, and var point to memory areas describing the low level RCI in-
terfaceto therobot. In particul ar, they describe parameters and termsrelating to a particul ar robot’s
physical characteristics. These fields are discussed in detail in section 6.1.1.

Other information can be obtained from the MANIP structure using special macros. The macro
MANIP_CPU(mnp) returnsthe CPU number of the manipulator’s trgjectory task. The macro MA-
NIP_TASK (mnp) returns the RCI task descriptor for the manipulator’s trgjectory task (you won't
really need this, but check the RCI User’s Guideif you are curious).

4.3 Running the Trajectory Generator

It is necessary to turn on the trgjectory generator task before the robots can actually be controlled.
The routineto do thisis

rcclStart ()

The trgjectory generator will then begin executing at aregular sample interval, the default value of
which is a parameter in the . rciparans file (see section 9.1.3). The sample interval can be read
back or changed from within the RCCL program using the primitives

rcclGetInterval ()

rcclSetInterval (interval)

Itisillegal tocall rcclSetInterval() (andrcclCreate() aswell) whilethetrgectory generator
IS running.

Turning the trajectory generator off is done with the routine
rcclRelease(powerOff)

The parameter power0ff isa boolean which, if true, causes the robot arm power to be turned off
aswell (unless the option RCCL_LEAVE_POWER_ON iS Set).

To determineif the trgjectory generator is running, the routine
rcclActive()

can be called; thisreturnstrueif the trajectory generator is running.

RCCL/RCI Release 4.2, December 12,1995

4.4. SPECIFYING MOTIONS 43
4.4 Specifying Motions

4.4.1 The Basic Motion Mechanism

The basic primitivesto request manipulator motions are:

move (mnp, pos)
MANIP *mnp;
POS_PTR pos;

movej (mnp, jnts)
MANIP *mnp;
JNTS_PTR jnts;

move () tells the trgjectory generator to move the manipulator mnp to the target specified by pos,
which must beaposition equation returned by makePosition (). movej () tellsthe system tomove
the manipulator to atarget specified by a set of joint values.

These primitives do not wait until the manipulator has reached the specified target point. In-
stead, they smply queue up a motion request and return. The trgjectory generator task servicesthe
motion requests in FIFO fashion (figure 13). This decouplesthe activity of the planning level from
the control level, but also means that explicit synchronization primitives must be provided. The
smplest of these isthe waitForCompleted() primitive described in the first example program,;
otherswill be presented later.

The planning level can set parameters controlling various motion characteristics, such as the
desired velocity or the interpolation mode; these will be discussed below. Usually these parameters
arelumped in and queued with the motion requeststhemsel ves, so they take effect only with the next
motion request.

Each motion request serviced by the trgjectory generator corresponds to a single motion path
segment. When finishing one path segment and starting another, it isgenerally necessary to provide
a smooth transition from the first path segment into the second. The purpose of the transition is
to prevent the manipulator from undergoing large impulses in acceleration or higher derivatives.
Thisisillustrated (with a one-dimensional example) in figure 14, which shows a two path segment
trajectory in which the manipulator is asked to movefirst from A to B, and thenfrom Bto C'. The
idealized trgjectory is adotted line, and the real trgjectory isa solid line. At the start of each path
segment thereis atransition region which is symmetric about the nominal (or official) starting time
for the path segment. The time on each “side” of this transition is = control cycles, which makes
the total transition time 27 cycles; thisis marked for the transition between path segments A5 and
BC. Outside of the transition zone, the manipulator “coasts’ at a constant velocity. The total time
allocated for the path segment (from the midpoint of onetransition to the midpoint of the next) iso
motion counts. The tragjectory generator normally computes the values of = and o for each motion
“on the fly”, using the velocity and acceleration limits currently specified for the manipulator.

The existence of transition regions creates some ambiguity about when one motion segment
ends and another begins. By default, RCCL defines the official time at which this happens to be

RCCL/RCI Release 4.2, December 12,1995

44 4. CONTROLLING A ROBOT

motion control
block
(shared memory)

motion
planning - request trajectory
task gueue task

Figurel13: Motionqueue and shared memory block linking the planning and con-
trol levels internally. The queue is for storing motion request packets, while the
shared memory block is for information that istransferred immediately.

the midpoint of thetransitionregion' (seefigure 15). Thisiswhenthehere transform and various
motion status flags are updated. On the other hand, the actual computations associated with a path
segment (including the execution of monitor and transform functions, which will be discussed | ater)
are started at the beginning of the transition interval (and the corresponding computations for the
previous path segment are halted). Thisis an artifact of the way RCCL computes trgjectories. |If
this dlight inconsistency causes trouble, then the official motion change over time can be set to the
beginning of the transition interval as well (see section 9.1.2).

4.4.2 Stopping at Target Points

Because of the motion transitions, a manipulator will generally not pass directly through its target
point unlessit is made to stop there; instead, it will tend to “undercut” the target point. Thisisthe
difference between the 1astTC and here fields (in the MANIP structure) which are updated at the
end of each motion: 1astTC corresponds to the ideal target position (5, in figure 15), whilehere
corresponds to the point actually reached by T6.

In RCCL, stopping arobot is accomplished by essentially moving to the same target position
twice. The second “motion” ensures that the manipulator will actually come to rest at the target,
asillustrated in figure 16, which shows the manipulator stopping at B for ashort time. Thisisthe
same paradigm as that described in Richard Paul’s book [Paul 1981].

L Except for “stop” motions, described in the next section, which are considered to end at the beginning of the tran-
sition to the next motion.

RCCL/RCI Release 4.2, December 12,1995

4.4. SPECIFYING MOTIONS 45

transition

A interval

position

Ideal trajectory

actual trajectory

time

Figure 14: Manipulator trgjectories are created by blending together individual
path segment, asillustrated here in one dimension.

Motion requests to stop the manipulator are invoked by the stop () primitive,

stop (mnp, time)
MANIP *mnp;
float time;

which stops the manipulator at the last target position for t ime milliseconds.

Note that stopping at atarget position does not necessarily mean the manipulator will physically
cometo rest, sinceif the target itself ismoving in time, then the manipulator will continue to track
it. One the other hand, when all the motion requests for a manipulator have been executed, the
trajectory generator will normally bring it to an absolute stop at wherever it happensto be. In other
words, when a program waits for all requested motions to finish with the macro

waitForCompleted (mnp);

the manipulator will usually be brought to an absolute stop. This an intuitively reasonable thing
to do: “no motion has been specified, so don’'t do anything”. On the other hand, it is sometimes
desirable in these circumstances to have the robot continue to track the last target position?. This
behavior can be selected by setting TRACKING _MODE (section 9.1.2) for the manipulator in question;
if thisis done, waitForCompleted () will still block until al explicit motions have finished, but
the manipul ator might not be brought to an absol ute stop.

Although similar in effect to issuing another move to the last target position, stop requests are
dightly different from moverequestsin severa ways. First, they ignorethe setting of certain motion

2Thisiswhat the original version of RCCL did.

RCCL/RCI Release 4.2, December 12,1995

46 4. CONTROLLING A ROBOT

default point where motions
"officially" start & end B

position

beginning of transition
interval

A T Ideal trajectory
actual trajectory

time

Figure15: The “switchover” point for motionsis generally taken to be the mid-
point of the transition region.

parameters. In particular, the effect of callsto setMod (), setConf (),distance(),and setDis-
tance () (seebelow) isheld over until the next moverequest. Second, thetrgectory generator treats
stop requests differently in that no “drive’” computation is performed for them. Last, a stop motion
isconsidered to be officially “ over” when the transition to the next motion segment begins (instead
of at the transition region midpoint).

4.5 Setting Motion Parameters

4.5.1 Interpolation Mode

Asdescribed in section 3.2, RCCL implementstwo ways of moving between target positions: joint
interpolation, also known as joint mode, and Cartesian interpolation, or Cartesian mode. Because
ajoint interpolated path always exists between two well defined end points, joint mode is usually
preferred for large motions. Cartesian mode, on the other hand, generates trajectories which are
easy to visualize and which are often suited to particular types of tasks.

Motions specified with move () are performed in either joint or Cartesian mode, depending on
whichis currently selected. Selection of the interpolation mode is done on a per-manipulator basis
with the primitive

setMod (mnp, c)
MANIP *mnp;
char c;

RCCL/RCI Release 4.2, December 12,1995

4.5. SETTING MOTION PARAMETERS 47

stop

" N

position

‘._
0 C

————— Ideal trajectory
actual trajectory

time

Figure 16: Stopping at a point is done using two path segments which have the
same target.

c should beset equal to * j’ for joint modeand ’ ¢’ for Cartesian mode; Joint modeisthe default. A
changeintroduced by setMod () takes effect with the next requested motion, and remainsin effect
for al subsequent motions. As anillustration of its usage, consider the following:

MANIP *mnp;
POS_PTR p, pl, p2;
int 1, m;

pl = makePosition(...);
p2

makePosition(...);

for (move(mnp, p2), 1 = 0; 1 < 10; ++1i)
{4if (1 % 2 '= 0)

{m= ’C’;
p = pl;
t

else

{m=)j);
p = p2;
t

setMod (mnp, m);
move (mnp, p);

b

RCCL/RCI Release 4.2, December 12,1995

48 4. CONTROLLING A ROBOT

This will cause the arm to move from p2 to p1 (i odd) in Cartesian mode and from p1 to p2 (i
even) in joint mode. Of course, C expertswill insist on coding the same thing like this:

for (move(mnp, p2), i = 10; i--;)
{ setMod (mnp, (m =1 % 2) 7 ’c’ : ’j’);
move (mnp, m 7 pl : p2);
}

To read back the mode setting for a manipulator, the routine
getMod (mnp)

may be used. Since the mode setting has to propagate through the motion queue before actually
taking effect, the mode setting read back with getMod () may not be the one currently in use by the
trajectory generator. The routine

getActiveMod (mnp)

returns the interpolation mode in effect for the current motion.
Motions specified with movej () are aways joint interpolated.

4.5.2 Setting Velocities and Motion Times

There are many ways to specify the desired manipulator velocity.
The smplest way to change the robot speed isto call the routine

setSpeed (mnp, scale)
MANIP *mnp;
float scale;

which smply scales the base velocity up or down (the default valuefor scale is, predictably, 1.0).
The same effect can be achieved by setting the speed parameter inthe . rciparams file (see section
9.1.3); this speed parameter is combined with whatever the programmabl e speed scale happens to
be. The new speed setting will take effect with the next requested motion. The speed setting can
be read back using the routine getSpeed (mnp)

Setting a manipulator base velocity is dightly more complicated since it depends on the inter-
polation mode: when doing the straight line motion associated with Cartesian mode, one wishes
to specify velocities in terms of something like mm. per sec. for trandation and degrees per sec.
for rotation. When moving in joint interpolated mode, the velocities need to be specified in units
particular to the joints themselves.

For controlling the Cartesian mode velocity, the following primitives are available:

setCartVel (mnp, transVel, rotVel)
MANIP *mnp;
float transVel, rotVel;

getCartVel (mnp, transVel, rotVel)

RCCL/RCI Release 4.2, December 12,1995

4.5. SETTING MOTION PARAMETERS 49

MANIP *mnp;
float *transVel, *rotVel;

getDefaultCartVel (mnp, transVel, rotVel)
MANIP *mnp;
float *transVel, *rotVel;

setCartVel () setsthe base Cartesian velocity to transVel mm. per second and rotVel degrees
per second. These represent limits. the arm will accelerate to the lowest of the two bounds and
then maintain that speed. For example, for amotion involving a 30 millimeter trandation and a 30
degreerotation, the call

setCartVel (mnp, 30.0, 300.0);

will result in a 1 second motion caused by the trandation constraint, overriding the 1/10 of a sec-
ond time needed to perform the rotation. If either of the arguments is specified as F_UNDEF, then
it isleft unchanged; if either is specified as F_DEFAULT, then it is set to the system default value.
getCartVel() andgetDefaultCartVel () alow thecurrently selected valuesand the system de-
fault valuesto beread back. ThereisnogetActiveCartVel () per se, sincethebase velocitiesand
scale factors are combined into a single net velocity before being sent to the trgjectory generator;
for the equivalent function, see section 4.5.4.

For controlling the vel ocity of joint interpolated motions, thefollowing primitivesare avail able:

setJointVel (mnp, jvel)
MANIP *mnp;
JNTS *jvel;

getJointVel (mnp, jvel)
MANIP *mnp;
JNTS *jvel;

getDefaultJointVel (mnp, jvel)
MANIP *mnp;
JNTS *jvel;

setJvelScale (mnp, scale)
MANIP *mnp;
float scale;

getJvelScale (mnp)
MANIP *mnp;

setJointVel () setsthe base velocities for each joint to the values given by jvel. These will be
millimeters per second for prismatic joints and degrees per second for rotational joints. Again,
these represent limits: the arm will accelerate to the lowest of the bounds and then maintain that
gpeed. If any of the velocities are specified as F_UNDEF, then they are left unchanged; if any are

RCCL/RCI Release 4.2, December 12,1995

50 4. CONTROLLING A ROBOT

specified as F_DEFAULT, then they are set to the system default value. getJointVel() and get-
DefaultJointVel() alow the currently selected values and the system default valuesto be read
back. The overall joint velocities may be scaled using setJvelScale() and getJvelScale();
thejoint velocity scale factor actsin addition to the scale factor specified with setSpeed (). There
iISno getActiveJointVel() per se, since the base velocities and scale factors are combined into
asingle net velocity before being sent to the trgjectory generator; for the equivalent function, see
section 4.5.4.

4.5.3 Setting Acceleration

The acceleration limits for a manipulator control the length of the path segment transition times.
The higher the allowed accelerations, the shorter the transition times. Acceleration limits can be
specified with the following primitives:

setAccelScale (mnp, scale)
MANIP *mnp;
float scale;

float getAccelScale (mnp)
MANIP *mnp;

setCartAccel (mnp, transAcc, rothAcc)
MANIP *mnp;
float transAcc, rotAcc;

getCartAccel (mnp, transAcc, rothcc)
MANIP *mnp;
float *transAcc, *rotAcc;

setJointAccel (mnp, jacc)
MANIP *mnp;
JNTS *jacc;

getJointAccel (mnp, jacc)
MANIP *mnp;
JNTS *jacc;

Theseroutinesareanalogousto setSpeed (), getSpeed (), setCartVel (),getCartVel (), setJointVel ()
andgetJointVel (). setAccelScale() scalestheacceleration limitsfor both Cartesian and joint
mode motions; the default scale value is 1.0. getSpeed () reads back the acceleration scale. set-
CartAccel () setstheacceleration limitsfor Cartesianmotionsto transAcc mm/sec? and rotAcc
deg/sec?, whileset JointAccel () setsthelimitsfor joint interpolated motionsto thevaluesgiven
by jacc (mm/sec? for prismatic joints and deg/sec? for rotary joints). Specifying any of the ac-
celerations as F_UNDEF causes the corresponding value to be unchanged; specifying F_DEFAULT
causes the system default valueto be used. TheroutinesgetCartAccel () and getJointAccel ()

RCCL/RCI Release 4.2, December 12,1995

4.5. SETTING MOTION PARAMETERS 51

allow the current values to be read back. Changes created by any of these routines take effect with
the next requested motion.

4.5.4 More on Velocity and Acceleration Limits

Assumethat s isthe speed scale factor controlled by setSpeed (), s, isthe“program global” speed
factor set in the . rciparams file (section 9.1.3), v;,; and v, are the “base” trandational and rota-
tional velocitiescontrolled by setCartVel(), vy, isthe“base” joint velocity vector controlled with
setJointVel(),ands; isthejoint velocity scale controlled by set JvelScale (). Thesetermsare
combined into “net” velocities, described by v, v,, and v;, asfollows:

Vg = 584 Upt
Up = S84 Upy
Vi = 5854855 Vypj

These net velocities are bundled into each motion request. The trgjectory generator uses them as
required to determine an appropriate value of o (section 4.4.1) for the motion.

The values of v, v,, and v; which are in effect for the current manipulator motion can be read
back using the routines

getActiveCartVel (mnp, transVel, rotVel)
MANIP *mnp;
float *transVel, *rotVel;

getActiveJointVel (mnp, jvel)
MANIP *mnp;
JNTS *jvel;

Acceleration limitsare handled smilarly. Let o be the acceleration scale controlled by setAc-
celScale(),ay and ay, bethe“base” trandational and rotational accelerations controlled by set-
CartAccel (), and a;; bethe“base” joint acceleration vector controlled with setJointAccel().
The “net” acceleration limitsa;, a.., and a,; are computed as follows:

ay = 0 dpt
Gy = O Upy
a; = «ap;

These are bundled into each motion request and used by the trgjectory generator to estimate an ap-
propriatetransition time 7. Thevaluesof a;, a,, and a; in effect for the current manipul ator motion
can be read back using the routines

getActiveCartAccel (mnp, transAcc, rothcc)
MANIP *mnp;
float *transAcc, *rotAcc;

RCCL/RCI Release 4.2, December 12,1995

52

4. CONTROLLING A ROBOT

getActiveJointAccel (mnp, jacc)

MANIP *mnp;
JNTS *jacc;

Finally, there is another routine, getActiveMotionCounts (), which permits the program to
read back the values of and o (the timesfor the incoming transition and motion duration, respec-
tively, in units of control cycles; see section 4.4.1), which are in effect for the current motion:

getActiveMotionCounts (mnp, tau, sigma)

MANIP *mnp;

int *tau, *sigma;

4.6 Program Example: “box”

This is a simple program which repeatedly moves the robot around the edges of a square “box”
while demonstrating the effect of changing the speed and accel eration specifications.

#include <rccl.h>

TRSF_PTR e, b, c[4];

MANIP *mnp;
char *robotlName;
int k, i i

ia, iv;

static

#include '"manex.560.h"
#define BOXSIZE 150.0
main()

{

POS_PTR corners[4], start;

float accelValuesl[]

static char *accelDesc[] = { "default", "high", "low" };

static float velValues[] = { F_DEFAULT, 400.0, 40.0 };

static char *velDesc[] = { "default", "fast", "slow" };
rcclSetOptions (RCCL_ERROR_EXIT); /*4x/
robotName = getDefaultRobot(); /*5x/

e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ); /*6%x/

b = allocTransRot ("B'", UNDEF, B_X, B_Y, B_Z, xunit, 180.0);
start = makePosition ("start", T6, e, EQ, b, TL, e); /*T*x/
c[0] = allocTransXyz (NULL, UNDEF, BOXSIZE/2, 0.0, -BOXSIZE/2);
c[1] = allocTransXyz (NULL, UNDEF, -BOXSIZE/2, 0.0, -BOXSIZE/2);
c[2] = allocTransXyz (NULL, UNDEF, -BOXSIZE/2, 0.0, BOXSIZE/2);
c[3] = allocTransXyz (NULL, UNDEF, BOXSIZE/2, 0.0, BOXSIZE/2);
for (k=0; k<4; k++) /%8%/

/*1%/

/*2%/

/*3%/
{ F_DEFAULT, 4000.0, 20.0 };

RCCL/RCI Release 4.2, December 12,1995

4.6. PROGRAM EXAMPLE: “BOX”

{ corners[k] = makePosition (NULL, T6, e, EQ, b, c[k], TL, e);

¥

mnp = rcclCreate (robotName, 0); /*9%/
rcclStart();

move (mnp, start); /*10%/
stop (mnp, 1000.0);

waitForCompleted (mnp); /*11%/
setMod (mnp, ’c’); /*12%/
for (ia=0; ia<ARRAY_SIZE(accelValues); ia++) /*13%/

{ for (iv=0; iv<ARRAY_SIZE(velValues); iv++)
{ float vel, accel;

setCartAccel (mnp, accelValues[ia], F_UNDEF);
setCartVel (mnp, velValues[iv], F_UNDEF);
getCarthAccel (mnp, &accel, (float*)NULL);
getCartVel (mnp, &vel, (float*)NULL);

printf ("%s vel (%g), %s acceleration (%g):\n",
velDesc[iv], vel, accelDesc[ial, accel);

moveSet (mnp, corners, ARRAY_SIZE(cormers)); /*14%/
waitForCompleted (mnp); /*15%/
¥
¥
setMod (mnp, ’j’); /*16%/

move (mnp, start);
stop (mnp, 1000.0);
waitForCompleted (mnp); /*17*/

rcclRelease (YES);
¥

moveSet (mnp, p, size)
MANIP *mnp;
POS_PTR *p;
int size;
{
int k;

for (k=0; k<size; k++)
{ move (mnp, plkl);
¥

NOTE - this example has been coded for the PUMA 560 robot, and lives at
$RCCL/demo.rccl/box.560.c. An equivalent program for the PUMA 260 is contained in
box.260.c

RCCL/RCI Release 4.2, December 12,1995

54 4. CONTROLLING A ROBOT

Aswith simple. 560, the program beginsby including the standard file <rccl.h> (/*1%/) and
the manual examplefile "manex.560.h'", and declaring pointersfor the various transform and po-
sition structures (/*2%/).

ThearraysaccelValuesand velValues (/*3%/) storethe different Cartesian acceleration and
velocity values that will be used. Note the explicit use of the floating point quantity F_DEFAULT.
The arrays accelDesc and velDesc contain string information that the program will print as it
executes.

As with the first example, the program sets the RCCL_ERROR_EXIT option to enable an auto-
matic program abort if the RCCL routines detect an error condition (/*4+*/) (most RCCL and RCI
primitives respond to this option; the reference manual should be consulted to check whether or
not a particular one does). We repeat that while this option does not have to be set, it can be very
convenient. The name of the robot to be controlled is again taken to be the system default robot
(/*5%/).

Several transformations are created (/*6%*/). e is atransform from the robot T6 frame to the
tool tip; in this case (as with most of the other examples) it issmply atrandation along the = axis
of the T6 frame. Transform b locatesthe robot’sinitia starting position in terms of a displacement
from the manipul ator base frameto the tool frame. It isused in the position equation start, which
is defined as

Té TOOL = B

and is created with the call to makePosition() at (/*7+*/). Four separate transforms c[k] are
created to locate each of the four corners of the box. Each corner isreached by atrandation in the
xz plane of the frame defined by b and is described by an equation of the form

T6 TOOL = B C(k).

The corresponding position equations corners[k] are created at (/*8+/).

Note that the transformsb and e are named but all the other transforms and position equations
are unnamed. The naming of the first two transforms was done for illustrative purposes only; the
nameswill not actually be used inthisprogram. Noteal so that four separate transformsand position
equations were created to represent each of the box’s corners. Again, this was mainly done for
illustrative purposes; for fixed targets, one has the option of creating only one position equation
and then moving to different points by changing the values of its component transforms between
move requests. Later examples will illustrate this.

After the transforms and position equations have been allocated, the program creates a MA-
NIP structure for the robot using rcclCreate() and turns on the trajectory generator with rc-
clstart () (/*9*/). It should be mentioned that while the examples in this manual will tend to
create their transform and position objects before thefirst call to rcclStart (), thisis not neces-
sary; these can be created at any time, whether the trgjectory generator is running or not.

The first action isto move the robot to the starting position (/*10%/). By default, this will be
doneinjoint mode, using thedefault speed settings. Therobot stopsat thestart positionfor 1 second
before proceeding, and the program waits for this pause to finish before proceeding (/*11*/).

The program next switches to Cartesian interpolation mode (using setMod () (/*12%/)) and
goesinto aloop (/*13+*/) which causes the robot to trace out the edges of a box using several dif-
ferent velocity and acceleration values. The sizes of the arrays containing the values are computed

RCCL/RCI Release 4.2, December 12,1995

4.6. PROGRAM EXAMPLE: “BOX” 55

automatically by themacro ARRAY_SIZE (). On each passthrough theinner loop, new acceleration
and velocity parametersareset using setCartAccel () and setCartVel (). Therotational param-
eters are left unchanged by specifying F_UNDEF or NULL in the appropriate slot of each primitive.
To illustrate the usage of the “get” routines, the settings are read back using getCartAccel () and
getCartVel() and printed.

The move commands to trace around the outside of the box are generated by the subroutine
moveSet () (/*14*/); the program waits (at /*15%/) for the drawing of each box to finish before
doing it again with another set of acceleration and velocity values.

moveSet () works by smply queuing up motion requeststo alist of positions given as an input
array. An aternativeway of doing thiswould beto use asingle position equation and an input array
of target transform values. For instance, we could define aroutinelike this:

moveTarget (mnp, tool, points, size)

MANIP *mnp;
TRSF_PTR tool, pointsl[];
int size;
{
POS *p;
TRSF #*target, *tl;
int k;

target = allocTrans (NULL, UNDEF);
tl = allocTrans (NULL, UNDEF);

*t1l = *tool;
p = makePosition (mnp, T6, tl, EQ, target, TL, tl);
for (k=0; k<size; k++)

{ *target = *points[k];

move (mnp, p);

t
freePosition (p);
freeTrans (t1);
freeTrans (target);

b

All that this routine requires the user do is specify atool transform and an array of target points.
The input transforms do not need to be allocated with the allocTrans () primitivessince they are
not actually part of the position equation which is used.

The program example ends by changing back to joint interpolated motions (using setMod (’ j*))
and moving the robot back to the start position (/*16x*/). We do not bother to reset the accelera-
tion or velocity parameters, since setCartVel () and setCartAccel () affect only Cartesian inter-
polated motions (the equivalent primitives for joint interpolated motions are set JointVel () and
setJointAccel()). If onewantsto smply scale the robot’s speed regardless of the interpolation
mode, then setSpeed () can be used.

Note that before the program exits, it waits for the last motion to finish using waitForCom-
pleted(mnp) (/*17*/); otherwise, the programwould probably exit, and the robot woul d be stopped

RCCL/RCI Release 4.2, December 12,1995

56 4. CONTROLLING A ROBOT

(abruptly!), before it actually reached its last position. The final call to rcclRelease () turns off
the trgjectory generator, the argument YES indicating that the robot arm power should also be shut
of.

4.7 More Motion Parameters

4.7.1 Explicitly Setting Motion Times

The program can override the automatic computation of amotion’stransition and duration times (7
and o) with the primitive

setTime (mnp, accelTime, travelTime)
MANIP *mnp;
float accelTime, travelTime;

accelTime and travelTime are both in milliseconds. accelTime is actually one half the total
acceleration time; i.e., it isequal to =~ multiplied by the control interval time (seefigure 14). trav-
elTime is equa to o multiplied by the control interval time. If either argument is specified as
F_DEFAULT, then the corresponding time parameter is computed by thetrajectory generator, asusual.
setTime () affects only the next motion requested.

Thisfunctionisvery useful for motionsinvolving time varying targets (which will be discussed
later). Depending on how the target is time varying, the system may not be able to compute the
correct segment time since this computation is based on the distance to the target position at the
beginning of the motion. In such cases the motion time can be specified explicitly. For example,
suppose we have atarget position spiral which containsafunctionally defined transform causing
it to track a spiral path. Then the code fragment

setMod (mnp, ’c’);
setTime (mnp, 150.0, 2000.0);
move (mnp, spiral);

would cause the manipulator to perform a spiraling motion for 2 seconds, beginning with a 0.15
second transition time.
If we want to specify the transition time explicitly, then acall like

setTime (mnp, 200.0, F_DEFAULT);

will do the trick; this forces the transition time to be 0.2 seconds but |ets the trajectory generator
computethe segment durationas normal, using the currently defined vel ocities. It issometimesnec-
essary to specify atransition time of zero. This can be useful for motions terminated on condition
where the reaction timeis of primary importance.

A common thing to do is set the overall motion time and | et the system determinethe transition
time, asin

setTime (mnp, F_DEFAULT, 1000.0);

RCCL/RCI Release 4.2, December 12,1995

4.7. MORE MOTION PARAMETERS 57

which specifies atotal motion duration of 1 second.
Finally, we can specify a motion of indefinite duration by setting the travelTime to F_UNDEF:

setTime (mnp, F_DEFAULT, F_UNDEF);

This is useful in cases where the motion of the arm is created by variable transforms within the
target position (section 5.1), and we don’t care about reaching the target per se.

4.7.2 Offsetting the Motion Target

It is possible to specify an offset to a motion’s target position. Thisis useful if several poses are
being planned in the vicinity of a particular target but we do not wish to create a separate position
equation for each pose. The primitives

distance (mnp, fmt, v[, vl ...)
MANIP *mnp;
char *fmt;
float v;

setDistance (mnp, offset)
MANIP *mnp;
TRSF *offset;

both apply an offset to the target position of the next motion request (and the next motion request
only). distance() alows the offset to be specified as a set of trandation values and roll-pitch-
yaw angles. It takes aformat string listing the offset’s components, followed by a variable number
of arguments giving the associated values. In the format string, each component is described with
two letters. The first letter can be either d or r (for distance or rotation) and the second letter can
be either x, y, or z (for each of the principal axes). For instance, the specification string "dx rz"
indicates a two-component offset consisting of atrandation along « and arotation around z. This
string would be followed by two arguments giving the corresponding values. When computing the
total offset, trand ation values are incorporated first, followed by the rotations about the z, y, and «
axes (the same order used for roll-pitch-yaw angles).

As an example, the code fragment
distance (mnp, "dz", -30.);
move (mnp, p);
move (mnp, p);
distance (mnp, "dz", -30.);
move (mnp, p);
implements asimple “approach, reach, depart” sort of sequence along the = direction of the tool.

The distance() function can be used in conjunction with the 1ast position equation in the
MANIP structureto execute successive relative motions:

RCCL/RCI Release 4.2, December 12,1995

58 4. CONTROLLING A ROBOT

move (mnp, p);

distance (mnp, "dx", 100.0);
move (mnp, mnp->last);
distance (mnp, "dy", 100.0);
move (mnp, mnp->last);
distance (mnp, "dx", -100.0);
move (mnp, mnp->last);
distance (mnp, "dy", -100.0);
move (mnp, mnp->last);

This code fragment first moves the robot to the target specified by p, and then moves about asquare
inthe zy plane.

The components given to distance () are turned into a transformation which is applied to the
target position in the TOOL coordinate frame. For instance, if atarget position is described by

T6 E = C P

with E defining the TOOL frame, then acall todistance () would implicitly insert an offset trans-
form SHIFT asfollows:
Tée E = C P SHIFT

setDistance () behavesthesameasdistance (), but allowsthe program to specify the offset
transform directly; this provides a more “program oriented” interface.

Both setDistance() and distance () are canceled by amovej () request.

4.7.3 Changing the Robot Configuration

Most robot arms are capabl e of reaching adesignated Cartesian position in several ways. A partic-
ular instance of these redundancies is known as the robot configuration. In particular, for PUMA
robots, there are three separate redundancies (right-handed/l eft-handed, elbow down/up, and wrist
flip/noflip), making atotal of eight possible ways to achieve any particular position.

When arobot ismoving about in Cartesian coordinates, it usually retainsits configuration from
one pose to the next. The primitive

setConf (mnp, conf)
MANIP *mnp;
char *conf;

setsup an arm configuration change during the subsequent motion. Thismotion hasto be performed
in joint mode, since a configuration change always involves moving through a degenerate arm po-
sition unreachable in Cartesian mode. Once the configuration change is obtained, the motions can
again be performed in Cartesian mode. setConf () takes a string argument indicating the config-
uration change. Different configurations are indicated by unique characters within the string. For
the PUMA arm, the configurationscan be: shoulder right-handed/left-handed (x/1); elbow down/up
(d/w); wristflip/noflip (£/n). For example, if thearmisin aleft-handed, up, and noflip configuration
(1un), then to change the wrist configuration to flip, we can write

RCCL/RCI Release 4.2, December 12,1995

4.7. MORE MOTION PARAMETERS 59

/* the arm is currently "lun" */

setMod (mnp, ’j’); /* go in joint mode if it wasn’t */
setConf (mnp, "luf"); /* specify flip */
move (mnp, new); /* go "luf" x/

The configuration string does not have to be complete; it ispermissibleto specify only those aspects
of the configuration which areto desired to be changed. For instance, in the example above, the call
setConf (mnp, "f'") could have been used instead.

setConf () isignored by stop requests and handled only by the next move request. Also, if
setConf () isfollowed by amovej () request, then the setCont () request will be*over-ruled” by
whatever configurationisimplicit in themovej ().

The current manipulator configuration can be read back with

getActiveConf (mnp, conf)
MANIP *mnp;
char *conf;

which reads the robot’s present configuration into the string conf.

Robot configurations can aso be described by a bitmask; for instance, the kinematic routines
(section 6.2.1) use this representation. The configuration codes for the PUMA are defined in the
file <puma_kynvar.h>:

PUMA_RIGHT_CONF -- right handed (’r’)
PUMA_DOWN_CONF ~-- elbow down (’d’)
PUMA_FLIP_CONF -- wrist flip (°f’)

setConf () returns a bitmask indicating which configuration bits were specified. getActive-
Conf () returns a bitmask equivalent to the configuration string.

For a given robot, the routines

configToStr (str, mask, kyn)
char *str;
int mask;
KYN *kyn;

strToConfig (maskp, str, kyn)
int *maskp;
char *str;
KYN *kyn;

convert between the string and bit representations for configuration. kyn is a pointer to the robot’s

KYN structure, which is described in section 6.1.1. Details on these routines can be found in the
reference manual.

RCCL/RCI Release 4.2, December 12,1995

60 4. CONTROLLING A ROBOT

The configuration representation used by RCCL should probably be improved. For instance,
there should be ways of indicating joint redundancies and singularities (configurations are unde-
fined at singularities). This may be done when RCCL is upgraded to handle redundant manipul a-
tors.

4.8 Synchronization

Ass has been mentioned, motions are requested asynchronously to their execution; a motion request
issimply placed in a queue for servicing by the trajectory generator at the next possible opportu-
nity. This makes it necessary to provide ways to explicitly coordinate the planning level with the
trajectory generator.

The most straightforward thing we can do is ssimply wait for the trgjectory generator to finish
handling all the motion requests in its queue. This can be done using the macro waitForCom-
pleted() that was discussed earlier. The code construction

move (mnp, pl);
move (mnp, p2);
move (mnp, p3);

waitForCompleted (mnp);

will quickly queue three motion requests and then wait for them all to complete. waitForCom-
pleted () actualy blocksuntil thetransition out of the last motion has finished, so the manipulator
is guaranteed to be stationary when it returns (unless TRACKING _MODE has been selected).

Alternatively, we might want to wait for an individual motion request to finish. To do this, we
need to have a handle on the motion request. Such ahandle is returned by the motion primitives:
al calstomove (), movej (), or stop() returnamotion ID, an integer, that can be used to query
information about the motion. In particular, the following primitives are useful:

motionStatus (mid)
int mid;
float motionScale (mid)
int mid;
motionStartCode (mid)

int mid;

motionStopCode (mid)
int mid;

motionStatus () returnseither M_PENDING,M_RUNNING,M_PAUSED,or M_FINISHED dependingon
whether the indicated motion is queued, is executing, has been paused (see section pause), or has
compl eted.

RCCL/RCI Release 4.2, December 12,1995

4.8. SYNCHRONIZATION 61

motionScale() returnsascaar value indicating how far along the motion has progressed in
its execution. The scale valueis 0.0 at the midpoint of the transition into the motion and 1.0 at
the midpoint of the transition out of the motion, unless the transition was canceled prematurely, in
which casethefinal scale valuewill belessthan 1.0. Because the system starts computing the scale
value at the beginning of thetransitioninto the motion, it will be slightly negative during the period
between the beginning and midpoint of the initial transition.

RCCL associates acodevalue with the start and compl etion of amotion. The default codevalue
iISON_NORMAL,whichisdefinedin<rccl.h>. Other code values can be specified with the functions
startMotion() and stopMotion() (See below).

The primitives

waitForStart (mid)
int mid;

waitForStop (mid)
int mid;

respectively poll the indicated motion’s status and block until the motion has started executing or
has finished executing. For instance, the following code patterns are equival ent:

id = move (mnp, p0);
waitForStop (id);
id = move (mnp, pl);
waitForStop (id);

or

move (mnp, po0);
waitForCompleted (mnp);
move (mnp, pl);
waitForCompleted (mnp);

To further demonstrate the use of these primitives, consider thefollowing (somewhat contrived)
example:

MANIP *mnp;

FILE *fp;

POS_PTR posA, posB, posC;
int 1d0, idi;

id0 = move (mnp, posid);
id1 = move (mnp, posB);
move (mnp, posC);

waitForStop (id0);

while (motionStatus (idl) == M_RUNNING)

RCCL/RCI Release 4.2, December 12,1995

62 4. CONTROLLING A ROBOT

{ fprintf (fp, "scale = %f\n", motionScale (id1));
fprintTrsf (fp, "Jm\n", mnp->t6);
}

This program queues three motion requests, waits for the first one to complete, and then beginsto
record the successive T6 values (along with the motion scale value) for the second motion in the
file fp.

As another example, consider the “approach, reach, depart” sequence described earlier. If we
want to coordinate the planning level of the program so that it does something (such as openagrip-
per at the approach point and closeit at the reach point), then we can use a code segment that |ooks
something likethis:

int approachld, reachld;

distance (mnp, "dz", -30.);
approachId = move (mnp, p);
reachId = move (mnp, p);
distance (mnp, "dz", -30.);
move(p) ;

waitForStop (approachld);
OPEN_HAND (mnp) ;
waitForStop (reachId);
CLOSE_HAND (mnp) ;

The motion IDs for the moves to the approach and reach positions are recorded in approachID
and reachId. The program waits until the manipulator arrives at the approach position, opensthe
gripper, waits again for the manipulator to arrive at the reach position, and closes the gripper.

The above exampl e introduces the macros

OPEN_HAND (mnp)
MANIP *mnp;

CLOSE_HAND (mnp)
MANIP *mnp;

which open and close the gripper for the specified manipulator (this hand control interfaceis quite
rough and could use some improvement).

Towait for an arbitrary condition or delay for aspecific period of time, thefollowing primitives
areavailable:

waitFor(exp)
waitWhile(exp)

delay(msec)
float msec;

RCCL/RCI Release 4.2, December 12,1995

4.8. SYNCHRONIZATION 63

The first two are macros. waitFor(exp) waits for the indicated expression to return true, and
waitWhile(exp) waitsfor the indicated expression to return false. delay () putsthe program to
deep for the indicated number of milliseconds; it can be called only from the planning level.

4.8.1 Canceling and Controlling Motions

The functions

stopMotion (mid, code)
int mid, code;

startMotion (mid, code)
int mid, code;

setMotionHold (mnp)
MANIP *mnp;

may be used to control individual motion requests.
stopMotion() cancelsthe indicated motion and sets its motion stop value to code.

startMotion() givestheindicated motion permission to begin and givesit a start value equal
to code. Thismay seem a bit obscure, since normally all motions are queued with permission to
begin and are given a start value of ON_NORMAL. However, calling setMotionHold (mnp) before
a motion request is issued will remove its permission to begin, so that when it reaches the head
of motion queue, and thus would otherwise be ready to run, it will not do so until permission is
granted by acall to startMotion(). Thisis mainly useful for starting motions from the control
level (whichisnot permitted to issue actual motion requests).

We now consider the motion ID values. While amotion ID which is automatically allocated is
always unique, only itslow order bits are used to point to theinternal cell containing the motion’s
status. Because memory space is limited, the number of these cellsis also limited, and the status
cell associated with a motion ID will be re-used every NUM_SYSMFLAGS motions. This number is
large enough to accommodate most applications, but in case the programmer desiresto keep motion
status information around indefinitely, the function

setMotionFlag (mnp, mid)
MANIP *mnp;
int mid;

can be used to explicitly set the motion I D of the next motionto bemid. Thisvalue must be between
0 and NUM_USRMFLAGS— 1. Theuse of these motion I Dsis strictly under application control; RCCL
will never automatically assign amotion ID in this range.

To illustrate some of this, consider another example involving two robots:

#define FLAG1 1
#define FLAG2 2

RCCL/RCI Release 4.2, December 12,1995

64 4. CONTROLLING A ROBOT

MANIP_PTR mnpl, mnp2;
POS_PTR posA, posB;

setMotionFlag (FLAG1);
move (mnpl, posA);

setMotionFlag (FLAG2);
move (mnp2, posB);

while (motionScale (FLAG1) < 0.5)

b

stopMotion (FLAG2, 0);

Theideahereisthat we have two robots, respectively controlled viaMANIP structures pointed to by
mnpl and mnp2. We start thefirst robot moving toward posA withFLAG1 explicitly set asthemotion
ID (note that we do not store the ID returned by the motion request since we know what it is). The
second robot isthen started moving towards posB with the motion ID FLAG2. We then monitor the
scale value of the first motion, and when it is more than half completed, cancel the motion on the
second robot with a code value of 0.

4.8.2 Controlling the Current Motion and Motion Queue
The primitive

stopCurrentMotion (mnp, code)
MANIP *mnp;
int code;

may be used to cancel whatever motion happens to be executing currently, regardless of its motion
ID.

A few functions are available for controlling the motion queue:

flushMotionQueue (mnp)
MANIP *mnp;

numMotionsQueued (mnp)
MANIP *mnp;

checkMotionQueue (mnp, pos)
MANIP *mnp;
POS *pos;

setMotionQueueSize (mnp, size)

MANIP *mnp;
int size;

RCCL/RCI Release 4.2, December 12,1995

4.8. SYNCHRONIZATION 65

getMotionQueueSize (mnp)
MANIP *mnp;

flushMotionQueue () cancelsall pending motionsonthemotion queue. 1t will not, however, abort
the current motion, so the proper way to “kill everything” iswith a code fragment like this:

flushMotionQueue (mnp);
stopCurrentMotion (mnp, STOPCODE);

The motion queue is flushed first so that when the current motion is aborted, the system will not
take another off the queue and start executing it.

numMotionsQueued () returnsthe number of motionspending on themotion queue, and check-
MotionQueue () returnstrueif thereisenough space on the queue to handle amotion request to the
target position pos.

The maximum size of the motion queue can be set with setMotionQueueSize () and read back
with getMotionQueueSize (). Setting the maximum queue size can be a useful synchronization
tool in that different queue sizeswill produce different blocking behaviorsfor the motion requests.
Setting the motion queue sizeto O will cause every motion request to block until the associated mo-
tion has been completed (equivalent to doing awaitForCompleted () after every motion request).
Setting the motion queue size to 1 will cause every motion request to block until itsmotionisbeing
executed. A genera motion queue size of n will cause the move primitivesto block until there are
only n — 1 motions still pending on the queue. Consider the following example:

MANIP *mnp;
POS_PTR posA, posB, posC, posD, posk;

setMotionQueueSize (mnp, 0);
move (mnp, posA);

/* nothing on queue; move to posA is now complete */

setMotionQueueSize (mnp, 1);
move (mnp, posB);

/* nothing on queue; move to posB has at least started */

setMotionQueueSize (mnp, 3);
move (mnp, posC);
move (mnp, posD);
move (mnp, posE);

/* no more than 2 motions on queue; */
/* move to posC has at least started */

We first set the motion queue sizeto O, causing move (mnp, posA) to block until completion. The
queuesizeisthen set to 1, which meansthat thecall move (mnp, posB) will block until themotion

RCCL/RCI Release 4.2, December 12,1995

66 4. CONTROLLING A ROBOT

isat least being executed. Setting the queue size to 3 means that subsequent move requests will
block until there are no more than 2 motions on the queue; this means that move (mnp, posE)
must block until the move to position posC is at |east being executed.

The motion queue can be set as large as MAX_MQ_ENTRIES. The default queue size can be ob-
tained by calling getMotionQueueSize () immediately after the MANIP structure has been created.

As another example of how the motion request queue interacts with the planning level, consider
the following program:

TRSF_PTR z, e , Db;
POS_PTR p;
float iz;

N
1]

allocTransXyz ("Z", 0., 0., 864.);
allocTransXyz ("E" , 0., 0., 170.);

(0]
1]

b = allocTransRot ("B", 600., 128., 800., yunit, 180.);
p = makePosition ("P", z, t6, e, EQ, b, TL, e);
while (1)

{ printf ("Enter Z increment> ");
scanf ("%f'", &iz);
b->p.z += 1iz;
move (mnp, p);

b

This allowsthe user to continuously adjust the = position of the robot. Every time an increment for
z isentered, anew motion request to handle that increment will be queued, using the current value
of the b transform.

If the user enters data faster than the manipulator can move to the goal positions, several mo-
tion requests will be queued up. If the user stops entering data, all the requests will eventually be
executed, the manipulator will be brought to rest, and the program will block at the scanf () call.
If the datais provided by continuous stream fp, then the same program could look something like:

while (fread (b, sizeof(TRSF), 1, fp) !'= NULL);

{ move (mnp, p);
t

4.8.3 Getting UNIX signals on motion completion
A useful feature of RCCL is the ability to request a UNIX signal to be delivered whenever (1) all
requested motions complete or (2) a particular motion completes (these are the same conditions

which cause waitForCompleted () or waitForStop() toreturntrue). The routinesto set up the
signalsare

RCCL/RCI Release 4.2, December 12,1995

4.8. SYNCHRONIZATION 67

setCompletedSig (mnp, signum)
MANIP *mnp;
int signum;

setStopSig (mnp, signum, mid)
MANIP *mnp;
int signum, mid;

setCompletedSig() requeststhat thesignal signum be sent to the planning task the next timethe
trajectory generator finishes executing all the motions on the queue. setStopSig() requests that
the signal signum be sent to the planning level task whenever the motion specified by the ID mid
finishes.

Consider the following example:

#include <rccl.h>
#include <signal.h>

handler ()

{
printf ("All motions completed\n");

}
robottask()

{

. initializations and other things ...
signal (SIGUSR1, handler);
setCompletedSig (mnp, SIGUSR1);

move (mnp, po0);
move (mnp, pl);
move (mnp, p2);

printf ("Hit <CR> to quit:\n");
getchar();

This program will quickly queue three motion requests, and then block waiting for a character.
When all three motionshave completed, themessageA11 motions completedwill beasynchronousy
printed to the screen.

RCCL/RCI Release 4.2, December 12,1995

68 4. CONTROLLING A ROBOT

4.9 Program Example: “hex”

This program has the manipulator trace out a small hexagonal grid, or “honeycomb” pattern (see
figure 17). The robot does one column in the grid at a time, and before doing each one goesto a
“pickup” position, as though it were reloading a tool (see figure 18). When each column is com-
pleted, asignal is sent to the planning level that causes a message to be printed.

This program isabit complex for example purposes, but it doesillustrate awide variety of ca-
pabilities.

#include <rccl.h>

#include <signal.h> /*1%/
#include <math.h>

#include "manex.560.h"

#define FLAG 2

onSignal() /*2x/
{
printf ("Column done\n");
¥
main()
{

TRSF_PTR e, park, pickup, top, down;
POS_PTR home, reload, center;

MANIP *mnp;

JNTS rcclpark;

char *robotlName;

float hexsize
int numRows

1]
o oo

int numCols
int i, j;

float sin_60;
int mid;

rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot(); /*3%/
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);
}

e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);

park = allocTrans ("PARK", UNDEF); /*4x/
pickup = allocTrans ("PICKUP", UNDEF);

top = allocTrans ("TOP", UNDEF);

down = allocTrans ("DOWN'", UNDEF);

RCCL/RCI Release 4.2, December 12,1995

4.9. PROGRAM EXAMPLE: “HEX”

home = makePosition ("home'", T6, e, EQ, park, TL, e); /*5x/
reload = makePosition ("reload", T6, e, EQ, pickup, TL, e);
center = makePosition ("center", T6, e, EQ, park, top, down, TL, e);

mnp = rcclCreate (robotName, 0); /*6%x/
rcclStart();
movej (mnp, &rcclpark); /*Tx/

waitForCompleted (mnp);
solveTrans (park, home, park, mnp->here); /*8%/

rotToTrsf (pickup, zunit, 90.0); /*9%/
multTrsf (pickup, pickup, park);

multTrsfXyz (pickup, 0.0, 0.0, -125.0);

multTrsfRot (pickup, xunit, 30.0);

xyzToTrsf (top, 100.0, 0.0, 50.0); /*10%/
multTrsfRot (top, xunit, 90.0);

setJvelScale (mnp, 2.0); /*11%x/
setCartVel (mnp, 100.0, 50.0);
signal (SIGUSR1, onSignal);

sin_60 = sin(60.0*DEGTORAD); /*12%/
for (j=0; j<numCols; j++) /*13%/
{ setConf (mnp, "n"); /*14%/

distance (mnp, "dz", -50.0); /*15%/

move (mnp, reload);

mid = move (mnp, reload);
stop (mnp, 2000.0);

distance (mnp, "dz", -50.0);
move (mnp, reload);

waitForStop (mid); /*16%/
OPEN_HAND (mnp);

delay (500.0);

CLOSE_HAND (mnp);

setConf (mnp, "f"); /*17*/
top—->p.x —-= 2*hexsize*sin_60;
identTrsf (down); /*18%/
for (i=0; i<numRows-1; i++) /*19%/
{ traceHex (mnp, center, hexsize, 50.0, UNDEF);
if (i%2 == 0) /*20%/
{ multTrsfXyz (down, hexsize*sin_60, 3/2.%hexsize, 0.0);
¥
else
{ multTrsfXyz (down, -hexsize*sin_60, 3/2.*hexsize, 0.0);
¥

RCCL/RCI Release 4.2, December 12,1995

70

¥
traceHex (mnp, center, hexsize,
setStopSig (mnp, SIGUSR1, FLAG);
¥

setConf (mnp, "n");
move (mnp, home);
stop (mnp, 1000.0);
waitForCompleted (mnp);
rcclRelease (YES);

¥

traceHex (mnp, p, hexsize, approach, flag)
MANIP *mnp;
POS *p;
float hexsize, approach;
int flag;
{
TRSF offset;
int savelMod;
int mid;
int theta;

xyzToTrsf (identTrsf(&offset), 0.0,
setDistance (mnp, &offset);
move (mnp, p);

saveMod = getMod(mnp);
setMod (mnp, ’c’);

offset.p.z = 0.0;

{ offset.p.x =

setDistance (mnp, &offset);
move (mnp, p);
¥
xyzToTrsf (identTrsf(&offset), 0.0,
setDistance (mnp, &offset);
if (flag '= UNDEF)
{ setMotionFlag (mnp, flag);
¥
mid = move (mnp, p);
setMod (mnp, savelod);
return (mid);

for (theta=30; theta<=390; theta+=60)
hexsize * cos(DEGTORAD#*theta);
offset.p.y = hexsize * sin(DEGTORAD*theta);

4. CONTROLLING A ROBOT

50.0, FLAG);
/*21%/

/*22%/

0.0, -approach);
/*23%/

/*24%/
/*25%/

/*26%/

/*27*/

0.0, -approach);

/*28%/

/*29%/
/*30%/

NOTE - this example has been coded for the PUMA 560 robot, and lives at
$RCCL/demo.rccl/hex.560.c. An equivalent program for the PUMA 260 is contained in

hex.260.c

Thefile<rccl.h>isincluded asusual. <signal.h>and <math.h>are UNIX filesincluded to

RCCL/RCI Release 4.2, December 12,1995

4.9. PROGRAM EXAMPLE: “HEX” 71

manipulator
base
frame

Figurel7: Robot drawing out a hexagonal “honeycomb” pattern.

get the definition of thesignal SIGUSR1 and definethetypesfor routinessin() andcos () (/*1%/).
Thesigna handler whichwill be used to print the column completion messageisdefined at (/*2x/).

The program declares a few variables and pointers, gets the name of the robot to be controlled
and its starting position (/*3*/), then allocates several transforms and position equations (/*4*/
and /*5x%/). Except for the end-effector transform e, all of the transforms will be initialized later
in the program. The position start describes the position reached after moving to the joint angles
rcclpark, andis defined ssimply by

T6 = PARK

reload isthe place the robot movesto beforetracing out each column, and is defined by the equa-
tion
Té E = PICKUP

where E describesthe manipul ator’ send-effector transform. The most complicated positioniscen-
ter, defined by
Té E = PARK TOP DOWN

RCCL/RCI Release 4.2, December 12,1995

72 4. CONTROLLING A ROBOT

Figure 18: Position the robot moves to in between drawing each column of the
honeycomb.

which specifies the center point of each hexagon the robot traces out. TOP locates the top of each
column with respect to the initial frame defined by PARK . The transform DOWN describes, with
respect to the frame TOPR, atrandation in the xy planefrom thetop of the column down to the center
of a particular hexagon. As the program traces out the different hexagons, it locates the center of
each one by changing the valuesfor top and down appropriately.

The program begins in the usual fashion by setting up the manipulator, starting the trajectory
generator, and moving the robot to the initial angles described by rcclpark (/*6*/ and /x7x/).
At /*8x%/ the program initializes park to the current value of T6 by reading the here field of the
MANIP structure. pickup isthen defined to beaposition “off totheside” of park; specifically, park
rotated by 90° in world coordinates about the = axis of the robot’s base, followed by a30° rotation
about thelocal = axis(/*9*/) (seefigure 18). top isinitialized to describe the top left-hand corner
of thehex grid. Specificaly, thisinvolvesatrandationinthe zz plane followed by arotation of 90°
about the » axis so that the robot’s tool tip points horizontally at the grid (/*10x/) (see figure 17).
Because of thislast rotation, the xy plane of the frame TOP is parallél to the = plane of theinitial
frame PARK. At /*11x*/ the program sets the speed for joint interpolated motions to be double
that of Cartesian interpolated motions, sets the Cartesian velocities explicitly, and sets up the signal

RCCL/RCI Release 4.2, December 12,1995

4.10. PROGRAM EXAMPLE: “JMOVE” 73

handler for the end-of-column signal. The variable sin_60 initialized at /*12*/ isintroduced to
make the program more readable.

A loop begins at /*13+/ that causes the robot to trace out each of the numCols columnsin the
grid. The robot first moves to the reload position, where it does an approach-move-stop-depart
sequence /*15+/. The program synchronizes with the arrival of the robot at reload by waiting on
the motion ID rid (/*16%/) after which it opens the robot’s hand, waits half a second, and then
closes the hand.

The robot then moves to the top of the next column in the grid. Since it is better able to reach
the grid with itswrist in the flip configuration, this configuration is explicitly requested (and later
unrequested) with callsto setConf () and getConf () (/*14*/ and /*17%/). Each column is set
adjacent to the previous one by shifting the = coordinate of top by 2 sin(60°)hexsize, wherehex-
sizeisthelength of each hexagon’sside. down, whichisused to specify the center of each hexagon
relativeto the top of the column, isinitially cleared (/*18x*/). The subloop at /*19*/ usesthe rou-
tinetraceHex () (discussed below) to create the hexagons. For each loop iteration, the hexagon's
center is located by increasing the y coordinate of down by 3/2hexsize and shifting the « coor-
dinate either to the right or left by sin(60°)hexsize (/*19%/). The tracing of a single column is
illustrated by figure 19.

TheroutinetraceHex () generates the motion requests necessary to trace out a hexagon in the
xy plane of aposition p. All the motions are specified relative to the center p using an offset trans-
form(offset)andtheroutinesetDistance (). It beginsby issuing amoveto an approach position
located approach millimeters away from the center point along the z axis (/*23%/). setMod () iS
then used to ensure that the remaining motions are done in Cartesian mode (/*25+/). To improve
the modularity of traceHex (), no assumptions are made about the previous interpolation mode.
This means that the mode should be “saved and restored”, which is done with cals to getMod ()
and setMod () (/*24x/, /*30%/). After the approach move is requested, the > offset is removed
(/*26%/) and a set of moves are generated to take the robot around the corners of the hexagon.
Each corner point is determined by computing an appropriate X, Y offset from the hexagon center
asafunction of an angle theta (/*27%/). The actual trgjectory will be dightly “rounded out” be-
cause of path transitions, and the corner points will be correspondingly undercut, unless the robot
is slowed down enough to permit a zero transition time to be specified. Lastly, the robot is moved
back to the approach position (/*29%/). The ID returned by thislast motion is saved and returned
to the caller. If the routine argument f£1ag has been set to a value other than UNDEF, then it is used
asthe motion ID for the last motion. Thisisuseful in case the caller needs to know the motion ID
before traceHex () iscalled.

4.10 Program Example: “imove”

This example shows how to create a simple program to move the robot around in joint coordinates
and change its configuration. For simplicity, it does not attempt to deal with prismatic joints. The
program isinteractive and illustrates the use of the “ C-tree matcher”, an automatic command com-
pletion keyboard interface used by many programsin the RCCL/RCI system.

RCCL/RCI Release 4.2, December 12,1995

74

4. CONTROLLING A ROBOT

Y coordinate of

DOWN

coordinate frame

defined by
TOP

X coordinate of

DOWN

motions
generated by
call to
traceHex()

Figure19: Path followed by therobot asit traces out one columninthe hex grid,
projected onto the =y plane of the frame TOP. The rounding due to transitionsis

ignored.

RCCL/RCI Release 4.2, December 12,1995

4.10. PROGRAM EXAMPLE: “JMOVE”

#include <rccl.h>
#include <ctree.h> /*(1)*/

char key_buf[256];

main(argc, argv)

int argc; char **argv;

{
MANIP *mnp;
JNTS angles;
char *robotlName;
char *keytree;

int movejRequest = O;
int jnt;

int mid = UNDEF;

int newMid = UNDEF;

float angval;
float speed;
char conf[4];

rcclSetOptions (RCCL_ERROR_EXIT);
if (arge !'= 2) /*(2)x/
{ fprintf (stderr, "USAGE: %s <robotName>\n", argv[0]);
exit (-1);
¥
robotName = *++argv;
/*(3)*/
keytree = tree_match_parse("
(quit
show
speed
(%f", &speed, ",0,, \'"speed scale\")
move
(all
%d", &jnt, ",1,6, \'"joint number\"
([by to]
(%f", &angval, ",,, \"angle value (degrees)\"))
)
setConf
(%s", conf, ", \"configuaration string\")
")
if (keytree == 0) /% (4)*/
{ printf ("ERROR/Parse error at %.30s\n", tree_match_err_at());
exit (-1);
¥

mnp = rcclCreate (robotName, 0); /*(5)*x/
rcclStart();

angles = *mnp->j6; /%(6)*/

RCCL/RCI Release 4.2, December 12,1995

PV A A Y AV A A

75

4. CONTROLLING A ROBOT

do
{ tree_match (keytree, "JMOVE> ", key_buf); /*%(T)*/
if (COMMAND("show")) /*(8)*/
{ float degl6l;
getActiveConf (mnp, conf);
printf ("speed: %g\n", getSpeed(mnp));
printf ("conf: %s\n\n", conf);
printTrst ("T6: %m\n\n", mnp->t86);
scaleVf (deg, RADTODEG, mnp->j6->v, 6);
printVi ("J6: %8.3f\n", deg, 6);
}
else if (COMMAND("speed")) /*(9)*/
{ setSpeed (mnp, speed);
}
else if (COMMAND("move all')) /*(10)*/
{ float degl6l;
printf ("Joint values> ");
if (scanVf (deg, 6) != 1)
{ printf ("Error reading values\n");
continue;
}
scaleVf (angles.v, DEGTORAD, deg, 6);
movejRequest = 1; /*(11)*/
}
else if (COMMAND("move by")) /*(12)*/
{ angles.v[jnt-1] = DEGTORAD#angval + mnp->j6->v[jnt-1];
movejRequest = 1;
}
else if (COMMAND('move to")) /*(13)*/
{ angles.v[jnt-1] = DEGTORAD#*angval;
movejRequest = 1;
}
else if (COMMAND("setConf")) /*(14)*/
{ stopCurrentMotion (mnp, 0);
waitForCompleted (mnp); /*(15)*/
setConf (mnp, conf); /%(18)%/
move (mnp, mnp->last); /*(17)*/
waitForCompleted (mnp);
angles = *(mnp—>j6); /%(18)*/
}
if (movejRequest) /%(19)*/
{
if ((newMid = movej (mnp, &angles)) < 0)
{ printErrors(); /*(20)*/
clearErrors();
}
else
{ if (mid !'= UNDEF && motionStatus(mid) '= M_FINISHED)
{ stopMotion(mid, 0); /*(21)*/
}

RCCL/RCI Release 4.2, December 12,1995

4.10. PROGRAM EXAMPLE: “JMOVE” 77

mid = newMid;
}
movejRequest = 0;
}
}
while (!(COMMAND("quit"))); /*%(22)*/

stopCurrentMotion (mnp, 0);
waitForCompleted (mnp);
rcclRelease (YES);

NOTE - this example has been coded for the PUMA robots, and lives at
$RCCL/demo.rccl/ jmove.c.

The most complicated thing to explain about this program is the interface code for the “ C-tree
matcher”. We feel this isjustified because this interface is ubiquitous throughout the RCCL/RCI
system. To avoid learning about the C-tree matcher, just skip over the next few paragraphs.

The C-tree matcher is a command completion input routine. When called, it presents the pro-
gram operator with aprompt and allowshim/her to typeinonly asel ected set of keywordsor values.
Since the matcher knows what inputs are valid, it can assist the user by providing a menu of what
islegal to type (if the user hits‘?’) or by expanding input to the next branch point (if the user hits
<space>). The matcher returns when a valid sequence has been entered and the user hits <re-
turn>. Itreturnsto the program the string of keywordswhich the user typed, plus any input values
it collected. While this sounds cumbersome, in practiceit is not. Full documentation on the C-tree
matcher, for both the end user and the programmer, isavailable in $RCCL/doc/CtreeMatch. doc.

The program begins as usual by including <rccl . h>and declaring miscellaneous variables and
pointers. Definitions relevant to the C-tree matcher are contained in the include file <ctree.h>
(/*1%/). The name of the robot to be controlled is obtained, in this program, from the command
line rather than from the system routine getDefaultRobot () (/*2%/).

The first main thing the program does is describe to the C-tree matcher the set of permitted in-
puts. Thisis done using atree of keywords and input values, specified by along string argument
givento theroutinetree_match_parse() (/*3%/). The inputs allowed by this program are

quit

show

speed <speedValue>

move all

move <jointNumber> by <angleValue>
move <jointNumber> to <angleValue>
setConf <configString>

Successive values or keywords are indicated within the specification string by parentheses:

<keyword or value> ’(’ <following keywords or values> ’)’

RCCL/RCI Release 4.2, December 12,1995

78 4. CONTROLLING A ROBOT

Whenever the input requires actual values, the C-tree matcher will parse the value according to a
prescribed format and placeitin avariablewhose addresshasbeen giventotree_match_parse().
Allowed formatsare %d (integer), %£ (float), %s (string), and %x (hex integer). The address through
which the value should be stored is placed in the argument list to tree_match_parse () by break-
ing the specification string, inserting the address, and restarting the specification string:

string spec ... %d", &integerVal, " ... more string spec

Integer and float specifications are followed by (optional) lower and upper bounds, and all value
specifications may also be followed by a help prompt (contained within \" \") that appears when
the user hits*7’.

tree_match_parse() digests the input specification and returns a handle (keytree) that is
later used by tree_match (), which does the actual reading of input. If an error was found in the
input specification, tree_match_parse() returns0, and a string showing the neighborhood where
the error occurred can be obtained with the routinetree_match_err_at (). (/*4*/).

Now back to RCCL. After the program has initialized the C-tree matcher, it calls rcclCre-
ate() and rcclStart () to set up the trgjectory generator and start it (/*5%/). It theninitializes
the variable angles to the current values of manipulator joint angles, which are stored in the j6
field of theMANIP structure (/*6*/). A loop isthen entered which callstree_match() (/*7*/)to
solicit commands from the user’s terminal, until the final quit command isreceived (/*22%/).

Commandsreturned by tree_match() consist of sequences of keywords and are placed in the
buffer key_buf. The macro COMMAND (str) does a strcmp () between str and the contents of
key_buf to determine what command was entered. The commands that may be returned to this
program are

quit
show
speed
move all
move by
move to
setConf

The show command (/*8%*/) causes the program to print out the robot’s current speed setting,
configuration, T6 transform value, and joint angles. Note that the joint angles are converted to de-
grees before being printed out; al joints are assumed to be revolute as mentioned earlier.

The speed command (/*9+/) sets the robot’s speed parameter, scaling the speed at which the
robot responds to further motion commands. The variable speed is set during command input by
tree_match().

Themove all (/*10%/)commandisused to movetherobotto aparticular set of joint values. It
promptsthe user for aset of joint angles, readsthesein from the keyboard, convertsthemto radians,
and requests acall tomovej () by setting the variablemovejRequest (/*11%/).

Themove by command (/*12*/) moves onejoint by a specified number of degrees. Thejoint
number and the amount to moveit by areread into thevariables jnt and angval by tree_match ()

RCCL/RCI Release 4.2, December 12,1995

4.10. PROGRAM EXAMPLE: “JMOVE” 79

when the command is entered. The appropriatefield inthejoint target variable angles is changed,
and acall tomovej () isrequested by settingmovejRequest.

The move to command (/*13+/) is sSimilar to the move by command except that it moves a
joint to aspecified value.

All of themove commandschangethejoint target variable angl es and bump thevariablemove-
jRequest, whichisexamined at the bottom of theloop (/*19x/). If set, the program usesmovej ()
to queue a motion request to angles. The value returned by movej () isstored in newMid. If this
value is negative, then movej () is known to have failed and the appropriate error message(s) are
printed and the error stack iscleared with acall toprintErrors () and clearErrors () (/*20%/).
(seesection 9.2.1 for adiscussion of the error stack). Otherwise, the request succeeded and newMid
containsits synchronizationflag. The program next checksto seeif there hasbeen any previouscall
tomovej () (mid !'= UNDEF), andif o, if the resulting motion has completed yet. If it has not, the
previous motion is aborted with acall to stopMotion () usingthe old motion’s1D value (/*21%/).
Doing this after the call themovej () alowsfor a smooth transition from any previous motion to
the new motion. It also provides anice illustration of the use of the synchronization primitives,

The last command in jmove iS setConf (/*14%*/), which is used to change the robot’s current
kinematic configuration. It first uses stopCurrentMotion() and waitForCompleted() to Stop
any current manipulator motion (/*15+/). A string describing the new desired configurationisread
into conf by tree_match() when the command is entered, and is used directly as an argument to
setConf () (/*16%/). A motion isthen requested to the robot’s current position (/*17x*/), using
the the position equation mnp->1ast built into the MANIP structure. Internaly, thiswill cause the
trajectory generator to compute the target joint angles for the motion using the new configuration
and generate ajoint interpolated motion to these new angles. The program waits for the motion to
finish with another call towaitForCompleted() and then updates thevalue of angles (/*18%/).

RCCL/RCI Release 4.2, December 12,1995

80 5. MOVING TO VARIABLE TARGETS

5. Moving to Variable Targets

5.1 Transform Bindings

The transforms which make up a position equation are objects which describe positional relation-
ships in the environment. Since these relationships may change, it should be possible to provide
ways for changing the values of the associated transforms.

By default, an RCCL transform allocated using one of the allocTrans () routinesis assumed
to be constant. That means that whenever that transform is used in a motion request (as part of a
position equation) the trajectory generator isfreeto assume that the value of that transformwill not
change for the duration of the motion. When move () is called, a private copy of the transform’s
current value is made and sent to the trajectory generator along with the motion request packet. If
the transform’s value is changed after the call to move (), the change will affect only subsequent
motion requests.

While thisis areasonable paradigm, one may not always want a transform to be assumed con-
stant. It may be desirable for the trajectory generator to consider a particular transform to be vari-
able and constantly read its value and adjust the target position accordingly. In other words, amo-
tion to a target that contains a variable transform will track any changes that variable transform
makes. The value of atransform can be changed by either the planning task or by functions being
executed through the trgjectory generator.

The primitiveto declare atransform variableis

setTransVarb (tr)
TRSF_PTR tr;

After thiscall is made, subsequent motionswhich referencethe transformwill track any changesto
it. These changes will be tracked literally, without any of the acceleration limiting that is normally
applied between adjacent motions. One should therefore be careful to ensure that changes to such
transforms are smooth and clean. If a variable transform contained in a target position changes
suddenly by alarge amount, the robot will try to “leap” across the work space'. One reason that
variable transforms should usually be changed from the control level isto ensure that the changes
to it are made at a constant rate.

A transform may be set back to being a constant transform with the primitive

setTransConst (tr)
TRSF_PTR tr;

One special way of making a transform variable is to bind it to to a function executed at the
control level:

'Which isabad thing, because if the robot islarge, it might succeed.

RCCL/RCI Release 4.2, December 12,1995

5.1. TRANSFORM BINDINGS 81

transEval (tr, fxn, arg)
TRSF_PTR tr;
int (xfxn)();
int arg;

Thisingtructsthe tragjectory generator to call the function £xn once every control cycleto adjust the
value of tr. The function will be called with the following arguments:

fxn (tr, arg)

TRSF_PTR tr;
int arg;
{

. modify the value of the transform ...

b

tr points to the transform being updated (or actually a copy of it; the real transform is updated
atomically as soon as the updating function returns), and arg is the application-defined argument
specified by the third parameter to transEval (). The trgectory generator begins executing the
transform function immediately, and continues to do so until the binding isremoved (such aswith
acal to setTransVarb() or setTransConst ()).

A transform may also be bound to a function that is executed only when the transform is con-
tained within the manipulator’s current target position. Thisis done with the call

transMotionEval (tr, fxn, arg, mnp)
TRANS_PTR tr;
int (xfxn)();
int arg;
MANIP *mnp;

The function £xn will be called to update tr only when mnp isexecuting amotion that contains tr
as part of the target specification (thisis actually the way function binding in the old RCCL system
worked). For this sort of function binding, the trajectory generator calls £xn with a pointer to the
associated MANIP structure as an additional argument:

fxn (tr, arg, mnp)
TRSF_PTR tr;

int arg;

MANIP *mnp;

{

. modify the value of the transform ...

b

An alternative way of setting the transform bindings discussed above isto use the pair of func-
tions

setTransBinding (tr, binding)
TRSF_PTR tr;
TRANS_BINDING *binding;

RCCL/RCI Release 4.2, December 12,1995

82 5. MOVING TO VARIABLE TARGETS

getTransBinding (tr, binding)
TRSF_PTR tr;
TRANS_BINDING *binding;

setTransBinding() setsthebinding for atransform and getTransBinding() reads the current
binding back. Binding informationis specified or read back through the datatype TRANS_BINDING,
which is defined as follows:

typedef struct {
int code;
int (xfxn)();
int arg;
MANIP *mnp;

} TRANS_BINDING;

Thefieldsfxn, arg, and mnp contain the same information that is provided by the argumentsto the
functions transEval () and transMotionEval(). code describesthe type of binding and is set
to one the four values

TRANS_CONST
TRANS_VARB
TRANS_EVAL
TRANS_MOTION_EVAL

depending on the binding.

Function bindings may be applied to any transformin aposition equation. WWhen amanipul ator
isasked to moveto such atimevarying target, it will track the changes as it movestoward thetarget
(and continue to track the changesif it is asked to stop there).

When setting up functionally defined positions, as with al position equations, it is important
to realize that the effect of varying a particular transform depends heavily on where it is located
within the position equation: we have to consider the coordinate frame in which the transform is
itself defined.

As an illustration of this, consider the position equations defined in figure 20. Each of these
containsamanipulator T6 transform, afixed transform BASE which maps to the manipul ator base
frame from a “world” coordinate frame W, a fixed TOOL transform that maps into a tool frame
T, and a single variable transform (either T(¢) or R(¢)). The manipulator transform is indicated
by T6(t) as areminder that it istime varying as well. T(¢) performs pure trandation, and R(¢)
performs pure rotation.

The first two position equations create pure trandational motions, the first with respect to the
world frame W and the second with respect to the tool frame T. The differenceisobtained by chang-
ingthedirection senseof T(t). (Puretrandation aways producesapuretrand ation, no matter what
coordinate frame it isinduced in.) The difference between the two motions would smply be dif-
ference in the orientation of the line aong which the motion was taking place.

The differenceismore severefor the last two position equations, which depict two rotations ap-
plied intwo different frames. A rotationin one framemay result in both arotation and atrandlation

RCCL/RCI Release 4.2, December 12,1995

5.1. TRANSFORM BINDINGS

T6 (1) TOOL

(oy
T

\ BasE w _T® A

(a) Pure translation in world coordinates

T6 (t) TOOL

(oy
T

A BasEe w <TO

(b) Pure translation in tool coordinates

T6 (1) TOOL
(Y
.
t Base w _RO_J

(c) Pure rotation in world coordinates

T6 (t) TOOL

(oy
T

A Base w < RO _J

(d) Pure rotation in tool coordinates

Figure20: Graphsfor four different time-varying positions.

RCCL/RCI Release 4.2, December 12,1995

84 5. MOVING TO VARIABLE TARGETS

when observed from another frame. In position (c), the center of rotation is fixed with respect to
W (and will move with respect to T), whilein position (d), the center of rotation will be fixed with
respect to T (and will move with respect to W). Rotations in tool coordinates are aways hard to

visualize because the tool frameitself ismoving.

5.2 Program Example: “zigzag”

In this simple example, the robot is programmed to move back and forth between two positions
which are moving asthough they are attached to aconveyor belt. The net resultisasort of “zigzag”

motion (seefigure 21).

planning level module

#include <rccl.h>
#include '"manex.560.h"

main ()
{
TRSF_PTR z, e, conv, t1, t2;
POS_PTR ptl, pt2;
MANIP *mnp;
JNTS rcclpark;
char *robotlName;

int convfn();
int 1i;

rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot();
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);
}

z = allocTransXyz ("Z'", UNDEF, 0.0, 0.0, ZBASE);

e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);

conv = allocTransRot ("CONV'", UNDEF, C_X, C_Y, C_Z, xunit, 180.0);
t1 = allocTransXyz ("T1", UNDEF, -300.0, 50.0, 0.0);

t2 = allocTransXyz ("T2", UNDEF, -300.0, -50.0, 0.0);

/*1%/
ptl = makePosition ("pti", z, T6, e, EQ, conv, ti1, TL, e);
pt2 = makePosition ("pt2", z, T6, e, EQ, conv, t2, TL, e);

mnp = rcclCreate (robotName, 0);
rcclStart();

movej (mnp, &rcclpark); /*2%/
waitForCompleted (mnp);

RCCL/RCI Release 4.2, December 12,1995

5.2. PROGRAM EXAMPLE: “ZIGZAG” 85

move (mnp, ptl);
stop (mnp, 0.0);
waitForCompleted (mnp);

setMod (mnp, ’c’); /*3%/
transEval (conv, convfin, /*speed=+*/50); /*4x/
for (i=0; i<8; ++i) /*5%/

{ move (mnp, ptil);
stop (mnp, 1000.0);
move (mnp, pt2);
stop (mnp, 1000.0);
if (i == 3) /*6%/
{ waitForCompleted (mnp);
transEval (conv, convfn, -50);
}
}
movej (mnp, &rcclpark); /*Tx/
stop (mnp, 1000.0);
waitForCompleted (mnp);
rcclRelease (1);

control level module

#include <rccl.h>

convfn (t, vel)
TRSF_PTR t;
int vel;
{
t->p.x += vel * rcclGetInterval() / 1000.0; /*8%/
¥

NOTE —this exampl e has been coded for the PUMA 560 robot, and lives at zigzag.560 . c and
zigzagCtrl.560.cin $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in zigzag.260.c and zigzagCtrl.260.c. For details on how to compileit, see
section 9.4.3.

The target position motion is created by binding atransform to areal-time function. Since this
function executes at the control level, it must be define in a separate module and loaded specially
using thercc command. Inthisand all other examples, control level load modulesare given aname
that ends with ""Ctr1". The required compilation sequence is discussed in section 9.4.3.

The program creates two manipulator target positions, both of which are attached to afictitious
conveyor belt (/*1x*/). These are described by the following equations:

Z Tée E = CONV T1

RCCL/RCI Release 4.2, December 12,1995

86 5. MOVING TO VARIABLE TARGETS

Figure2l: Motion created inthe program“zigzag” by moving back and forth be-
tween two moving target points.

and
Z T6 E = CONV T2

These positions are alittle more complicated than those in previous examples. To begin with, they
both use a transform Z which maps to the base of the manipulator from some more convenient
frame (in this case located at the bottom of the robot’s pedestal). Thisis useful sometimes because
the pedestal base may make a more reasonable reference frame than the manipulator base (which
is often located in some obscure spot like the middle of the robot’s shoulder). The location of the
conveyor belt itself, relative to the pedestal base, isthen given by CONV. The transforms T1 and
T2 represent the location of each target with respect to the conveyor frame.

The program starts up and brings the robot to the usual starting position (/*2x*/). It then moves
the robot to the first target point, stops it there, waits for completion, and then requests Cartesian
interpolated motions(/*3+/). The conveyor isnot yet “inmotion”; thisisdone next by using t ran-
sEval () to bind conv to the function convfn (/*4*/). The application argument is used (in this
case) to indicate the conveyor velocity, in millimeters per second. As soon as the function binding
takes place, convEn () will begin to “move” CONV in a positive direction along its = axis. The

RCCL/RCI Release 4.2, December 12,1995

5.3. RESTRICTIONS FOR CONTROL LEVEL FUNCTIONS 87

program then issues a series of requests to move the robot back and forth between the two target
points attached to the conveyor, stopping at each point for one second. Since the points are sep-
arated along the y axis of the conveyor, perpendicular to the direction of motion, thisresultsin a
“zigzag” like motion. Half way through the move-stop sequence, the direction of the conveyor is
reversed with another call to transEval() (/*6%*/), which leaves the function binding unchanged,
but negates the velocity argument. When thisisfinished, the program moves the robot back to the
starting point and terminates in the usual way (/*7+/).

As mentioned above, the function convfn () isdefined in a separate load module since it will
be executed at the control level. It isdefined to receive two arguments. a pointer to the transformit
isto modify and the application argument. The application argument, which specifies the conveyor
velocity in millimeters per second, is multiplied by the RCCL sample interva (obtained with rc-
clGetInterval()) to obtain aper-cycle increment which is added to the = axis of the transform
(/8x/).

5.3 Restrictions for Control Level Functions

Before proceeding further, we should describein detail the restrictionsthat apply to functionsbeing
executed at the control level.

Control level application functions are executed by the trgjectory generator, within the context
of atragectory task running on either the main UNIX CPU, or possibly an auxiliary CPU (see fig-
ure 2). Which task/CPU is used is determined either by the system, or by a manipulator which
may be associated with the function: monitor functions (which will be described later) are explic-
itly associated with a manipulator, and transform motion functions are implicitly associated with a
manipulator. Each manipulator is assigned to a particular trgjectory task on a particular CPU, and
appliction functions associated with it are executed by the same task.

The control level runs outside of UNIX, and hence does not have access to any of the UNIX
system calls (such aswrite() or fork()), or any routine (suchasmalloc() or printf ())which
might itself perform a UNIX system call. Thisrulesout certain library functions that perform 1/0O,
allocate memory, control processes, etc. In general, thesafest courseisto not use any UNIX library
routines, except for the math routinesin 1ibm. a and the string proceduresin libc.a. sprintf ()
also appears to be harmless. Likewise, some routines in the RCCL/RCI library cannot be called
fromthecontrol level. Routineswhichallocate structures, or initialize and control tasks, are usually
in this category. Whether or not an RCCL/RCI routine can be called from the control level will
generadly beindicated in its reference manual page under the heading Restrictions.

RCI provides afew surrogate routines to do things such as memory allocation and diagnostic
printing; see section 5.6.2.

Additional restrictions apply to functions which are executed at the control level on the main
UNIX CPU. When the control level is executed on the UNIX CPU, it is run in kernel mode, at
maximum IPL, off of the interrupt stack. Thisrather draconian way of doing thingsis necessary in
order to get the necessary system response (UNIX simply cannot handleit). The RCI system takes
care to ensure that exceptions are handled properly (and do not result in a system crash, the way
exceptions at that priority normally do). However, there are still afew ways to crash the system.

RCCL/RCI Release 4.2, December 12,1995

88 5. MOVING TO VARIABLE TARGETS

Oneisto have the control level code execute an infinite loop. This will smply hang the machine.
Fortunately, infiniteloopsturn out to be quiterare. Another way isto create astray pointer reference
that happens to land in some bad place in system memory (which is not protected because we are
running in kernel mode). Again, instances of this appear to berare. A final way to cause the system
to crash isto overflow the interrupt stack, which is generally afatal condition on most machines.
This can happen if the control level routines nest too deeply, or if they declare too much automatic
data. Thefix for thisisto simply redeclare the offending variables to be static.

Control level functions executing on auxiliary CPUs cannot cause system crashes.

5.4 Ways of Modifying Transforms With Functions

There are several waysthat afunction bound to atransform may changeitsvalue. Wewill mention
afew of these here, although the discussion is by no means exhaustive.

Absolute Changes. The transform’svalueis set directly each control cycle. For instance, we
might have quantities px, py, and pz which are read in from some device such as ajoystick.
These could be used to set the transform’s p vector, asin

fxnAbs (tr, arg)
TRSF *tr;
int arg;
{
float px, py, pz;

. values are read in from somewhere ...

xyzToTrsf (tr, px, py, pz);

Relative Changes. The transform’s value is changed incrementally. A common way of ac-
complishing this is to multiply the transform’s existing value by a perturbation transform.
Assume that the quantities dx, dy, and dz are read in from some sensor device. The follow-
ing sample function uses these to apply arelative trandational increment to its transform:

fxnRel (tr, arg)
TRSF *tr;
int arg;

{
TRSF offset;
float dx, dy, dz;

. values are read in from somewhere ...

xyzToTrsf (&offset, dx, dy, dz);

RCCL/RCI Release 4.2, December 12,1995

5.4. WAYS OF MODIFYING TRANSFORMS WITH FUNCTIONS 89

multTrsf (tr, tr, &offset);
}

The same thing could be accomplished by a call to multTrsfXyz () instead of two calsto
xyzToTrsf () and multTrst (). The difficulty with relative changes is that they can cause
errorsin the transform structure. This problem is more severe when modifying the rotational
component, which can lose orthogonality quite easily. This situation can be improved some-
what by renormalizing the transform regularly, such as with the routine unitTrsf (). An-
other option is to use a representation for the net rotation that has fewer parameters (thisis
particularly easy if therotation isabout asingle axis), change the reduced that, and then con-
vert it into atransform once every cycle. Thiswill in fact be done in the example below.

Time Dependent Changes. The changes to a transform may depend explicitly on time. For
instance, suppose that we desire to make a transform rotate slowly about the ~ axis with a
rotational velocity w. A function that will do thisis

rotZ (tr, omega)
TRSF *tr;
int omega; /* omega, in deg/sec */
{
float angle;
static float t0O = F_UNDEF;

if (t0 == F_UNDEF)

{ t0 = rcclSysTime();

t

angle = omega*(rcclSysTime() - t0)/1000.0;
rotToTrsf (tr, zunit, angle);

b

It obtains w through the application argument and uses rcclSysTime() to get the current
system time in milliseconds. Because absolute time is being used, it is necessary to keep
track of theinitial time; thisis done using the static variable t0. An equivalent function that
does the same thing with less fuss, using incremental changes, is

rotZrel (tr, omega)
TRSF *tr;
int omega; /* omega, in deg/sec */
{
multTrsfRot (tr,zunit,omega*rcclGetInterval()/1000.0) ;
}

Thissimply usesrcclGetInterval () to obtainthe system sampleinterval (in milliseconds)
and converts thisinto a per-cycle displacement.

Motion Relative Changes. The variation of atransform can also be tied directly to the scale
value of amotion, that is, the value that changesfrom 0.0 to 1.0 as the motion goes from start

RCCL/RCI Release 4.2, December 12,1995

90 5. MOVING TO VARIABLE TARGETS

to finish. For example, suppose wewish to add atrandational displacement dp to atransform
over the course of amotion. Assuming that dp has been defined somewhere, a function that
would do thisis

dispFxn (tr, arg, mnp)
TRSF *tr;
int arg;
MANIP *mnp;
{
float s;

s = motionScale (getActiveMotionId (mnp);
tr->p.x = dp.x * s;
tr->p.y = dp.y * s;
tr->p.z = dp.z * s;

b

The motion scale is obtained using the motionScale() function called with the ID of the
current motion for mnp. Several things about the motion scale value should be noted. First,
if the motion has no explicit time limit, then the scale will always be 0.0. Second, if the mo-
tion starts with a non-zero transition time, then the motion scale will be negative prior to the
transition midpoint, since scale is defined to be 0.0 only at the transition midpoint.

5.5 Communicating with the Control Functions

5.5.1 Memory objects

Thefunction convfn () inthe program zigzag obtained information from the planning level using
the application argument. This works well, provided that no more than one integer’s worth of in-
formation needs to be passed. To pass more information between the planning and control levels,
shared memory facilities are available.

These basically work asfollows:. the planning task allocates a piece of shared memory, the con-
trol level routines obtain a pointer to it, and then everybody can access it. The basic shared mem-
ory mechanism used by RCCL isthe RCl allocMen() package, whichisalso described inthe RCI
User’s Guide. Its manual pages appear in the RCI Reference Manual, instead of the RCCL Refer-
ence Manual.

Let us assume that the programmer has defined a structure foo:
typedef struct foo {
int valuel;

int value?2;
} FOO;

and would like to create an object of this type which is shared between the planning and control
levels.

RCCL/RCI Release 4.2, December 12,1995

5.5. COMMUNICATING WITH THE CONTROL FUNCTIONS 91

The object is allocated by the planning level using the call
FOO *fp;
fp = (FOO*)allocMem ("foo", sizeof(FOO), UNDEF);

allocMem() takes three arguments. a string name for the memory object, the size of the memory
object in bytes, and a specifier for the memory allocation pool to be used. Thislast argument serves
the same purpose as the pool argument in allocTrans (); it istypically not too important and is
Set to UNDEF. Also, as with transforms, the name argument is optional. allocMem() allocates the
memory, zeros it, and returnsa pointer to it. Memory can be deallocated with the call freeMem ().

Because the memory returned by allocMem () isamost invariably cast to some structure, there
isamacro available to make thiseasier:

#define ALLOC_MEM(n,t,p) (t*)allocMem(n,sizeof(t),p)
Using this, the allocation of "foo" shown above would be written as
fp = ALLOC_MEM ("foo", FOO, UNDEF);

For another part of the program (such as a control level routine) to access a shared memory
object, it must first obtain avalid pointer to it. Doing thisgenerally requiresusing areference func-
tion. Thisisbecause the control level may reside on a separate CPU, and a memory address which
isvalid at the planning level may not be valid on a different CPU. To get a valid pointer, we may
use either of the functions

void *getMemByName (name)
char *name;

void *getMemByAddr (addr)
void *addr;

getMemByName () locates apointer to the memory using itSname as akey (the same name that was
gpecified inthe allocMen () call), while getMemByAddr () locates the pointer using the planning
level address (the same one returned by allocMem()) as a key. In practice, the routine getMem-
ByAddr () is used more commonly, because (1) it is faster, and (2) it relieves us of the need to
name the memory object, thereby avoiding name space collision problems. The planning level ad-
dress can be passed to the control routine using either another object or the routine’s application
argument?.

2Time for a confession: we frequently cast pointersto integers and back for purposes of passing them through the
application argument. The clean way around this would be to either make the application argument itself a generic
pointer, or to make it a union of, say, a generic pointer and an integer. A change like thismay be implemented if it
becomes important, so stay tuned . . .

RCCL/RCI Release 4.2, December 12,1995

92 5. MOVING TO VARIABLE TARGETS

5.5.2 Access Collision and Atomic Access

When using shared memory to communicate between different tasks, one frequently runsinto the
program of access collision: one task may try to read an object at the same time another task is
writing it. Often enough this is not a problem, since the primary data types which comprise the
object (float, int, etc.) are usualy written atomically on most systems and bus architecturesfor
which RCCL/RCI isimplemented. The biggest problemisthat an aggregatewhichisread back can
be“out of sync”, i.e., while the contents of theindividual fieldsare OK, some of them contain “old”
information and some contain “new” information. For instance, suppose the planning level reads
back the output joint anglesinthe j 6 field of the MANIP structure, which could be done simply with
the code fragment

INTS jbuf;

jbuf = *mnp->j6;

Whilethe structureisbeing copied, it is possible for the trajectory generator to write new valuesto
it. This meansthat thefirst few joint values may be valid for one control cycle while the remaining
values are valid for another control cycle. This sort of thing may not be a problem, depending on
what the information in the object isbeing used for. However, to avoid the situation, there are three
primitives available which may be used to atomically read and write memory objects which have
been created using allocMem():

readMem (mem, buf)
void *mem, buf;

writeMem (mem, buf)
void *mem, buf;

accessMem (mem, src, dst, size)
void *mem, src, dst;
int size;

readMem () readsthe contents of memory object mem into buf (whichisassumed to bethe samesize
asthememory object) and writeMem () writesthe contents of buf into the memory object mem. buf
isnot assumed to beamemory object and accesstoitisnot atomic. Thelast routine, accessMem(),
isthe most general: it reads size bytesfrom src into dst while locking the memory object mem
(which may be either src or dst, or neither). It isintended for accessing subfields of an object.

Needlessto say, in order for the atomic access primitivesto work, all write operations (and read
operations, usually) on the object in question must usethem. All of the aggregatefieldsintheMANIP
structure are updated by the tragjectory generator using calls to writeMem (). They may be read
atomically using either readMem () or writeMem(), asin

INTS jbuf;
readMem (mnp->j6, &jbuf);

or

RCCL/RCI Release 4.2, December 12,1995

5.5. COMMUNICATING WITH THE CONTROL FUNCTIONS 93

float angles[NUM_JNTS];
accessMem (mnp->j6, mnp->j6->v,
angles, mnp->j6->num*sizeof (float));

The first example copiesthe entire structure. The second exampleisalittlefaster becauseit copies
from j6 only the v field entries corresponding to actual joints.

5.5.3 Double Buffering

We should mention briefly another common technique that can be used to avoid data consistency
problems. Thisis called double buffering, and can be used whenever there are several tasks that
read an object but only one task that writesit. It is conceptually smple, and generally faster than
using the atomic access primitives. Supposethat the datawe areinterested inisdescribed by atype
DATA. We create an object that contains two versions of DATA and a version number:

struct dataObj {
DATA datal[2];
int version;

b

The data buffer which is currently in use is indicated by the low bit of versionNumber. When
the writing process updates the data, it changes the buffer that isnot in use, and then increases the
version number:

writeData (mem, buf)
struct datalbj *mem;
DATA *buf;

{

int new = (mem->version&l)"1;

mem->datal[new] = *buf;
mem->version++;

b

The process doing the read uses the data buffer that isin use, and then checks to see if the version
number hasincreased by more than one. If it has, it tries again:

readData (mem, buf)
struct datalbj *mem;

DATA *buf;

{
int idx;
do

{ idx = mem->version;
*buf = mem->datalidx&1];
t
while ((mem->version&~1) !'= (idx&~1))

RCCL/RCI Release 4.2, December 12,1995

94 5. MOVING TO VARIABLE TARGETS

b

Thiswill work quitenicely in practice, aslong asthe datais not updated so frequently asto saturate
the system (an update once every RCCL control cycle would be considered quite infrequent).

5.5.4 Locating and Using Other Objects

Now to divulgewhat the alert reader was probably beginning to suspect: Transformsallocated with
allocTrans() and position equations allocated with makePosition() are also memory objects,
completely anal ogous to the ones described in the section (5.5.1). They each have their own access
functions:

TRSF *getTransByName (name)
char *name;

TRSF *getTransByAddr (addr)
TRSF *addr;

POS *getPositionByName (name)
char *name;

POS *getPositionByAddr (addr)
P0OS *addr;

which can obtain pointers to them given either names or planning level addresses. One reason for
giving these objects separate access routines is to make it possible to separate their name spaces.
For instance, it ispossible to create amemory object using allocMem () and atransformusing al-
locTrans () which both have the same string name.

Itisalso necessary to use areferenceroutineto get apointer to aMANIP structurefromthecontrol
level, even though these items are not actually implemented as formal objects. The routines

MANIP *getManipByName (name)
char *name;

MANIP *getManipByAddr (addr)
MANIP *addr;

areprovidedtodothis. (NOTE: avalid MANIP pointer isfrequently given asan argument to the con-
trol level application functions. It isnot necessary to re-referencethispointer. However, sometimes
we want to access the MANIP structure for another manipulator from within one of these routines,
and for this the above routines can be useful .)

Transforms also have their own atomic access routines, anal ogous to the ones described in sec-
tion (5.5.2):

TRSF *readTrans (tr, buf)
TRSF *tr, *buf;

RCCL/RCI Release 4.2, December 12,1995

5.5. COMMUNICATING WITH THE CONTROL FUNCTIONS 95

TRSF *writeTrans (tr, buf)
TRSF *tr, *buf;

To find the name of atransform given a pointer to it, the routine

char *getTransName (tr)
TRSF *tr;
may be used.

Using position equationsfromthe control level isdightly more complicated. Although one may
access a position equation from anywhere within the RCCL program, the equation returned will
generaly not be usable at the control level because the data structures within the equation itself
use pointers whose values are valid for the planning level. To get around this problem, a routine
caled copyPosition() isavailable which makesalocal copy of aposition object whichisvalid
for the current memory context. When thelocal copy of the position is no longer needed, it can be
deleted using freePosition(). A typical usage paradigm for copyPosition() looks something

likethis:
-- planning level --
POS *gpos;
gpos = makePosition (NULL, T6, tool, EQ, b, TL, tool);
-- control level --
POS 1lpos;
. gpos 1s passed down from the planning level ...
lpos = copyPosition (getPositionByAddr (gpos));
. use ’lpos’ locally ...
freePosition (lpos);
The planning level declares the position equation in the usual way using makePosition(). Later,
thecontrol level usesgetPositionByAddr () toget alocal referenceto equation using the planning
level’s original address, and then trandates thisinto valid local equation using copyPosition().
Thisloca copy may then be used with the routines which do position equation computations, such

assolveTrans() or solveChain(). Notethat copyPosition() copiesonly the equation itself,
not the transforms that it references.

The ability to access positions from the control level isnew and has not been used much. More
information on this feature can be found in the manual pages.

RCCL/RCI Release 4.2, December 12,1995

96 5. MOVING TO VARIABLE TARGETS

5.5.5 Synchronizing with the control level

It is sometimes necessary to synchronize activity between the planning level and an application-
defined control level function. The basic way of doing thisis with flagsimplemented using shared
memory. Suppose the planning level wants to send a command to a monitor function, and then
wait for the monitor function to respond. The command can be implemented as afield (which we
will call com) in ashared memory object (which wewill assumeiscaled mem). Then thefollowing
simple construction may be used:

-- planning level --

mem->com = COMMAND;
waitWhile (mem->com)

-- control level function --

if (mem->com)
{ ... do action ...
mem->com = 0;

b

The planning level just sets the command field and waits for the control level function to clear it.
If it isknown that control level will respond during the next control cycle, then the planning level
can use the primitive rcc1Block () instead:

mem->com = COMMAND;
rcclBlock() ;

rcclBlock () waitsfor one entire control cycleto elapse between thetimeit is called and the time
it returns, and so can be used to effect single cycle synchronization.

5.6 Control Level Support Routines

5.6.1 RCCL system routines

The following RCCL functions may be called from anywhere with an RCCL program, but are par-
ticularly useful for control level applications.

The system time, in milliseconds, may be obtained with
float rcclSysTime();

This does not return “real time” in that all this really does is return the product of the trgjectory
generator sample interval and the number of elapsed control cycles. The system time does not in-
crease when thetrajectory generator isnot running or ispaused (aswith rcclPause ()), and isreset
to O every time rcclStart () iscalled. Applications which need a more genuine time clock can
use the RCI time routine, rciTime (), which returns an accurate timecount (in milliseconds) that

RCCL/RCI Release 4.2, December 12,1995

5.6. CONTROL LEVEL SUPPORT ROUTINES 97

is maintained constantly for the duration of the program. Applications which change the value of
atransform explicitly with time are encouraged to use rcc1SysTime (), because it * stops ticking”
when the system is paused, and so prevents discontinuities in target positions when the system is
unpaused.

The routine

getActiveCount (mnp)
MANIP *mnp;

returns the count associated with a manipulator’s current motion. The count starts at O (at the be-
ginning of the transition into the motion)and is increased by one for every control cycle that the
motion is executed. It can be used to initialize transform functions:

function (tr, arg, mnp)
TRSF *tr;
int arg;
MANIP *mnp;
{
if (getActiveCount (mnp) == 0)
{ ... motion is just starting, do
some special stuff ...

b

5.6.2 RCI support routines

Functions executing at the control level do not have accessto UNIX system services, either directly,
orindirectly (by callinglibrary routinessuchasprintf () ormalloc () whichusesystem services).
To help compensatefor this, RCI providesafew routineswhich can be called from the control level
to do diagnostic printing, allocate memory, and send signals to the main UNIX program. These
include:

rciPrintf (format, values ...)
char *format;

rciPrintToTerminal (on)
int on;

void *rciMalloc (size)
int size;

rciFree (ptr)
volid *ptr;

rciSignal (signum)
int signum;

RCCL/RCI Release 4.2, December 12,1995

98 5. MOVING TO VARIABLE TARGETS

rciPrintf () usesthe sameformat asprintf () to print diagnostic messages to the console of the
CPU running the trgjectory task. If the trgjectory task is running on the main UNIX CPU, then it
is possible to direct the output from rciPrintf () to the user’sterminal. This can be arranged by
caling theroutine rciPrintToTerminal () (with a non-zero argument) at some point within the
program.

Care should be used when doing printing from the control level, since it can cause large delays
in the execution of the control level code. In some cases, rciPrintf () will block until all its char-
acters have been output. If an output message is 20 characterslong, and the console line baud-rate
is 9600, then this can cause (roughly) a 20 msec. delay in the control level.

rciMalloc () andrciFree () areequivalent to the conventional UNIX routinesmalloc () and
free(). Thereisgenerally alimitto thetotal amount of memory that can be allocated, and thismay
be aslow as 256K.

rciSignal () sendstheindicated UNIX signal signum to the main program.

For detailson all of these functions, the programmer should consult their manual pagesin the
RCI Reference Manual.

5.6.3 The Fast Math Library

Robotics applications make frequent use of the trigonometric functions sin(), cos(), atan2(),
and the function sqrt () . The execution timesfor these routines can be lengthy (by real-time stan-
dards), particularly if the host machine does not have hardware support for these functions or the
native math library does not make use of it.

To help with this problem, RCCL providesaset of routinesthat do the same computationsusing
tablelookup and interpolation. Execution times are significantly faster (by asmuch as5 or 6times),
and the accuracy istypically around 10~%, which is quite tolerable for most applications.

The available routines are

float SIN (x)
float x;

float COS (x)
float x;

float ATAN2 (x, y)
float x, y;

SQRT (x)
float x;

SINCOS (%, s, <)

float x;
float *s, *c;

RCCL/RCI Release 4.2, December 12,1995

5.7. PROGRAM EXAMPLE: “ROTATE” 99

SIN(),C0S(), ATAN2() and SQRT () do the same computations as their math library counterparts
(except the arguments and results are in single precision). All angle values are passed in radians.
SINCOoS () computesboth the sineand cosine of x, and returnsthe valuesthrough the pointers s and
c, respectively. Thisroutine existsbecauseit isfaster to compute both these quantitiestogether than
to compute them separately.

Definitions for these routines are contained in the file <fastmath.h>. The user is encouraged
to make use of them.

5.7 Program Example: “rotate”

This demonstration program uses two transforms bound to circular motions to create a “wheels
within wheels’ effect. The robot is located at the center of fictitious circular table which can be
made to rotate about the robot’s base. An initial motion is made to a point tracking a small wheel
whose axisis fixed at a point on the larger turntable (figure 22). Another motion is then specified
for which the table itself beginsto turn and the robot starts tracing out a “circular cycloid” (figure
23). Thislast motion automatically aborts when the table has travel ed through a certain distance.

planning level module

#include <rccl.h>
#include '"manex.560.h"

main ()
{
TRSF_PTR tableO, table, p, wheel;
POS_PTR pO, pt;
MANIP *mnp;
ROTATE_CTRL_BLK *rcb; /*1x/
JNTS rcclpark;
char *robotlName;

int tableFxn();
int wheelFxn();
int mid;

rcclSetOptions (RCCL_ERROR_EXIT);

robotName = getDefaultRobot();

if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))

{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);

}

p = allocTransRot ("P", UNDEF, P_X, P_Y, P_Z, xunit, 180.0);

table0 = allocTransRot ("TABLEQO", UNDEF, 0.0, 0.0, 0.0, zunit, -45.0);
wheel = allocTrans ("WHEEL", UNDEF);

table = allocTrans ("TABLE", UNDEF);

RCCL/RCI Release 4.2, December 12,1995

100 5. MOVING TO VARIABLE TARGETS

rcb = ALLOC_MEM (“rcb", ROTATE_CTRL_BLK, UNDEF); /*2%/

rcb->wheelRadius = 70.0; /*3%/
rcb->wheelRPS = .50;
rcb->tableRPS = 0.02;

makePosition ("pO", T6, EQ, table0, p, wheel, TL, T6);
makePosition ("pt", T6, EQ, table0, table, p, wheel, TL, T6);

PO
pt

mnp = rcclCreate (robotName, 0);
rcclStart();

transEval (wheel, wheelFxn, 0); /*4x/

movej (mnp, &rcclpark);

setMod (mnp, ’c’); /*5x/
move (mnp, p0);

mid = stop (mnp, F_UNDEF); /*6%/
transMotionEval (table, tableFxn, O, mnp); /*T*x/
setTime (mnp, F_DEFAULT, F_UNDEF);

move (mnp, pt); /*8%/
movej (mnp, &rcclpark); /*9%/

stop (mnp, 1000.0);

waitFor (motionStatus(mid) == M_RUNNING); /*10%/
delay (10000.0); /H11%/
stopMotion (mid, 0);

waitForCompleted (mnp);
rcclRelease (1);

control level module

#include <rccl.h>
#include <fastmath.h>
#include '"manex.560.h"

wheelFxn (t, arg)
TRSF_PTR t;
int arg;
{

ROTATE_CTRL_BLK *rcb;

static float alpha = 0.0;

/*12%/
if ((rcb = (ROTATE_CTRL_BLK*)getMemByName("rcb")) == NULL)
{ rciAbort (0, "wheelFxn(): can’t find argument object\n");

RCCL/RCI Release 4.2, December 12,1995

5.7. PROGRAM EXAMPLE: “ROTATE” 101

return;

}
alpha += rcb->wheelRPS * rcclGetInterval() / 1000.0; /*13%/

t->p.x
t->p.y

rcb->wheelRadius * COS(alpha * PIT2);
rcb->wheelRadius * SIN(alpha * PIT2);

}

tableFxn (t, arg, mnp)
TRSF_PTR t;
int arg;
MANIP *mnp;
{
ROTATE_CTRL_BLK *rcb;
static float alpha = 0.0;
static done = 0;
/*14%/
if ((rcb = (ROTATE_CTRL_BLK*)getMemByName("rcb")) == NULL)
{ rciAbort (0, "tableFxn(): can’t find argument object\n");
return;
¥
alpha += 360.0 * rcb->tableRPS * rcclGetInterval() / 1000.0;
rotToTrsf (t, zunit, alpha);

if (alpha >= 90.0 && !done) /*16%/
{ stopCurrentMotion (mnp, 1);
done = 1;

}

NOTE — this example has been coded for the PUMA 560 robot and lives at rotate.560.c and
rotateCtrl.560.cin$RCCL/demo.rccl. An equivalent program for the PUMA 260 is
containedinrotate.260.cand rotateCtrl.260.c.

The first new thing the reader may notice in this example isthe pointer declaration for the type
ROTATE_CTRL_BLK (/*1*/),whichisdefined in "manex.560.h'". A memory object of thistypeis
allocated using allocMem() (/*2*/) and is used to communicate information to the control level
functions. The fields of the structure contain parametersfor the function computations. wheelRa-
dius istheradius of the smaller whedl; wheelRPS isthe speed the smaller wheel should spinat (in
revolutions per second), and tableRPS isthe speed the turntable should spin at (alsoin revolutions
per second) when it starts to move (/*3+/).

The program uses two position equations: p0, defined as
Té = TABLEO P WHEEL

describes a point on the spinning wheel attached to thelarger turntable. Noticethat for thisprogram
we have omitted the manipulator TOOL transform. TABL EO describes arotation about the =z axis
of the manipulator base frame. P defines a trandational offset and flip about the = axis relativeto
TABLEO. Both of these transforms are fixed. WHEEL is a moving transform whose trandation

RCCL/RCI Release 4.2, December 12,1995

102 5. MOVING TO VARIABLE TARGETS

_

Figure22: Manipulator tracking arotating “wheel”, in the example program ro-
tate.

values trace out acircle. Position p0 assumes that the turntable isfixed at theinitial rotation angle
of TABLEO. Position p1, defined as

T6 = TABLEO TABLE P WHEEL

issimilar, except that the turntable is now set in motion by an additional (moving) transform TA-
BLE.

After the program has turned on the trgjectory generator, it sets the wheel transform in motion
with acall to transEval () (/*4*/). The application argument is specified as 0 because it will not
be used. After moving to the canonical initial position, the robot istold to do a Cartesian interpo-
lated motion to p0 and stop there indefinitely (/*5x/), during which time it will continue to track
the motion of the wheel (figure 22). Without waiting for this to complete, the program then sets
up the motion requests for the rest of the program. A call to transMotionEval() (/*7+/) binds
TABLE tothefunctiontableFxn (), whichwill be executed whenever TABLE iscontainedinthe
target of the current motion. A request for amotion of indefinitetimeto position p1 isthen queued
(/+8x/), followed by a final motion request which moves the robot back to the starting position
(/*9%/).

RCCL/RCI Release 4.2, December 12,1995

5.7. PROGRAM EXAMPLE: “ROTATE” 103

Figure23: Tracking the“whee” whenitsaxisof rotationisfixed to a“turntable’
rotating about the manipulator’s base.

Boththestop at p0 (/*6*/) and themotiontop1 (/*8*/) are specified to last indefinitely, which
means that they must be explicitly aborted by the program. The stop is canceled by the planning
level, which first waits for the stop request to start executing (/*10#/), waits another 10.0 seconds
(/*11%/), and then cancels it with acall to stopMotion(). The motion to p1 is canceled from
within the function that produces that turntable motion when the turntable offset angle exceeds 90°
(/*16%/).

The control level functions are quite simple. Each first obtains a pointer to the control struc-
ture using getMemByName () and the name "rcb' (/*12%/, /*14x/). If the memory object is not
found, the program is aborted with acall to rciAbort () (see section 9.2.2). wheelFxn () causes
the trandational component of its transform to trace out a circle in the z—y plane. It increments
the current angle of rotation (/*13+/) and uses thisto compute appropriate valuesfor t->p . x and
t->p.y. tableFxn() causes its transform to rotate about the ~ axis. To do this, it increments a
rotation angle and feeds thisinto the function rotToTrsf ().

RCCL/RCI Release 4.2, December 12,1995

104 5. MOVING TO VARIABLE TARGETS

5.8 Program Example: “pivot”

This next program makes the robot move through alarge arc, with itstool pointing along theradius
of thearc, asthough it were turning alever (figure 24). Therobot will lineitself up with thelever's
initial position and then use afunctional transform to moveit through 60°. Circular arc motionsare
interesting in that they can sometimes be accomplished by locating the TOOL framein aparticul ar
place, rather than by using moving frames. As an illustration, the program does this to move the

“lever” back.

planning level module

#include <rccl.h>
#include '"manex.560.h"

extern pivotFxn();

main()
{
TRSF_PTR e, b, handle, rotQO, rotl, roty;
POS_PTR pO, pl, pt, pd;
MANIP *mnp;
JNTS rcclpark;
char *robotlName;
rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot();
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);
}
e = allocTransXyz ("E", UNDEF, 0.0, 0.0, TOOLZ);
b = allocTransRot ("B'", UNDEF, B_X, B_Y, B_Z, xunit, 180.0);

handle = allocTransXyz ("HANDLE", UNDEF, 0.0, 0.0, -300.0);
rot0 = allocTransRpy ("ROTO", UNDEF, 0.0,
rotl = allocTransRpy ("ROT1", UNDEF, 0.0,
roty = allocTrans ("ROTY", UNDEF);

0.0, 0.
0.0, 0.

B

, EQ, b, rot0, handle, TL, e);
, EQ, b, roty, handle, TL, e);
, EQ, b, rotl, handle, TL, e);
, EQ, b, rot0, handle, TL, handle);

p0 = makePosition ("pO", T8,
pt = makePosition ("pt", TS,
pl = makePosition ("pi1", TS,
pd = makePosition ("pd", TS,

mnp = rcclCreate (robotName, 0);
rcclStart();

setMod (mnp, ’c’);
distance (mnp, "dz", -75.0); /*1%x/
move (mnp, p0);

RCCL/RCI Release 4.2, December 12,1995

0, 0.0, -30.0, 0.0);

0, 0.0, 30.0, 0.0);

5.8. PROGRAM EXAMPLE: “PIVOT”

move (mnp, p0);
setTime (mnp, 200.0, 12000.0);

*roty = *rotO;

transMotionEval (roty, pivotFxn, O, mnp);
move (mnp, pt);

distance (mnp, "dz'", -75.0);

move (mnp, pl);

move (mnp, pl);

setTime (mnp, 200.0, 12000.0);
move (mnp, pd);

distance (mnp, "dz'", -75.0);
move (mnp, p0);

setMod (mnp, ’j’);
movej (mnp, &rcclpark);
stop (mnp, 1000.0);

waitForCompleted (mnp);
rcclRelease (1);

/*2%/

/*3%/

/*4x/

/*5%/

/*6%/

105

control level module

#include <rccl.h>

pivotFxn (tr, arg, mnp)
TRSF_PTR tr;
int arg;
MANIP *mnp;
{
static TRSF tr0;
TRSF trr;
float scale;

if (getActiveCount(mnp) == 0)

{ tr0 = *tr;

¥

scale = motionScale(getActiveMotionId(mnp));
identTrsf (&trr);

rotToTrsf (&trr, yunit, 60.0*scale);
multTrsf (tr, &tr0, &trr);

/*T%/

/*8%/

NOTE - this example has been coded for the PUMA 560 robot and lives at pivot.560.c and
pivotCtrl.560.cin $RCCL/demo.rccl. An equivalent program for the PUMA 260 is

contained inpivot.260.cand pivotCtrl.260.c

RCCL/RCI Release 4.2, December 12,1995

106 5. MOVING TO VARIABLE TARGETS

Figure 24: Raobot “turning alever” about a pivot point, in the program example
pivot.

The program sets up four position equations p0, pt, p1, and pd, defined respectively as
Té E = B ROT0O HANDLE

Té E = B ROTY HANDLE
Té E = B ROT1 HANDLE
Té E HANDLE™' = B ROTO

These describethevariouspositionsof thetip of thelever. Thelever’scenter of rotationislocated at
frameB. To get fromtheretothetip, werotate by some amount about they axis(whichisdoneusing
either ROTO, ROTY, or ROT1), and thenuse HANDLE to trandate along the = axis. Position p0
defines the initial position of the lever, with ROTO describing arotation of —30.0°. The place we
want to move the lever to isdescribed by p1, which isthe same as p0 except that its rotation angle
(givenby ROT1) is30°. To get fromp0 to p1 adong an arc, the transform ROTY isused. ROTY
is bound to a function which varies its rotation angle from —30.0° to 30.0°. Position pd is used
to move back from p1 to p0. It describes the same target position as p0, except that the TOOL

RCCL/RCI Release 4.2, December 12,1995

5.9. THE JOINT BIAS FUNCTIONS 107

frameislocated at the “pivot”, the base of the handle, coincident with frame B. In this frame, the
displacement from p1 to p0 is purely rotational, and so when the trgjectory generator interpolates
between thetwo positions, it effectively followsthe same path (in reverse) aswascreated by ROTY
in the first motion.

Therobot first approaches and then positionsitself at po (/*1*/). Anexplicit motiontime of 12
secondsis established for the motion to pt (/*2*/), Since the trgjectory generator would otherwise
compute this based only on the displacement between p0 and pt, which isinitially zero. ROTY
isinitialized to the value of ROTO, and then bound to a transform motion function (pivotFxn())
that will change the rotation angle (/*3+/). The motion to pt is then requested, which brings the
robot to the final position described by p1. Thisisfollowed by a small depart motion away from
pl (/*4x*/).

To return to pO, the robot is first moved back to p1, and then amotion to p0 is specified using
pd (/*5%/) asthe target. Aswith the initial motion, the time is explicitly specified; thisis doneto
ensure that both motions will be completely symmetrical.

Notice that the entire motion sequence for the program is specified without waiting for any mo-
tions to complete; thisis done only before the program exits (/*6x/).

The function pivotFxn () rotates its transform by 60° about the y axis. It records the initial
transform value during the first cycle of the motion; it senses whether the current cycleisthe first
cycle by calling getActiveCount () (/*7*/), which returns O only during the first cycle of the
motion. (We could aso have used a static variable in this case, since pivotFxn () isused for only
one motion.) The amount of rotation to apply is determined from the motion scale, which isfound
by using motionScale () and the current motion ID (/*8x/).

5.9 The Joint Bias Functions

A recent addition to the RCCL tool kit is joint biasing, which is an extension of the concept of
variable transformsto joint coordinates.

Each manipulator hasabuiltin set of joint biasvalues, described by the jbias field of theMANIP
structure. If the user callsthe routine

jbiasSelect (mnp, on)
MANIP *mnp;
int on;

with the argument on Set to true, then, for each subsequent motion request, the trgjectory generator
will add the contents of jbias tothejoint values of the motion target. Joint biasing worksonly for
joint interpolated motions. It may be deselected by calling jbiasSelect () with on set to 0.

Like avariable transform, the joint biases may be declared constant, variable, or bound to an
evaluation function, through the following routines:

setJbiasConst (mnp)
MANIP *mnp;

RCCL/RCI Release 4.2, December 12,1995

108 5. MOVING TO VARIABLE TARGETS

setJbiasVarb (mnp)
MANIP *mnp;

jbiasMotionEval (fxn, arg, mnp)
int (xfxn)();
int arg;
MANIP *mnp;

setJbiasConst () setsthejoint biasesto be constant, which meansthe trgjectory generator uses a
private copy of them, created at the time the motion request wasissued. Thisisthe default setting.
setJbiasVarb () ingtructsthe trgectory generator not to use aloca copy of the joint biases, but
rather to constantly track the values in mnp->jbias. jbiasMotionEval () bindsmnp->jbias to
the function £xn for the duration of the next motion request. The evaluation function is called by
the trgjectory generator using the call format

fxn (jbias, arg, mnp)
JNTS *jbias;

int arg;

MANIP *mnp;

{

b

jbiasisthejoint biasvalues, arg istheapplication argument providedthrough jbiasMotionEval (),
and mnp isthe manipulator containing the joint biases.

Joint biasing is particularly useful in applicationsinvolving control of the robot using joysticks
or hand controllers. In these situations, it is often desirable to map the controller inputsinto joint
coordinates rather than into some Cartesian coordinates. Although one can sometimes accomplish
this using functional transforms, the necessary kinematic computations are quite time consuming,
and are not necessarily well defined.

5.10 Pausing the System

A couple of routines are provided to suspend all motions currently being executed:

rcclPause (accelTime, pauseTime)
float accelTime, pauseTime;

rcclResume()

rcclPause () bringsall the program’s manipulatorsto rest, for aduration of pauseTime millisec-
onds,; if pauseTime iS equal to F_UNDEF, then the pause state will continue indefinitely until rc-
clResume () iscaled. The transition time used to bring the manipulators to rest can be specified
in milliseconds by accelTime; otherwise, if thisargument is given asF_DEFAULT, the system will

RCCL/RCI Release 4.2, December 12,1995

5.10. PAUSING THE SYSTEM 109

compute the transition times automatically. As with the function setTime (), the specified transi-
tiontimeisactually one half thetotal accelerationtime; i.e., itisequal to ~ multiplied by the control
cycle time (seefigure 14).

When the system is paused, all motion monitorsand transform motion functions are suspended
(i.e., those which are set up with runMotionFxn () and transMotionEval (). Permanent monitor
and transform functions continue to execute (monitor functionswill be discussed in section 6.3.1).

WARNING: Oneshould be careful when pausing the system with motionsunder-
way that depend on real-time sensor inputs. If large changesin the sensor inputs
accumulatewhilethe system ispaused, then thedependent motion(s) might glitch
when they areresumed.

To help the programmer handle the problem stated above, there are two predicate functions
available:

rcclIsPaused()

rcclWasPaused()

rcclIsPaused() returnstrueif the system is currently in a paused state. Monitor functions can
use this and act accordingly. Similarly, rcclWasPaused() returnstrue if the system was paused
during thelast control cycle; thishelps motion monitorsor transform motion functionslook out for
discontinuities.

Another problem with * pause glitches” can occur with functionsthat depend explicitly ontime.
This can be overcome by using rcc1SysTime (), which returnsatime value which is frozen when
the system is paused.

RCCL/RCI Release 4.2, December 12,1995

110 6. INTERACTING WITH THE ENVIRONMENT

6. Interacting with the Environment

6.1 The Low Level RCI Robot Interface

The present version of RCCL isimplemented on top of RCI (Real-time Control Interface), which
isasoftware system that allows real time control tasks to be runin a UNIX environment. RCI aso
provides a smple joint-level robot and sensor 1/0 interface, which RCCL uses internally. Since
parts of thisinterface may be useful to the RCCL programmer, it is described briefly here. A com-
prehensive description of everything in this section may be found in the RCl User’s Guide and the
RCI Reference Manual.

One reason a programmer may wish access to the RCI interfaceisto get at the sensor 1/0 in-
terface. At the present time, RCCL does not specifically provide very much in the way of sensor
1/O. It might even be argued that sensor 1/0 does not belong in the RCCL package per-se. The
disadvantage of having not done this, however, is that the sensor 1/0O features that do exist (using
RCI directly) are somewhat ad-hoc. Certain types of sensor inputswhich are clearly robot-specific
(such as force/torque measurements from joint or wrist sensors) may be formally incorporated into
RCCL at alater time.

6.1.1 The RCI_RBT Structure

The RCI robot interface is centered around the RCI_RBT structure. Every robot being controlled
by an RCI control task! is referenced through one of these. A pointer to the RCI_RBT structureis
provided by the rvt field of the MANIP structure.

The RCI_RBT structure contains severa fields, the most important of which are:

JLS *7jls;
KYN *kyn;
void *var;
HOW *how

For convenience, pointersto each of these are also provided directly by fields of the same name
in the MANIP structure.

The j1s field (Joint Level Stuff) points to a data type which defines an extensive set of fixed
jointlevel parametersfor therobot. Itisaveritablegrab-bag of all sortsof things such asthe number
of joints, the type of each joint, the gear ratios, joint value limits, maximum velocities, calibration
information and vectors, desired nominal velocities, etc. Itis, in effect, a database of joint level
robot parameters.

Thekyn field pointsto therobot’ SKYN structure, which contains variouskinematic and dynamic
level parametersfor a particular robot.

! Recall that the trajectory generator isimplemented using RCI control tasks.

RCCL/RCI Release 4.2, December 12,1995

6.1. THE LOW LEVEL RCI ROBOT INTERFACE 111

The XYN structure is defined as follows:

typedef struct _KYN {
GEN_KYN *gen;
void *ext;

} KYN;

The gen field pointsto asubstructure of type GEN_KYN, and contains parameters generic to most
seria link robots. Thisincludes such things asthe “ A’ matrix parameters, link inertias and masses
(currently being added), and joint friction coefficients. It also contains pointers to routines that do
robot specific kinematic and dynamic computations.

The ext field pointsto an data area which defines extra parameters specific to the robot’s class.
This can include things such as precomputed terms for enhancing the efficiency of the kinematic
computation functions. The type associated with this data area varies from one robot class to an-
other, and takesaname of theform<CLASS> _KYN. Theonefor the PUMA robots, defined in puma_kynvar.h,
iscalled PUMA_KYN. Notice that the ext field is declared to be voidx*, so that it may be handled in-
dependantly of the robot class.

The var field points to the robot’s VAR structure, which is a hook to help do real-time compu-
tations. It is a“scratch pad” in which terms which are generated during a particular computation
may be remembered for use in another computation. Like the ext component of the KYN structure,
the actual definition depends on the robot class, and so it is generally referenced using a generic
pointer. Typical thingsthat are placed in the VAR structure include the sines and cosines of the joint
angles and coefficients of the Jacobian. The VAR structure for PUMA robotsis defined by the type
PUMA_VAR. Itisunlikely that this structurewill be of much initial interest to an RCCL programmer.

The HOW structureis a blackboard containing robot state and sensor I/O information. It defines
alarge number of fields, not all of which are necessarily implemented on a particular system. The
information in the HOW structure is updated once every control cycle by the RCI interface. More
information on HOW is given in section 6.1.3.

Moreinformationonthe JLS, KYN, and VAR structurescan befound in the“RCl Reference Man-
ua” and the “RCl User's Guide”.

6.1.2 Other ways to get JLS, KYN, and VAR

Itisnot necessary to get the JLS,KYN, or VAR structuresfor particular robot fromitsMANIP structure.
Indeed, thismay not be possibleif therobot in questionisnot under explicit RCCL control. Pointers
to these structures are necessary in order to use the kinematic and dynamic functions described in
section 6.2.1.

Pointers to the JLS and KYN structures can be obtained by calling the routines get J1s() and
getKyn () with the name of the robot in question:

#include <rci.h>

JLS *7jls;
KYN *kyn;

RCCL/RCI Release 4.2, December 12,1995

112 6. INTERACTING WITH THE ENVIRONMENT

int kynExtSize;

jls
kyn

getJls ("nameOfRobot") ;
getKyn ("nameOfRobot'", &kynExtSize);

The second argument to getKyn isan optional integer pointer for returning the size of the structure
associated with the ext field. Both of these routines, and the pointersthey return, can only be used
from the RCCL planning level.

To access JLS and KYN structures from the control level aswell as the planning levels, the rou-
tines

rciGetJls (name)
rciGetKyn (name, sizep)

should be used instead. For any particular robot, each of these routinesmust be called onceinitially
from the planning level, since thefirst call accesses fileinformation. On Sund and Micro-VAX sys-
tems, thefirst call should aso be made when the control level isnot running, because of difficulties
with the memory locking code.

VAR structures must be allocated by the application program. The necessary size can be be de-
termined using theroutine getVarSize():

void *var;

var = malloc (getVarSize(''nameOfRobot"));
If called from the RCCL control level, rciMalloc () should be used in place of malloc(). If the
structureisto be shared by both the planning and control levels, then allocMen () should be used.

Once allocated, it is often necessary to instantiate the VAR structure with valuesfor a particular
robot position; see section 6.2.1.

More information on these routines can be found in the “ RCI Reference Manual” and the “ RCI
User’'s Guide”.

6.1.3 The HOW Blackboard

Few of theHOwW structurefieldsare likely to be of immediateinterest to an RCCL programmer; those
that are are described here. Some which relate directly to the robot are

int enc[MAXJINTS];
float encVel[MAXJNTS];
float jtorque[MAXJNTS];

char torqueOK;

enc and encVel give the robot’s current position and velocity, as read back from the robot con-
troller, in terms of encoder counts. Anglelevel informationisalso available, but thiscan generaly
be obtained from the fields of the MANIP structure. jtorque gives the current force/torque values

RCCL/RCI Release 4.2, December 12,1995

6.1. THE LOW LEVEL RCI ROBOT INTERFACE 113

on each joint. The system must be explicitly asked to update the jtorque field (see the next sec-
tion), but some systems (or robots!) do not support this capability. If jtorque is being updated,
and the informationin it isvalid for the current cycle, the torqueOK field is set true.

Some fields related to sensor 1/O include:

long options;
char numAdc;
char numPioln;
char numPioOut;

long pendantInput [HOW_PENDANT] ;
float forceInputl[6];

int jstickInput[6];

int adcInput [HOW_MAXADC] ;

ushort pioInput[HOW_MAXPIO];

char pendantOK;
char forcelK;
char jstickOK;
long adc;

optionsisabit mask describing which of the various sensor 1/0 features are implemented. Codes
of interest here include TORQUE_AVAIL (joint torque information is available), PENDANT_AVAIL
(teach pendant information is available), FORCE_AVAIL (wrist force sensor information is avail-
able), JSTICK_AVAIL (input from a multi-DOF joystick is available). numAdc is the number of
anal og-to-digital converter channels available, numPioInisthe number of parallel input ports, and
numPio0Out isthe number of parallel output ports. Input from the teach pendant, force sensor, joy-
stick, and ADC channels can be turned on and off using special commands (see the next section).
When valid data is read back from each of these, it is placed in the appropriate field pendantIn-
put,forcelnput, jstickInput,or adcInput,andthecorrespondingfield pendant0K, forceOk,
jstickOK, or adc isset valid. Parallel port input information is always available through the field
piolnput.

HOW structureinformation may be read back from any part of an RCCL program, although there
is currently no way to do this atomically (section 5.5.2), unless the read is done from the control
level on the same CPU that is running the tragjectory generator for the manipulator.

The reason the HOW structure was implemented using shared memory was to make access to it
very fast. Historicaly, this was very important because the original RCCL systems were imple-
mented on VAXen, where the overhead associated with a subroutine call can be particularly grue-
some. The inability to read information from it atomically could be resolved by double buffering,
since the structureis updated at aregular interval. Both issues could, and probably should, befixed
by wrapping access to the HOW structurefieldsin macros. For more detailed information on the HOW
structure, the reader should consult either the manual page or the RCI User’s Guide.

RCCL/RCI Release 4.2, December 12,1995

114 6. INTERACTING WITH THE ENVIRONMENT

6.1.4 Robot and I/O Commands

The*other half” of the RCI robot interfaceis alarge set of command macrosthat control the robot
and attached sensor devices. Like the HOW structure, these macros can be called from anywhere
within the RCCL program. What each macro actually doesis store the command information away
in a private buffer that is flushed by the RCI interface once every control cycle. Each macro is
called with apointer totheRCI_RBT structure, along with whatever other argumentsare appropriate.
Since RCCL uses the command interface itself, care should be taken to avoid conflicts. Some of
the commands likely to be of interest to an RCCL programmer and unlikely to conflict with the
trajectory generator are:

SET_TORQUE_READ (rbt, on)
SET_FORCE_READ (rbt, on)
SET_JSTICK_READ (rbt, on)
SET_ADC_CHAN (rbt, mask)
PUT_PIO (rbt, num, value)

SET_TORQUE_READ () enables reading of the joint torque values into the jtorque field of the
HOW structure. Likewise, SET_FORCE_READ () and SET_JSTICK_READ enablereading of thewrist/force
torque sensor and the multi-DOF joystick intotheforceInput and jstickInput fields of theHOW
structure. SET_ADC_CHAN () sets a mask describing which ADC channels should be activated for
reading into theadcInput field of the HOW structure. Finally, PUT_PI0 placesthe bit pattern value
into parallel output port num. The value which is set may be read back from the pioQutput field
of the HOW structure.

6.2 Kinematic Computation Functions

6.2.1 Routine Descriptions

RCI provides routines for doing various types of kinematic and dynamic computations, such as
forward and inverse kinematics, forward and inverse Jacobian mappings, etc. Each routine takes
as one of itsarguments a pointer to the robot’SKYN structure. Some routines require pointersto the
VAR and/or JLS structures as well. The following functions are currently defined:

fwdKinematics (t6,c,j6,kyn,var)
invKinematics (j6,t6,c,refj,kyn,jls,var)
solveConf (c,j6,kyn)

fwdJacob (dc,dj,j6,kyn)
invJacob (dj,dc,j6,kyn,epsilon)
fwdJacobT (t,f,j6,kyn)
invJacobT (f,t,j6,kyn,epsilon)

gravload (t,j6,kyn)

RCCL/RCI Release 4.2, December 12,1995

6.2. KINEMATIC COMPUTATION FUNCTIONS 115

strToConfig (c,s,kyn)
configToStr (s,c,kyn)

fwdKinematics () computes t6 and a configuration bit-code ¢ from the joint values j6. It uses
information provided by the KYN structure kyn and updates the sine/cosine information in the VAR
structure var if that argument isnot NULL. invKinematics () isthe most complicated routine: it
computes j6 given t6, a configuration bit-code c, and a set of reference joint values (ref j) that it
uses to help resolve singularities and joint angle redundancies. It uses information in the kyn and
jls structures and, if var is not NULL, updates the sine and cosine terms in that. solveConf ()
computes only the robot configuration ¢ from the joint values j6.

The Jacobian routines each apply one of the four principal Jacobian calculations to an input
vector. Each usesinformationinthekyn structure aswell asthe current robot joint values j6. Ecah
routine computes, respectively,

dec = J dj
dj = J'dc
t = J°f
f=J7"¢

The variable dc isof type DIFF and £ is of type FORCE. dj and t are simply vectors of floats.

Theroutinegravload () computesthe gravity loading torques t given akyn structure and the
robot’sjoint position j6. No other dynamics routines are implemented at thistime.

strToConfig() takesastring representation s of therobot’s configuration and returnsthe cor-
responding bit code c. configToStr () performsthe inverse operation.

Arguments for the above routines which correspond to sets of joint values are defined to be of
typefloat*. Thisisbecausethe“level” at which these routinesare defined isbelow that of RCCL
and the definition of the JNTS data type. When using a JNTS data type with these routines, the v
field should be used for the argument.

More detailed information about these routines, and what they do in the event of errors, can be
found by consulting their respective entriesin the “RCI Reference Manual”.

Some of these routines make use of terms, such as the sines and cosines of the joint angles, or
entriesin the Jacobian matrix, which are constant for a particular robot position. It may be compu-
tationally more efficient to compute these termsonly onceif several routinesare called for aspecific
robot position. Because of this, some routines have equivalent routines, whose namesend in Var,
which take the robot VAR structure as an argument in place of the joint values. These routines cur-
rently are:

fwdJacobVar (dc,dj,var,kyn)
invJacobVar (dj,dc,var,kyn,epsilon)
fwdJacobTVar (t,f,var,kyn)
invJacobTVar (f,t,var,kyn,epsilon)
gravloadVar (t,var,kyn)

RCCL/RCI Release 4.2, December 12,1995

116 6. INTERACTING WITH THE ENVIRONMENT

When these routines are called, the VAR structure must be valid for the current robot position.
TheVAR structure associated with therobot’ smnp structureisautomatically maintained by the RCCL
trajectory generator, and so will be valid whenever the tragjectory generator is running. Programs
should not modify the contents of this particular VAR structure.

Otherwise, if the VAR structureis allocated by the user, then it is necessary to explicitly update
it for agiven joint position. There are two routinesfor doing this:

updateVar (var,j6,kyn)
updateVarXsincos (var,j6,kyn)

updateVar () computesall theinformationin the VAR structure based on agiven set of joint values
j6 and information in the KYN structure. updateVarXsincos () does the same thing, but does not
compute the sine and cosine terms that may optionally be set by the routines fwdKinematics ()
and invKinematics(). Itisonly necessary to update the VAR structure when the robot position
changes (which typically happens once per control cycle). The following call sequence would be
valid:

updateVar (var,j6,kyn);
fwdJacobVar (dc,dj,var,kyn);
gravloadVar (load,var,kyn);

All of these functions are implemented internally by routines specific to each particular robot
class. Pointersto the implementation routines are contained in the KYN structureitself. Theinterna
implementation routinefor aparticul ar robot classtakesthe same name asthe external routine, only
with thefirst |etter capitalized and the robot class name added in front. For example, the routineto
implement fwdKinematics () for the PUMA iscalled pumaFwdKinematics ().

These routines are meant to be somewhat “robot independent”. Infact, thereis still some robot
dependency with regard to the inverse routines, since inverses are only well defined for robotswith
six degrees of freedom or less. For robots with more degrees of freedom, the interface functions
would probably need to be generalized to allow the specification of strategies for resolving the re-
dundancy.

6.2.2 Example Program

The following stand alone program illustrates how the above routines can be used directly to com-
pute inverse kinematics for robots supported by RCI.

#include <rccl.h>
#include <rci.h>

char **argvec;

main(argc, argv)
int argc;
char *argv[];

{

RCCL/RCI Release 4.2, December 12,1995

6.2. KINEMATIC COMPUTATION FUNCTIONS 117

float ang[MAXJNTS];
float roll, pitch, yaw;
unsigned long confcode;
char confstr[9];

int status;

TRSF t6;

JLS *]jls;

KYN *kyn;

argvec = argv;

argc--—; argv+t+;
if (arge !'= 1)
{ usage (-1, "/s <robot-name>\n", argvec);
t
if ((jls = getJls (*argv)) == NULL)
{ printErrors ();
exit (-1);
t
if ((kyn = getKyn (*argv, (int*)0)) == NULL)
{ printErrors ();
exit (-1);
t
while (1)
{ if (scanf ("UEhLUhLhLUEUEYs", &t6.p.x, &t6.p.y, &t6.p.Z,
&roll, &pitch, &yaw, confstr) != 7)
{ exit (0);
t
rpyToTrsf (&t6, roll, pitch, yaw);
strToConfig (&confcode, confstr, kyn);
status = invKinematics (ang, &t6, confcode, (float*)0,
kyn, jls, (voidx*)0);
if (status & (KYN_JOINT_LIMIT | KYN_CANT_REACH))
{ printf ("Out of range\n");
t
else
{ radianToDegree (ang, ang, jls);
printVf ("joints: %9.3f\n", ang, jls->numl);
t
t

The program gets the name of the robot from the argument list. It then calls getJ1s() and
getKyn () to obtain pointers for the robot JLS and KYN structures. The rest of the program is a
loop which reads in a Cartesian position and a desired robot configuration, and appliestheinverse
kinematic routine. The Cartesian position isdescribed by =, v, and = trandations and by roll, pitch,

RCCL/RCI Release 4.2, December 12,1995

118 6. INTERACTING WITH THE ENVIRONMENT

and yaw rotations, which are converted to the TRSF structure t6. The desired robot configurationis
read asastring and is converted to abit codeusing strToConfig(). Both t6 and the configuration
code are handed to invKinematics (), which triesto solve for the joint values and return them in
ang. The fourth argument to invKinematics() isoptional and is omitted here. If specified, it
gives aset of joint valuesthat are used to resolve joint angle redundancies (caused by the fact that
ajoint can have more than 360° of range). If omitted, the joint mid-range values are used instead
(these are obtained from the JLS structure).

invKinematics () returnsastatusvaluewhichisused to seeif theroutinesucceeded. Although
this example does not do so, a status value that indicates failure can be analysed to yield detailed
information about what went wrong. If the inverse kinematics routine succeeds, then the revolute
joint values are converted to degreesusing radianToDegree () and theresult is printed out.

6.3 Control Level Routines and the Trajectory Generator

6.3.1 Monitor Functions

In addition to transform functions, an RCCL program can establish monitor functions, which are
also executed by the trgjectory generator, and can do things ranging from general sensor computa-
tions to the monitoring of cancellation conditions for motions.

There are two types of monitor functions, smilar in concept to the two types of transform func-
tions: permanent monitor functions, which, once created, are executed until they are explicitly
deleted, and motion monitor functions, which are executed only for the duration of a particular mo-
tion.

Permanent monitor functions are created and del eted with the routines

runMonitorFxn (mnp, fxn, arg)
MANIP *mnp;
int (xfxn)();
int arg;

deleteMonitorFxn (mnp, id)
MANIP *mnp;
int id;

runMonitorFxn () instructsthe trgectory generator to call £xn once every control cycle, with
the application argument arg, in the following format:

fxn (arg, mnp)
int arg;

MANIP *mnp;

{

b

RCCL/RCI Release 4.2, December 12,1995

6.3. CONTROL LEVEL ROUTINES AND THE TRAJECTORY GENERATOR 119

Function execution begins immediately (provided the trajectory generator is running). runMoni-
torFxn () returnsan ID valuewhich can be used to cancel the monitor functionwithdeleteMoni-
torFxn (). BothrunMonitorFxn() anddeleteMonitorFxn () requireapointer to amanipulator;
this specifies which trajectory task should be used to run the monitor (recall that for multiple CPU
systems, one trgjectory task is created per CPU, and each MANIP is controlled by a particular task).
A program may run up to MAX_MONITOR_FXNS monitorsat once.

A motion monitor function is run for the duration of a particular motion. It may be established
with the call

runMotionFxn (mnp, fxn, arg)
MANIP *mnp;
int (xfxn)();
int arg;

The trgjectory generator will then execute fxn once every control cycle for the time span of the
next requested motion on mnp. The monitor is called using the same arguments as for permanent
monitors.

fxn (arg, mnp)
int arg;

MANIP *mnp;

{

b

Execution starts at the beginning of the transition into the motion, and ends at the beginning of the
transition out of the motion. Up to MAX_MONITOR_FXNS motion monitors may be specified for any
given motion.

Monitor functions may communicate with other parts of the program using the same shared
memory primitives that are available to the rest of the system (section (5.5.1)).

6.3.2 Trajectory Generator Computation Sequence

When an application is created where several different transform and monitor functions are exe-
cuting together, it may be important to know the order in which the various executions take place.
This section describes the computation sequence used by the trajectory generator for each control
cycle.

We will describe the default behavior first (see figure 25). Each trgjectory task begins by ex-
changing data with all the robots which it is controlling: for each robot, state and sensor informa-
tion isread in and the trgjectory setpoints and commands which were computed and accumul ated
during the previous control cyclearewrittenout. The rendezvousoperationwhich followstherobot
communication will be described momentarily. Next, all the control computations are performed:
for each of thetask’s manipulators’ al the permanent monitors are called, followed by all the mo-

2We say manipulator instead of robot because it is possibleto create virtual manipul atorswhich are not attached to
any real robot. Thisis described in section 8.2.

RCCL/RCI Release 4.2, December 12,1995

120

6. INTERACTING WITH THE ENVIRONMENT

Communicate with Robots:

for each robot

}

{ read in data from robot;
write commands to robot;

rendezvous

Do Control Computations:

for each manipulator
{ call all permanent monitor functions;
call all motion monitor functions;

increase motion count;
start new motion segment, if necessary;

evaluate functional transforms which
are motion dependent;

}
evaluate permanent functional transforms;
|
rendezvous

Solve for Trajectories:

}

for each manipulator
{ compute trajectories;

\/

Figure 25: Default sequence of operations carried out by each trajectory task,

once per control cycle.

RCCL/RCI Release 4.2, December 12,1995

6.3. CONTROL LEVEL ROUTINES AND THE TRAJECTORY GENERATOR 121

Trajectory Task Trajectory Task
onCPU 1 on CPU 2
communicate communicate

with robots with robots
rendezvous () rendezvous
do control do control
computations computations
rendezvous () rendezvous
solve for solve for
trajectories trajectories

Figure 26: Rendezvous points between tragjectory tasks executing on separate
CPUs.

tion monitors. The current motion count is then increased, and if it is time to start a new motion
reguest, that is done and the motion count is set to zero. All the functional transforms associated
with the current (and perhaps new) motion segment (the transMotionEval () bindings) are then
evaluated. The permanent functional transforms are evaluated afterwards. Finally, the trajectory
generator combines all this information and solves for the output setpoints of each manipulator.

When several trgjectory tasks are running on different CPUs, the computations described here
will overlap. Whilethis can certainly be desirable, it may cause some ambiguities about what was
computed when. To offset this problem, al the trajectory tasks rendezvous with each other at two
prescribed points during each control cycle (figure 26). The first rendezvous takes place after each
robot’s state and sensor data has been read in, and ensures that each task will see the same state and
sensor information for each robot. The second rendezvoustakes place after all the application com-
putations have been performed. At this point, all the information associated with moving motion
targets has been computed, and the rendezvous ensures that the same values will be seen by each
task.

In caseswhere several monitor or transform functionsare defined simultaneoudly, they areeval-
uated in the same order that they were set up in. In other words, for the following example,

extern foo();
extern bar();

RCCL/RCI Release 4.2, December 12,1995

122 6. INTERACTING WITH THE ENVIRONMENT

compute setpoints
for next control cycle
==
. Trajectory task timin
write J y g
read data commands
from to robot
robot
gather execute
state & setpoints &
sgnsor commands
info
>
t control cycle Servo controller timing
begins here

Figure27: Default sequence used by the trgjectory task for communicating with
the robots.

runMonitorFxn (mnp, foo, 0);
runMonitorFxn (mnp, bar, 0);

monitor function foo will be executed before function bar. For the transform motion functions set
upwith transMotionEval (), theorder of evaluationisbased on the transform’scounterclockwise
location within the position equation, starting with the transform closest to T6.

The reader will notice that by default, the trgjectory task reads data in from the robot, writes
out setpoints and commands from the previous cycle, and then computes the setpoints for the next
control cycle. Thisisdoneto allow parallel operation withthelow level robot controller. Typically,
the robot controller collects the robot state and sensor information, sends this to the trgjectory gen-
erator, and receives back a set of setpoints and commands which it then executes (figure 27). The
computation of the next setpoint values by the trgjectory task can then overlap with the execution
of the current setpoint values by the robot controller. This can save time, particularly if the robot
controllerissow (whichwastrue historically). However, it aso introducesaone-cycledelay inthe
trajectory computation process, which can be detrimental in feedback situationswhere the setpoints
depend on the state and sensor information.

It is possible to have the robot setpoints sent to the controller at the end of each control cycle,
rather than at the beginning of the next control cycle. To do this, the routine

rcclTightControlLoop (on)
int on;

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 123

compute setpoints
for next control cycle
>
Trajectory task timing
gather execute
state & setpoints &
sensor commands
info
>
f control cycle Servo controller timing
begins here

Figure28: Robot communication sequence with no control lag.

should be called, with on set true, at some point when the trajectory generator is switched off. Set-
points will then be sent to the robots during the same cycle that they are solved for, as shown in
figure 28.

6.4 Sensor Integration

An important feature of RCCL isits ability to easily combine control of the robot with a variety
of sensor inputs. The robot behavior can be influenced by modifying a motion’starget positions or
canceling the motion altogether. If the target position is modified in advance of the motion, thisis
called “ presetting the world model” ; such sensor integration occurs at the task level. Initializing a
transformisaspecia case of this. If the target position is modified while the motionisin progress,
thisiscalled “tracking”. If sensor monitorsare set up to cancel amotion on certain conditions, this
iscalled a“guarded motion”. Executing a guarded motion usually implies some uncertainty about
the world model; correspondingly, if the guarded motion makes “contact”, then the environment
isknown with greater certainty than before, and it may be desirable to update the world model ac-
cordingly.

RCCL/RCI Release 4.2, December 12,1995

124 6. INTERACTING WITH THE ENVIRONMENT

6.4.1 Task Level Integration

This section will present a demonstration program that simulates the integration of RCCL with a
computer vision system. Assume that a camera has been attached to link 4 of aPUMA robot. The
computer vision system issimulated by afunction snapshot (), which causes apicture to be taken
of the scene and stored, and by afunction getobj (), which extractsthe position and orientation of
an object in the camera coordinate frame. The task is programmed in such away that the “ process-
ing” done by getobj () overlapswith the motion of the arm. The strategy used consists of moving
the manipulator toward a position where the object is expected to be in the camera'sfield of view.
The program is synchronized so that the picture is taken at a given point in the trgjectory. At the
instant the pictureis taken, the manipulator’s T6 valueis recorded, and from this the camera coor-
dinate frame can be computed. Knowledge of the cameracoordinate frame, plusthe object position
returned in cameracoordinates, providesall the information necessary to approach the object, grasp
it, and take it somewhere else.

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION

125

#include <rccl.h>
#include <fastmath.h>
#include '"manex.560.h"

TRSF *computeU5() ;
int number0f0bjects;

main()
{
TRSF_PTR z, e, cam, o, coord, expect, drop;
POS_PTR look, get, put;
MANIP *mnp;
TRSF t6r, ub;
JNTS rcclpark, j6r;
char *robotlName;
int putIld, lookId, getId;

number0f0bjects = 5;
rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot();

if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");

exit(-1);
¥
z = allocTransXyz (NULL, UNDEF, 0.0, 0.0, ZBASE);
e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);

cam = allocTransRot (NULL, UNDEF, 50.0, 0.0, 0.0, xunit, 90.0);
expect = allocTransRot (NULL, UNDEF, 400.0, 400.0, 700.0,
xunit, 180.0);
drop = allocTransRot (NULL, UNDEF, -400.0, 400.0, 700.0,
xunit, 180.0);
o = allocTrans (NULL, UNDEF);
coord = allocTrans (NULL, UNDEF);

look = makePosition (NULL, z, T6, e, EQ, expect, TL, e);
get = makePosition (NULL, T6, e, EQ, coord, cam, o, TL, e);
put = makePosition (NULL, z, T6, e, EQ, drop, TL, e);

mnp = rcclCreate (robotName, 0);
rcclStart();

setSpeed (mnp, 2.0); /*1%/

OPEN_HAND (mnp) ;

for (; ;) /*2%/
{ lookId = move (mnp, look);
waitFor (motionScale(lookId) > 0.7) /*3%/

RCCL/RCI Release 4.2, December 12,1995

126 6. INTERACTING WITH THE ENVIRONMENT

snapshot(); /*4%/
readTrans (mnp->t6, &t6r); /*5%/
readMem (mnp->j6, &j6r);

computeU5 (&u5, jér.v[4], jér.v[5]); /*6%/

multRiTrsf (coord, &t6r, &ub5);

if ('getobj(o))
{ break;
¥

distance (mnp, "dz", -50.0); /*T*x/
move (mnp, get);

getId = move (mnp, get);
stop (mnp, 500.0);

distance (mnp, "dz", -50.0);
move (mnp, get);

waitForStop (getId); /*8%/
CLOSE_HAND (mnp);

move (mnp, put);

putId = stop (mnp, 500.0);
stop (mnp, 500.0);
waitForStop (putld);

OPEN_HAND (mnp); /*9%/
¥

movej (mnp, &rcclpark);
stop (mnp, 1000.0);
waitForCompleted (mnp);

rcclRelease (1);

}

snapshot ()
{

printf ("\nTAKING PICTURE\n");
}

getobj(t)

TRSF_PTR t;

{
extern double frandom();
double rand;

/* fake a camera coordinate reading */
rand = frandom (-20.0, 20.0);
xyzToTrsf (t, rand, rand, 150.0+rand);

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 127

rpyToTrsf (t, 90.0, -25.0+rand, 0.0);
printTrsf ("Object is at %m\n", t);

return (numberOfObjects—-);

}

TRSF *computeU5 (ub, angb, ang6)
TRSF *ub;
float angb, ang6;
{
/* Compute U5 for a PUMA 560 (old coordinates) */

float sb, cb, s6, c6;

SINCOS (angh, &s5, &cb);
SINCOS (ang6, &s6, &c6);

ub->n.x = c¢b * c6;
ub->n.y = sb * c6;
ub->n.z = s6;
ub->0.x = -cb * s6;
ub->o0.y = -sb * s6;
ub->0.z = ¢6;
ub->a.x = sb;
ub->a.y = -cb;
ub->a.z = 0.0;
ub->p.x = 0.0;
ub->p.y = 0.0;
ub->p.z = 0.0;

return (ub);

NOTE — this exampl e has been coded for the PUMA 560 robot, and lives at
pickAndDrop.560.cin $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in pickAndDrop.260.c

The program makes use of three position equations. the position 1ook, where the object is ex-
pected to be seen by the camera, the position get, at which the object should be grasped, and the
position put, where the object should be placed.

The position equation 1ook expresses the ordinary transform graph shown in figure 29. Z is
a reference frame at the base of the manipulator pedestal, E is the usual end effector frame, and
EXPECT isthe location, with respect to the pedestal base, where we expect to find the object in
the camera'sfield of view.

The position equation put also expresses an ordinary transform graph (figure 30). DROP isthe
location, relative to the manipulator base, where the object is to be dropped.

The position equation get expresses a dightly more complicated transform graph (figure 31).
It uses the additiona transforms COORD, which locates the base frame to which the camerais
mounted (in this case link 4 of the arm), CAM, which describes the cameraview frame relative to

RCCL/RCI Release 4.2, December 12,1995

128 6. INTERACTING WITH THE ENVIRONMENT

T6 E

]

L }

Z EXPECT

Figure29: Transform graph for position “look”.

T6 E

]

L B

Z DROP

Figure30: Transform graph for position “put”.

the camera base frame, and O, which describes the position of the object in relative to the camera
view frame.

Once all the component transforms of get are known, the manipulator may be moved to the
pickuplocation. CAM and E aregiven, and O isreturned by the*vision software” insidegetobj ().
How dowefind COORD? Notethat get isreally just asubgraph of the (nicely complicated) graph
shown in figure 32.

The cameraismounted on link 4 of therobot, and so COORD isequivalent to the manipulator’s
T4 transform, which is the product of the robot’sfirst 4 “ A’ matrices (see section 3.1). T4 may be
cumbersome to compute directly, but thisis not necessary: instead, we can compute the transform
U5 which mapsfromlink 4 to link 6 (and isthe product of the robot’slast two “A” matrices. From
the graph it is obvious that

COORD = T6 Us™!

U5 can be computed quite easily given joint angles 5 and 6; the program does this using the
routine computeU5 () . Noticethat the sinesand cosines of the two angles are computed using SIN-
cos (), whichis part of the RCI fastmath library.

Looking now at the program itself, we see that it increases the manipulator speed for dramatic
effect (/*1x*/), opens the hand, and then enters into a loop where it will “pick and drop” objects

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 129

T6 E

O
L i

COORD CAM

Y

Figure31: Transform graph for position*“get”.

until getobj () saysthat it can’t find any more.

Once the robot has been told to move to 1ook, the program waits on the corresponding motion
ID until the robot is 70% of theway there (/*3x/). At thispoint the cameraistold to take apicture
(/*4x*/), and the current T6 and joint angles values are read back from the manipulator structure
(/*5%/). readTrans () and readMenm () are used to guarantee that the dataisread atomically ®. Ub
is computed using the read back angle values and the recorded T6 value is post multiplied by its
inverse (/*6x*/) to get COORD. Finally, getobj () iscalled to either report the object position or
indicatethat it couldn’t find anything. Noticethat getobj () hasthe remainder of the travel timeto
the target 1ook in which to compute the value of O. Whileit is unlikely that a complicated vision
function could profit much from thisextratime, this doesillustrate how the asynchronous nature of
the motion requests can be put to use.

The rest of theloop (/*7*/) issues the commands for the robot to approach the object, grasp it,
and take it away and drop it. Notice how the opening and closing of the hand is coordinated with
the motion requests using motion IDs (/*8%/, /9% /).

The function getobj () constructs a simulation of O using a random number generator and a
few well chosen transform manipulator routines.

As a side note, the reader might notice that we have not assigned names to any of the position
equations or transformsin the program, and this will be true of the remaining examples as well.
Names for these are only necessary when they are used by calling either getPositionByName ()
or getTransByName (). Memory objects will aso be unnamed for the same reason. The use of
names in the previous examples was for illustrative purposes only.

6.4.2 Tracking

Thisnext exampleillustratestracking, whichiswhat happenswhen functionally defined transforms
are updated based on sensor readings. The program itself isvery simple: the xy trandation values
of aparticular transform are made to follow the readings from a dual-channel potentiometer.

3athoughit will not guarantee that T6 and the joint angles are consistent with respect to one another; however, this
isunlikely to be a problem because the robot is not moving very fast. If it did present a problem, we could grab only
the joint angle values, and compute T 6 using the forward kinematics routines.

RCCL/RCI Release 4.2, December 12,1995

130 6. INTERACTING WITH THE ENVIRONMENT

CAM 0
T4 us E
A
T6
L L
COORD CAM o)

Figure32: More complex description of position “get”.

When connecting sensor inputs directly to transform values, one typically uses either position
tracking, in which the transform coordinates are constructed directly from the input values, or ve-
locity tracking, in which the inputs define an incremental offset which is applied to the existing
transform value. Position tracking has the advantage that no errorsare accumulated, but the result-
ing motion can be very rough unless some sort of smoothing is applied. Velocity tracking is much
smoother but can result in drifting unless the input device has awell defined dead band. The demo
program here uses absolute position tracking.

planning level module

#include <rccl.h>
#include '"manex.560.h"

main ()

{
TRSF_PTR p, track;
POS_PTR pi;
MANIP *mnp;

TRACK_CTRL_BLK *tcb;

extern trackFxn();

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 131

rcclSetOptions (RCCL_ERROR_EXIT);
tcb = ALLOC_MEM (NULL, TRACK_CTRL_BLK, UNDEF); /*1x/

p = allocTransRot (NULL, UNDEF, P_X, P_Y, P_Z, xunit, 180.0);
track = allocTrans (NULL, UNDEF);

pl = makePosition (NULL, T6, EQ, p, track, TL, T6);

mnp = rcclCreate (getDefaultRobot(), 0);
rcclStart();

tcb->compute = YES;
tcb->gain = 1.0;
tcb->vlimit = 400.0;
tcb->mnpAddr = (void*)mnp;

transEval (track, trackFxn, (int)tcb); /*2%/
rcclBlock();
move (mnp, pl); /*3%/

stop (mnp, F_UNDEF);

while (1) /*4%/
{ printf ("%7.4f %7.4f\n", tcb->xval, tcb->yval);
delay (500.0);
¥

control level module

#include <rccl.h>
#include <fastmath.h>
#include '"manex.560.h"

float clip (delta, maxDelta) /*5%/
float delta;
float maxDelta;

{
return (delta >= 0.0 ? MIN(delta, maxDelta) : -MIN(-delta, maxDelta));
¥
trackFxn (t, arg, mnp)
TRSF *t;
int arg;
MANIP *mnp;
{

char *fxnName = "trackFxn()";

TRACK_CTRL_BLK *tcb;

RCCL/RCI Release 4.2, December 12,1995

132 6. INTERACTING WITH THE ENVIRONMENT

RCI_RBT *rbt;
float maxDelta;
float delta;
float x, y;

if ((tcb = (TRACK_CTRL_BLK#)getMemByAddr (arg)) == NULL)

/*6%/

{ rciAbort (0, "%s -— Can’t find paramter block\n", fxnName);

return;

}

rbt = (getManipByAddr (tcb->mnpAddr))->rbt;

if (tcb->tracking)

{ getInput (rbt, &x, &y);
tcb—>xval = x*tcb->gain;
tcb->yval = y*tcb->gain;

/*T%/

/*8%/

maxDelta = FABS(tcb->vlimit) * rcclGetInterval() / 1000.0;

t->p.x += clip (tcb->xval - t->p.x, maxDelta);
t->p.y += clip (tcb->yval - t->p.y, maxDelta);

if (!tcb->compute)
{ turnInput0ff (rbt);
tcb->tracking = 0;
}
}
else
{ if (tcb->compute)
{ turnInputOn (rbt);
tcb->tracking = 1;
}

static float faket;

turnInputOn(rbt)
RCI_RBT *rbt;
{
if (rbt->how->numidc > 0)
{ SET_ADC_CHAN (rbt, 0x3);

}
else
{ rciPrintf ("will fake the input\n");
faket = 0.0;
}
}
turnInput0ff (rbt)
RCI_RBT *rbt;
{

if (rbt->how->numidc > 0)
{ SET_ADC_CHAN (rbt, 0x0);
¥

RCCL/RCI Release 4.2, December 12,1995

/*9%/

/*10%/

/*11%/

/*12%/

/*13%/

/*14%/

6.4. SENSOR INTEGRATION 133

}
getInput(rbt, x, y)
RCI_RBT *rbt;
float *x, *y;
{
if (rbt->how->numidc > 0)
{ if (rbt->how->adc & 0x3)
{ /# input bias of 1024 is specific to McGill site */
*x = rbt->how->adcInput[0] + 1024;
*y = rbt->how->adcInput[1] + 1024; /*15%/
}
}
else
{ /# fake the input ... draw an ellipse */
faket += rcclGetInterval()/1000.0;
x = 100%COS(PI*faket);
*y = —BO*SIN(PI*faket);
}
}

NOTE — this exampl e has been coded for the PUMA 560 robot and lives at track.560.c and
trackCtrl.560.cin $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
containedin track.260.c and trackCtrl.260.c. If the program discovers that the system does
not have the correct sensor inputs, the tracking function just punts and simul ates them.

The program uses only avery simple position equation p 1, containing abase transform P, which
is set to correspond to the robot’s starting position, and a tracking transform TRACK. The struc-
ture TRACK _CTRL _BLK (/*1%/) isused to communicate between the planning level and thetracking
function. It contains the following control fields: compute, which “turnsthe function on”, gain,
a constant by which the sensor input values are multiplied, vlimit, atracking velocity threshold
(in millimeters per second), mnpAddr, the planning level address of the MANIP structure which is
used to reference the MANIP structure from the control level, and tracking, afield which is used
internally by the tracking function. The fields xval and yval are set by the tracking function to
the current = and y target values being tracked. The tracking function is set running with acall to
transEval() (/*2x*/). Thisisfollowed by acall to rcc1Block(), so that we know that the track-
ing function has executed at |east once. The robot isthen requested to moveto the tracking position
and stay there indefinitely while the planning task reads and prints out the » and y coordinates as
determined by the tracking function (/*4x/). Thereisno explicit quit command for this program;
the usual interrupt character will do quite nicely*.

Most of this program’s action takes place in the tracking function. Because absolute position
tracking is implemented, the function clip is used to limit the maximum displacement that can
occur during any particular cycle (/*5%/).

Thefirstthing trackFxn () doesisuse getMemByAddr () to get apointer to the control memory
structure. It then obtains a pointer to the MANIP structure using getManipByAddr (), and usesthis

*Noticethat thismeans we do not call rcclRelease() at theend of the program. Whilethisiscertainly “cleaner”
todo if possible, it isnot mandatory.

RCCL/RCI Release 4.2, December 12,1995

134 6. INTERACTING WITH THE ENVIRONMENT

get a pointer to the RCI_RBT structure (/*7*/) (section 6.1.1), which will be used to obtain and
control sensor inputs.

The state variable tcb->tracking indicates whether the tracking function is active or not. If
trackingisactive, thenget Input () iscaledto get theraw » and y valuesfromthesensor, which are
then scaled by tcb->gain and writteninto the xval and yval fields of the control block (/*8x/).
The maximum permitted per-cycle displacement is computed from the velocity threshold and the
RCCL sampleinterval, and isused to clip thefinal « and y valueswhich are set in the transform. 1f
the tcb->compute has been cleared, then input sensor values are turned off with acall the turn-
Input0£ff () (/*10%/). If thefunctionisnot tracking, then it waitsfor tcb->compute to be set by
the planning level, then turns sensor inputs on with turnInputOn().

The sensor 1/0 is encapsulated in separate routines. This was done mainly for show, but also
because the sensor input code is a bit of ahack and we didn’t want to clutter up trackFxn () with
it. turnInputOn() instructs the RCI robot interface to start reading anal og-to-digital converter
channels0 and 1 (/*12%/), or, if there are no ADC channels, announces that the sensor input will
be faked (/*13*/). turnInput0ff () closesthe channels (/*14x*/). Finaly, getInput () either
reads back the ADC values from the HOW structure (/*15%/) or fakes them with an ellipse pattern
(/*16%/).

Thevelocity limiting algorithm used in thisexampleiskept very crudefor ssimplicity. Of course,

more el aborate smoothing techniques, or even genera control laws, can be used asrequired by the
application.

The origina version of RCCL contained an example program in which alinear potentiometer
was attached to the robot tool tip and was used to do depth tracking along surfaces. To accomplish
this, avery smpletracking function fingerFxn () was defined which adjusted the > coordinate of
its transform using the following code:

fingerFxn (tr, arg, mnp)
TRSF *tr;
int arg;
MANIP *mnp;
{
HOW *how = mnp->how;

tr->p.z + 100.0 * how->adcInput[CHAN] * GAIN;
by

If the sensor inputs are very slow or the corresponding computations are very lengthy, one has
the choice of either spreading the tracking computation over several control cycles, or doing the
tracking fromtheplanning level. Planning level trackingistricky mainly because the planning level
doesnot havethereal-timepriority of the control level (and can even be suspended for short periods
of time by UNIX). However, the reader might find one of the following paradigmsinteresting:

1. Make the tracking transform variable and set it from the planning level at some reasonable
rate. Presumably the changes are not large.

TRSF change;

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 135

TRSF tmp;

setTransVarb (track);
readTrans (track, &tmp); /* initialize */

setTime (mnp, F_DEFAULT, F_UNDEF);
move (mnp, pt); /* semi-permanent motion */
while (!'quit)
{ getSensorInput (&change) ;
multTrsf (&tmp, &tmp, &change) ;
writeTrans (track, &tmp);
delay (REASONABLE_INTERVAL) ;

b

2. A morereasonable method than the one above would be to issue many short motion requests
fromthe planning level. Thisis preferable because then the trajectory generator will interpo-
late and provide smoothing between successive data points.

setTransConst (track);

setMotionQueueSize (mnp, 1);
while (!'quit)
{ getSensorInput (&change) ;
multTrsf (track, track, &change);
move (mnp, pt);

b

track isset constant since each move request will then make a private copy of it. Setting the
motion queue size to 1 prevents queue saturation and ensures that each call to move () will
block until the requested motion is being executed. One problem with this method isthat the
first few cycles of any motion incur a large amount of overhead (to compute the drive and
transitioning parameters). This effect will be greatly reduced if the path is naturally smooth
enough that the motion transition times can be set to zero. A small fixed delay withintheloop
would also help reduce the frequency of the motions.

6.4.3 Guarded Motions

The next example uses a monitor function to implement guarded motions. The basic guarded mo-
tion paradigmisvery smple: amonitor function waits until some particular conditionisraised, and

RCCL/RCI Release 4.2, December 12,1995

136 6. INTERACTING WITH THE ENVIRONMENT

then cancels the motion. The planning level can examine the stop code associated with the motion
to see whether or not the cancellation actually occurred®.

When doing guarded motions, it is often desirable to be able to determine the value of a par-
ticular transform (within the context of a specified position equation) at the instant of contact (or
whatever condition is being tested for). This computation has to be done by the trgjectory genera-
tor, because an unacceptablelength of time may el apse between when the guarded motion ends and
when the planning task learns of it and tries to record the appropriate data. Assume that we want
to know the value of atransform t0 in the context of some position equation p0. What we want to
be able to do is ask the trgjectory generator to call solveTrans () for t0, using position p0, at the
end of a particular motion. The function

updateTrans (mnp, tr, pO0, t0, tx)
MANIP *mnp;
TRSF_PTR tr, t0, tx;
POS_PTR po0;

will do just this. The evaluation isdone at the end of the next requested motion on the manipul ator
mnp. The last four argumentsto updateTrans () are equivalent to the four arguments of solve-
Trans (). Usually, the position p0 will contain a T6 transform, which we will want to be instanti-
ated with the current value of the manipulator’st6 field. The corresponding call looks like this:

updateTrans (mnp, tr, p0, t0, mnp->t6);

All of the transform argumentsto updateTrans () must be allocated usingtheallocTrans ()
routines.

The sample program below simulates a situation in which the manipulator supposedly has a
contact sensor with which it tries to find the locations of two points on a planar surface. When
each motion finishes, the current manipulator position at the contact point is remembered and used
afterwards (if both motions achieved contact) to trace out aline along the surface between the two
points.

planning level module

#include <rccl.h>
#include '"manex.560.h"

extern int touchFxn();

main()

{

TRSF_PTR target, e, contact[2];

>Thisinformation could al so be returned by the application using shared memory, but motion stop codes are explic-
itly incorporated into RCCL, so they may aswell be used. Stop codes exist mainly to make it possibleto (in the future)
implement a feature where different reflex motions are executed depending on the stop code returned by the previous
motion.

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION

TRSF start[2];
POS_PTR pO;
MANIP *mnp;

JNTS rcclpark;
char *robotlName;
int mid;

int bothTouched;
int 1i;

rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot();

/*1%/

if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");

exit(-1);
¥

target = allocTrans (NULL, UNDEF);

e = allocTrans (NULL, UNDEF);
contact[0] = allocTrans (NULL, UNDEF);
contact[1] = allocTrans (NULL, UNDEF);

pO0 = makePosition (NULL, T6, e, EQ, target, TL, e);

mnp = rcclCreate (robotName, 0);
rcclStart();

setJvelScale (mnp, 2.0);
movej (mnp, &rcclpark);
waitForCompleted (mnp);

xyzToTrsf (e, 0.0, 0.0, TOOLZ);

solveTrans (&start[0], pO, target, mnp->t6);
solveTrans (&start[1], pO, target, mnp->t6);
multTrsfXyz (&start[0], -750.0, 150.0, 0.0);
multTrsfXyz (&start[1], -750.0, 350.0, 0.0);

/* turn on 1st ADC channel, *if* we have one */

if (mnp->how->numddc > 0)
{ SET_ADC_CHAN (mnp->rbt, 0x1);
}

else

{ printf ("no real ADC channel; going to fake it\n");

}

bothTouched = 1;
mid = 0;
for (i=0; i<2; i++)
{ *target = start[i];
move (mnp, pO);

setMod (mnp, ’c’);
setCartVel (mnp, 10.0, F_DEFAULT);

RCCL/RCI Release 4.2, December 12,1995

/*2%/

/*3%/
/*4x/

/*5%/

/*6%/

/*T%/

137

138 6. INTERACTING WITH THE ENVIRONMENT

setMotionFlag (mnp, ++mid); /*8%/
runMotionFxn (mnp, touchFxn, mid);

updateTrans (mnp, contact[i], pO, target, mnp->t6); /*9%/
distance (mnp, "dz", 200.0);

move (mnp, pO); /*10%/

setTime (mnp, 0.0, F_DEFAULT);
distance (mnp, "dz", -20.0);
move (mnp, mnp->last); /*11%/

setMod (mnp, ’j’);
*target = start[i];

move (mnp, pO); /*12%/
waitForStop (mid); /*13%/
if (motionStopCode(mid) == 1) /*14%/
{ printf ("Motion %d touched\n", i+1);
}
else

{ printf ("Motion %d did not touch\n", i+1);
bothTouched = 0;
¥
¥
waitForCompleted (mnp);

if (bothTouched) /*15%/
{ printf ("playing back ...\n");

setMod (mnp, ’c’);
setCartVel (mnp, F_DEFAULT, F_DEFAULT);
*target = start[0];
move (mnp, pO);
*target = *contact[0]; /*16%/
target->p.z += 5.0;
move (mnp, pO);
*target = *contact[1];
target->p.z += 5.0;
move (mnp, pO);
*target = start[1i];
move (mnp, pO);
waitForCompleted (mnp);
setMod (mnp, ’j’);

}

movej (mnp, &rcclpark);

stop (mnp, 1000.0);

waitForCompleted (mnp);

rcclRelease (YES);

RCCL/RCI Release 4.2, December 12,1995

6.4. SENSOR INTEGRATION 139

control level module

#include <rccl.h>
#include '"manex.560.h"

#define THRESHOLD 500

touchFxn(mid, mnp)
int mid;
MANIP *mnp;
{
HOW *how;
static int count = 0;
how = mnp->how; /*1T*/

/* xif* we have an ADC channel, use it for sensor readings.
Otherwise, fake the touch function using the motion
scale value */

if (how->numAdc > 0)
{ if (how->adc & Ox1 && how->adcInput[0] > THRESHOLD)

{ stopMotion (mid, 1); /*18%/
¥
¥
else
{ if (motionScale(mid) > (count == 0 ? 0.2 : 0.6)) /*19%/
{ stopMotion (mid, 1);
count++;
¥
¥

NOTE —this example has been coded for the PUMA 560 and lives at guarded.560.c and
guardedCtrl.560.cin $RCCL/demo.rccl. An equivalent program for the PUMA 260 is
contained in guarded.260.c and guardedCtrl.260.c. If the program discovers that the system
does not have right sensor inputs, then the monitor function just punts and aborts the guarded
motions at different points along their trajectories.

The programisabit verbose, but fairly straightforward. To illustrate a different way of speci-
fying motion targets, it only defines one position equation p0 (/*2x*/):

T6 E = TARGET

E isthe usual end-effector transform and TARGET isatransform which is set to a specific target
location for each motion. This can be done since all motion requests are to fixed locations. Some
transformscan then be declared asregular variables, since they will be used only withinthe planning
task (/*1*/). Thetransformspointed to by contact arealocated using allocTrans () sincethey
will beused asargumentstoupdateTrans (). All of thetransform valuesareinstantiated starting at
(/*3%/), after the robot has been moved toitsinitia position. E is set to the canonical end-effector

RCCL/RCI Release 4.2, December 12,1995

140 6. INTERACTING WITH THE ENVIRONMENT

values. Thelocationsin start describe the points at which the guarded motions will begin; they
are defined smply by atrandational offset from the initial value of TARGET in the position p0
(/*4x/).

The touch sensor input is assumed to come from channel O of the analog-to-digital converters
supplied by the RCI robot/sensor interface. If ADC channels are available, the program enables
this channel at (/*5+/). It will be read by the monitor function.

The guarded motions are set up by theloop at (/*6+/). Moving the manipulator to a particular
location is done by setting TARGET to the desired location and then queueing a move request to
pO. The first move isto the start position. The next move is the guarded motion, which involves
setting up afew things. Cartesian interpolation is specified. A sow velocity is set in anticipation
of contact (/*7*/). An explicit motion ID isrequested, using setMotionFlag() (/*8%*/); thisis
so that the motion 1D will be known in advance and can therefore be passed as an argument to the
monitor function touchFxn (), which is established with a call to runMotionFxn (). To store the
location at the end of the guarded motion, updateTrans () asks the trgjectory generator to solve
p0 for TARGET at the end of the motion and place the result in one of the transforms pointed to
be contact (/*9%/). Findly, the guarded motion itself isimplemented by requesting amoveto a
target offset from start by 200.0 millimetersalong the = axis(/*10%/). Sincethe guarded motion
presumably makes contact with a hard surface, we wish to follow it with aquick “jump” back up
the =z axis by asmall amount. Thisisaccomplished using arelative motion, created with another =
offset applied to the position mnp->last (/*11%/). Thetranstion timeisset to 0 so that the manip-
ulator will pull away from the surfaceimmediately; otherwise, the decel eration associated with the
transition would carry the robot farther into the surface. A transition time of O istolerable sincethe
approach velocity islow. After the pullback motion, the robot switches to joint mode and moves
back to the starting point (/*12x/). The program itself uses a motion ID to wait for the guarded
move to complete (/*13x*/), and then examines the stop code (which was set by the monitor func-
tion) to determineif contact was actually achieved (/*14x*/). A stop code of 1 indicates contact;
otherwise, the system will have set the stop code to 0N_NORMAL when the nominal endpoint was
reached.

If both guarded moves make contact with the surface, the program has the robot draw aline, at
normal velocity, 5.0 millimeters above and between the two contact positions (/*15+/). The robot
ismoved to thefirst start point, thefirst contact point, the second contact point, and back to thefirst
start point. The 5.0 millimeter vertical displacement is achieved by smply adding an offset to the
contact target positions (/*16x/).

The monitor function touchFxn () isquite smple. It begins by fetching apointer to the robot’s
HOW structure (/*17%*/; see section 6.1.3) from which it reads ADC channel 0. The motion is can-
celedif thischannel displaysavaluegreater than THRESHOLD (/*18%/). If the system does not have
any ADC channels, the monitor function fakesit by canceling the motion when it is either 20% or
60% done (/*19%/).

RCCL/RCI Release 4.2, December 12,1995

6.5. TEACHING POSITIONS 141

6.5 Teaching Positions

6.5.1 The Teach Routine

RCCL provides ateach routine, rcc1Teach (), which alows auser to move the arm around using
a combination of keyboard and teach pendant commands:

rcclTeach (mnp, prompt, tool)
MANIP *mnp;
char *prompt;
TRSF *tool;

rcclTeach () assumesthat the trgjectory generator iscurrently active (i.e., reclStart () hasbeen
called. When it returns (at the command of the operator), the robot’s new position can be read from
the appropriatefieldsin themnp structure (such ast6, here, 1astTC, or j6; thefirst threefieldswill
all beequal). If an error occurs such that the teach routine was unable to successfully complete, it
returns-1 and an appropriate error code is placed on the error stack (section 9.2.1). The argument
prompt defines the prompt used for keyboard input. tool isan optiona argument that specifies a
transform applied to the T6 frame to define a TOOL frame. If tool isgiven asNULL, then the T6
frameisused asthe TOOL frame.

rcclTeach () alowstheoperator to specify motionsinthreeprincipa coordinatesystems: joint,
tool, and world. These are completely analogous to their counterparts in the Unimation language
VAL. Injoint coordinates the robot is moved by specifying individual joint angles. In tool coor-
dinates the robot is moved by specifying Cartesian trandations and rotations relative to the TOOL
frame. Inworld coordinates, the robot is moved by specifying Cartesian trandationsrelative to the
manipulator base frame and rotations relative to the manipulator base frame trandated so that its
originis coincident with that of the TOOL frame.

6.5.2 Keyboard Commands

The keyboard commands areimplemented using the C-tree matcher (see section 4.10): the terminal
displays a prompt and the user enters commands. Typing 7 gives either amenu of valid commands
or instructions as to what should be entered next. Hitting <space> automatically matcheswhat the
user has typed against the offered commands and expands the input line accordingly.

return — Causes rcclTeach() toreturn with avalue of 0.

record — Causes rcclTeach () to return with avaue of 1. This can be useful when
theteach routineisexecuting inaloop; areturn valueof 1 can beused to sig-
nal that we want to record the current point (and perhapscall rcclTeach ()
again to record more points).

stop — Stopsthe arm “dead in its tracks”.

show position-—
Prints the manipulator’s current position in both Cartesian and joint coordi-
nates.

RCCL/RCI Release 4.2, December 12,1995

142

6. INTERACTING WITH THE ENVIRONMENT

show tool — Prints the specified value of the tool transform.

show t6*tool —

Printsthelocation of the TOOL framerel ativeto the manipul ator baseframe.

world <dof> by <value>-—

Moves the indicated degree of freedom by a certain value in world coordi-
nates. Trandations are specified by a<dof> of x, y, or z, andavalue in mil-
limeters. Rotations are specified by a <dof> of rx, ry, or rz, and avalue
in degrees.

tool <dof> by <value>-—

Movestheindicated degreeof freedom by acertain valueintool coordinates.
Values are specified the same way as for world coordinates.

joint <num> by <value>-—

Moves the indicated joint by a specified value (degrees for rotational joints
and millimetersfor prismatic joints).

joint <num> to <value>-—

Moves the indicated joint to a specified value (degrees for rotational joints
and millimetersfor prismatic joints).

goto joints—

set

set

set

set

set

Moves dl the joints of the robot to a specified set of values.

speed — Setsascale valuefor the motion speed (thedefault valueis 1.0). The default
velocitiesused by rcclTeach () arethecurrent valuesset by setCartVel ()
andsetJointVel (). Setting the speed withintheteach routinewill not change
the speed settings in the program when the routine returns.

translation <x> <y> <z>—

Moves the manipul ator so that the x, v, and = trandational coordinates of the
TOOL frame (relative to the manipulator base frame) are set to a particular
value (in millimeters).

rotation euler <phi> <the> <psi>-—
Moves the manipulator so that the rotational component of the TOOL frame
(relative to the manipulator base frame) is described by a particular set of
Euler angles (degrees).

rotation rpy <roll> <pitch> <yaw> —
Moves the manipulator so that the rotational component of the TOOL frame
(relative to the manipulator base frame) is described by a particular set of
roll-pitch-yaw angles (degrees).

tool <x> <y> <z> <roll> <pitch> <yaw> —
Explicitly sets the tool transform to the specified trandational values (mil-
limeters) and roll-pitch-yaw angles (degrees).

RCCL/RCI Release 4.2, December 12,1995

6.5. TEACHING POSITIONS 143

set integration [on | off] —
Enablesor disablesservo level integration; when integrationisenabled, joint
servo errorsarereduced to zero, but the mani pul ator may becomemore*“frisky”.
This command is (at the moment) specific to Unimation/PUMA robots.

hand <value> —
Sets the manipulator hand to a particular value (for open/close grippers, 1
usually means “open” and 0 usually means “closed”).

6.5.3 Pendant Commands
The commands from the (PUMA) teach pendant are now described.

e The buttonsjoint, tool, or world set the default coordinate system for subsequent teach pen-
dant commands.

¢ Thebutton free places the manipulator into a zero-gravity mode, with al jointslimp and their
gravity loadings compensated for; the operator isthen free to move the arm around into any
position desired.

WARNING: check to make surethiscommand isworking properly; ifitisn’'t
the robot might fall.

e The switch on the side of the pendant controls the speed of motion; it has three settings: fast,
medium, and slow. The fastest setting is the momentary one.

e Thetick button enables “ultra-dow” pendant motions; thisis for fine position adjustment.
e The clampl and clamp2 buttons (usually) open and close the gripper.

e The REC button causes the teach routine to return with a value of 1, as though the keyboard
command record had been entered. Thisisuseful if the operator is teaching awhole set of
points and does not wish to return to the terminal.

e Thejoint control buttons (1 to 6) do different things depending on the mode. Intool or world
mode, they cause relative trandations or displacements: the first three buttons create + mo-
tions along the =, y, and = axes, while the last three buttons create + rotations about the «,
y, and z axes. Injoint mode, each button controlsits corresponding joint. In free mode, the
(+) side of each button “locks” its corresponding joint, so that it is no longer limp, whilethe
(—) sdelimpsit again.

6.5.4 Programming with the Teach Routine
rcclTeach () may be embedded inside applications and called whenever it is desirable for an op-

erator to move the arm around explicitly, either for teaching new positions or just for the fun of
it.

RCCL/RCI Release 4.2, December 12,1995

144 6. INTERACTING WITH THE ENVIRONMENT

Thisis best illustrated by the following sample program, in which the teach routine is used to
record a sequence of positions (and hand settings), and then “play them back”.

#include <rccl.h>
#include <ctree.h> /*(1)*/

char *key_buf[256];
#define MAXPOINTS 256

int numPoints = 0;
JNTS points[MAXPOINTS]; /*%(2)*/
int handSet[MAXPOINTS];

main()

{
char *keytree, *tree_match_parse(), *tree_match_err_at();
float speed = 1.0;
MANIP *mnp;

numPoints = 0;
/%(3)*/
keytree = tree_match_parse("
(quit

set

(speed

(%t", &speed, ",0,10, \'"speed scale (1.0 nominal)\")

)
show
record
playback

P A A A G

)",0);
if (keytree == 0)
{ printf ("ERROR/Parse error at %.30s\n", tree_match_err_at());
exit (-1);

if ((mnp = rcclCreate (getDefaultRobot(), 0)) == NULL) /*(4)*/
{ printErrors();
exit (-1);

if (rcclStart() < 0)
{ printErrors();

exit (-1);

}

do

{ tree_match (keytree, "PLAYBACK> ", key_buf); /*(5)*/
if (COMMAND ("set speed")) /%(6)*/
{ setSpeed (mnp, speed);
}

RCCL/RCI Release 4.2, December 12,1995

6.5. TEACHING POSITIONS

else if (COMMAND('"show'"))
{ printf ("speed = %g\n", speed);

¥
else if (COMMAND ("record"))
{ int status;

numPoints = 0;

printf ("%d points stored\n", numPoints);

/*(T)*/

/*(8)*/

printf ("use command \"return\" to stop recording points\n");
while ((status = rcclTeach(mnp, "RECORDING> ", NULL)) == 1)
{ points[numPoints] = *mnp->j6; /%(9)*/
handSet [numPoints] = mnp->handPos;

if (++numPoints >= MAXPOINTS)
{ break;
¥

¥

if (status < 0)

for (i=0; i<numPoints; i++)
{ movej (mnp, &points[il);
if (handSet[i] != mnp->handPos)
{ waitForCompleted (mnp);
if (handSet[il)
{ OPEN_HAND (mnp) ;
}
else
{ CLOSE_HAND (mnp) ;
}

b
b
while (!(COMMAND("quit")));

rcclRelease(1);

{ printErrors(); /*(10)*/
exit(-1);
¥
¥
else if (COMMAND ("playback")) /x(11)*/
{ int 1i;

145

NOTE - this example has been coded for the PUMA robot and lives at playback.cin

$RCCL/demo.rccl.

Liketheteach routineitself, this program uses the C-tree matcher. A brief description of the C-
tree matcher is given for the example program in section (4.10). Detailed information is provided

by the document CtreeMatch.doc in $RCCL/doc

Definitions relevant to the C-tree matcher are included with thefile <ctree.h> (/*1%/). The

RCCL/RCI Release 4.2, December 12,1995

146 6. INTERACTING WITH THE ENVIRONMENT

taught positionsare stored (injoint coordinates) inthearray points, with the hand position settings
inthe array handSet (/*2*/). Binary (open/close) hand settings are assumed.

The call to tree_match_parse() (/*3%/) sets up the keyboard commands that will be ac-
cepted by the Ctree-matcher. These commandsinclude

quit

set speed <value>
show

record

playback

Sincethe program does not set the option RCCL_ERROR_EXIT, it checkstheroutinesrcclCreate()
and rcclStart () explicitly for error conditions; if errors are detected, the error information is
printed by printErrors () (see section 9.2.1) and the program exits (/*4x/).

Commands are read in by the routine tree_match() (/*5%/), in aloop, until the command
quit isentered.

The set speed command (/*6*/) calls setSpeed () to set the speed with which the program
will play back the recorded positions

The show command (/*7*/) prints out the current playback speed setting and the number of
playback points which are currently stored.

Therecord command (/*8x*/) allowsthe operator to teach aset of points, whichisdoneby call-
ing rcclTeach() inaloop. Theteach routinewill return each timethe operator entersthe record
command from the keyboard, hitsthe REC button on the teach pendant, or entersthe command re-
turn. Inthefirst two cases, the routinewill return 1, which the program uses as a signal to record
the current point and call the teach routine again (/*9*/). The joint values of each recorded point
are read from the ;6 field of the MANIP structure. The hand settings are read from the handPos
field of the MANIP structure. If rcclTeach() returns a negative value, this indicates an error has
occurred, and the program prints out information about the error and exits (/*10%/).

The playback command (/*11x*/) plays back all pointswhich are currently recorded. Thisis
done smply by caling movej () for each recorded point, and, if the hand position for that point is
different from the current hand position, waiting for the move to finish and setting the new hand
value appropriately.

6.6 Logging Data

In RCCL programs, it is often necessary to log data created or read in at the control level. For
instance, an experimenter working with force control algorithms might want to record, for every
control cycle, the force sensor values and the current position of the robot.

The convenient thing to do in these cases would be to write the data directly to afile. Unfor-
tunately, one cannot access files directly from the RCCL control level. Instead, the data must be
written into an intermediate buffer (implemented using shared memory) which the planning level
flushesto afilewhen it getsfull. Thisis not very difficult to do, and once written, the actual code
can be applied to most smilar situations. We have written a short program demonstrating this.

RCCL/RCI Release 4.2, December 12,1995

6.6. LOGGING DATA

planning level module

147

#include <sys/file.h>

#include <rccl.h>

#include <stdio.h>
#include <signal.h>
#include "logger.h"

int logfd;
DATABUF *dataBuf;
extern logJ6Values();

logHandler () /*1%/
{
writeLogFile (logfd, dataBuf->bufnum”1);
}
writeLogFile (fd, num) /*2%/
FILE *fd;
int num;
{
if (write (£fd, dataBuf->buf[num], dataBuf->count[num]) < 0)
{ perror ("can’t write to log file");
exit (-1);
}
}
main()
{
MANIP *mnp;
int fxnld;

rcclSetOptions (RCCL_ERROR_EXIT);
mnp = rcclCreate (getDefaultRobot(), 0);
rcclStart();

signal (SIGUSR1, logHandler); /*3%/
if ((logfd = open ("log", O_RDWR|O_CREAT, 0666)) < 0) /*4x/

{ perror ("can’t open log file");

exit (-1);

}
dataBuf = ALLOC_MEM (NULL, DATABUF, UNDEF); /*5x/
dataBuf->bufnum = UNDEF;
fxnId = runMonitorFxn (mnp, logJéValues, (int)dataBuf); /*6x/

delay (10000.0);

deleteMonitorFxn (mnp, fxnId); /*T*x/
rcclBlock();
writeLogFile (logfd, dataBuf->bufnum); /*8%/

close (logfd);

RCCL/RCI Release 4.2, December 12,1995

148 6. INTERACTING WITH THE ENVIRONMENT

rcclRelease(YES);

control level module

#include <rccl.h>
#include <signal.h>
#include "logger.h"

logJ6Values (arg, mnp)
int arg;
MANIP *mnp;
{
DATABUF *db;
char *str;
int num;
int length;
static int count = 0;

if ((db = (DATABUF*)getMemByAddr((void*)arg)) == NULL)
{ rcidbort (0, "can’t get data buffer memory\n");
¥
if (db->bufnum == UNDEF) /*9%/
{ db—>bufnum = 0;
db—>count [0] = 0;
count = 0;
¥

num

db->bufnum;
str = &db->buf [num] [db->count [num]] ; /*10%/
sprintf (str, "%d %8.3f %8.3f %8.3f %8.3f %8.3f %8.3f\n",
count++,
RADTODEG*mnp->j6->v[0], RADTODEG*mnp->j6->v[1],
RADTODEG*mnp->j6->v[2], RADTODEG*mnp->j6->v[3],
RADTODEG#mnp->j6->v[4], RADTODEG*mnp->j6->v[5]);
db->count [num] += (length = strlen(str)); /*11%/
if ((db->count[num] + length) >= BUFSIZE) /*12%/
{ num "= 1;
db->count [num] = 0;
db->bufnum = num;
rciSignal (SIGUSR1); /*13%/

NOTE —this example has been coded for all systems, and lives at logger.c and loggerCtrl.cin
$RCCL/demo. rccl.

All thisprogram doesis start the trgjectory generator, and then turn on amonitor function which
logs the current joint setpoints. The monitor writes the log data into a buffer, and when the buffer
isfull, it sends asignal to the planning task, which then writes the contents out to the log file. A

RCCL/RCI Release 4.2, December 12,1995

6.6. LOGGING DATA 149

double buffer system is used, as described in section 5.5.3. The buffer itself isimplemented using
a shared memory object defined as follows:

#define BUFSIZE 4096

typedef struct {
int bufnum;
char buf[2] [BUFSIZE];
int count[2];

} DATABUF;

bufnum is the index of the buffer currently being written to by the monitor function. The double
buffer itself is the buf element. The field count describes how much data is in each of the two
buffers. Ingeneral, thesize of thebuffer (BUFSIZEinthiscase) should be selected so that UNIX has
timeto catch the “buffer full” signal and writeall the data out to afile before the second buffer fills
up. What thisnumber isdepends on how much datais being logged, the control samplerate, and the
UNIX systemitself. To besafe, one should probably make the buffer big enough to accommodate 1
second worth of data, and also should try to avoid writing so much asto cause the system to choke.
Logging about 10 Kbytes per second should certainly cause no difficulties, and more is certainly
possible.

When the planning task receives the “buffer full” signal, it calls the signal handler LogHan-
dler() (/*1*/),whichinturncalswriteLogFile() (/*2%*/)towriteout the buffer. The second
argument to writeLogFile() isthe number of the buffer which should be written. Thisis set to
the buffer opposite from bufnum, that is, the buffer not currently being written to by the control
level.

We will now look at the program itself. SIGUSR1 is used to indicate “buffer full”; LogHan-
dler() isbound to thissignal at (/*3*/). The log file is opened at (/*4+/) and the data buffer
structureisallocated at (/*5*/). bufnumis Set to UNDEF to tell the monitor functionit hastoinitial-
ize the data structure. Once everything has been set up, the monitor function is started at (/*6x/),
the program naps for 10 seconds, and then the monitor function is deleted (/*7+*/). We delay for
acontrol cycle to make sure that we have caught the last “buffer full” signal. Then, the rest of the
buffer that was being filled at the time the monitor was turned off is written out (/*8x/).

The logging function itself isfairly straightforward. It does some initialization if the bufnum
field is set to UNDEF (/*9%/). It then sets the variable str to the point in the buffer where it |eft
off the last time (/*10%/), and prints information there using sprintf (). The buffer counter is
increased by the size of the string that was created (/*11x*/), and the string length is also used to
decideif thereisenough buffer spacefor another cycle (/*12x/)°. If thereisnot, we switch buffers
and signal the planning task (/*13*/).

If space is very tight, one does not have to use an ASCII data format as we have done here.
Binary formats are several times more compact (and usually much faster), although they are less
portable and generally require a program interface to read.

5This particular code might bresk if the string is unexpectedly longer during the next cycle; the necessary checks
were omitted from this example for simplicity.

RCCL/RCI Release 4.2, December 12,1995

150 6. INTERACTING WITH THE ENVIRONMENT

A programmer doing alot of work involving data logging would probably want to encapsul ate
the logging code presented here into a small set of routines.

RCCL/RCI Release 4.2, December 12,1995

151

7. Force Control and Motion Limit Detection

In assembly tasks, objects are required to be brought into contact and motions have to be stopped
when the collision occurs. Once objects are in contact the task is said to be constrained because
arbitrary motions are no longer possible in every direction. When the task is constrained, the arm
must exert forces on objects and can no longer be purely position servoed for all six degrees of
freedom. Instead, the degrees of freedom (DOFs) along or about which the constraints occur must
comply to the interaction forces. When moving to and from contact situations, guarded motionsare
usually performed. The limit conditions for these guarded motions are typically force thresholds
(when contact isanticipated), and possibly tragjectory error thresholds (when the robot is complying
but thereisapossibility it might “dip off” the contact surface).

Multi-RCCL does not have an explicit built-in capability for performing compliant motions or
monitoring specific motion limit conditions. The original version of RCCL did provide a simple
force algorithm based on the old Paul and Shimano method ([Paul and Shimano 1976]), but this
does not work well on robots which lack joint level force sensors, and even when such sensors are
available, it is approximate and unstable. Old RCCL also provided built-in checking for force and
displacement limits, which alowed automatic cancell ation of amotion when either observed forces
or displacements from the desired tragjectory exceeded specified threshold values.

Explicit support of this capability was dropped because it required making too many assump-
tionsabout what sensorswere available and what algorithmsmight be suitable for different applica-
tions. This does not restrict the overall functionality of the system, however, since both compliant
motion and the limit checking can be easily implemented by application code using monitor func-
tionsand functionally defined transforms. Infact, the ease with which such functionality can be em-
bedded within RCCL hasbeen aprincipal reason for its popularity. The RCCL sitesat GE/ATL and
JPL have both implemented their own force control strategies within RCCL, based, in both cases,
on position accommodation techniques such as those described by [Maples and Becker 1986]. Ex-
ampleforce control programswritten at JPL are included at the end of this section.

As a convenience for the programmer (and for possible future extensions) Multi-RCCL still
provides interface routines which alow force control and limit specifications to be described for
particular motions, and read back when necessary by application code responsible for their imple-
mentation. These routines will be discussed below and their useillustrated by example programs.

7.1 Limit Specification Routines

Force or displacement limits for the next motion can be specified by the routines

limit (mnp, format, valuel, value2, ...)
MANIP *mnp;
char *format;
float valuel, value2, ...

RCCL/RCI Release 4.2, December 12,1995

152 7. FORCE CONTROL AND MOTION LIMIT DETECTION

setForcelimit (mnp, mask, flimit)
MANIP *mnp;
unsigned long mask;
FORCE *flimit;

setDispLimit (mnp, mask, dlimit)
MANIP *mnp;
unsigned long mask;
DIFF *dlimit;

limit () usesaformat string, containing a set of two letter codes separated by white space, to
state what typesof limitsto check for. Trandational force limits (along the principal axes) areindi-
cated by thecodesfx, fy, andfz. Torquelimits(about the principal axes) areindicated by the codes
tx, ty, and tz. Likewise, displacement limitsalong or about the principal axes areindicated by dx,
dy, dz, rx, ry, or rz. For each given limit, the routine takes an additional argument describing the
associated threshold value.

For instance, aforce limit of 10.0 Newtons along the » and i axes, and a displacement limit of
30° about the = axis, could be specified as

limit (mnp, "fx fy rz", 10.0, 10.0, 30.0);

A more “machine oriented” way of describing the same thing is provided by the routines set-
ForceLimit() and setDispLimit (). setForceLimit () usesabit mask to specify the degrees
of freedom aong (or about) which force limits should be monitored; the limit value for each se-
lected DOF is obtained from the corresponding field in the argument £1imit. The bit mask should
be assembled from the following codes:

ALONG_X
ALONG_Y
ALONG_Z
ABOUT_X
ABOUT_Y
ABOUT_Z

Displacement limitsare set inthesameway usingsetDispLimit (). Thesampleusageof 1imit ()
given above could be coded using these routines as:

FORCE flimit;
DIFF dlimit;

flimit.f.x = 10.0;

flimit.f.y = 10.0;

setForcelimit (mnp, (ALONG_X|ALONG_Y), &flimit);
dlimit.m.z = 30.0;

setDispLimit (mnp, ABOUT_Z, &dlimit);

RCCL/RCI Release 4.2, December 12,1995

7.1. LIMIT SPECIFICATION ROUTINES 153

Limit specifications are made by the planning level and are valid only for the duration of the
next requested motion.

Since RCCL does not actually implement the limit detection, some part of the application pro-
gram (amonitor function most likely) will have to read back the limit specifications. Thisis done
with the routines

getActiveForceLimit (mnp, mask, flimit)
MANIP *mnp;
unsigned long *mask;
FORCE *flimit;

getActiveDispLimit (mnp, mask, dlimit)
MANIP *mnp;
unsigned long *mask;
DIFF *dlimit;

getActiveForcelimit () returns(throughmask) abit mask describing theforcelimitsfor themo-
tion currently active on mnp. The associated thresholds are returned in the corresponding fields of
flimit. Similarly, getActiveDispLimit () returnsthe currently active displacement limits.

A smple monitor function that checks for displacement limits could be written as follows:

dispMonitor (arg, mnp)
int arg;
MANIP *mnp;
{
unsigned long mask;
DIFF limit;
TRSF disp;
float rz, ry, rx;

getActiveDispLimit (mnp, &mask, &limit);

if (mask)
{ multRiTrsf (&disp, mnp->t6o, mnp->t6);
trsfToRpy (&rz, &ry, &rx, &tmp);

if (((mask & ALONG_X) && FABS(disp.p.x) > limit.t.x) ||
((mask & ALONG_Y) && FABS(disp.p.y) > limit.t.y) ||
((mask & ALONG_Z) && FABS(disp.p.z) > limit.t.z) ||
((mask & ABOUT_X) && FABS(rx) > limit.r.x) ||
((mask & ABOUT_Y) && FABS(ry) > limit.r.y) ||
((mask & ABOUT_Z) && FABS(rz) > limit.r.z))

{ stopCurrentMotion (mnp, ON_LIMIT);

t

RCCL/RCI Release 4.2, December 12,1995

154 7. FORCE CONTROL AND MOTION LIMIT DETECTION

Thisis a permanent monitor function that runs al the time. It checks to find out what limit spec-
ifications are currently in effect for its associated manipulator. If there aren’t any (mask == 0), it
saves computation by ssmply returning. Otherwise, it computes the difference between the desired
trajectory and the real trgjectory by multiplying the output value of T6 (given by the t6 field of
the MANIP structure) by the inverse of the observed value of T6 (given by the t6o field; the mode
T60_EVAL (section 9.1.2) has presumably been set so that the trajectory generator will in fact main-
tainmnp->t60). Therotational differenceisconverted into yaw, pitch, and roll anglesso that it may
be easily compared with the displacement thresholds along each axis. For each selected DOF, the
trajectory error is then compared with the threshold and, if it is exceeded, the motion is canceled
with the code ON_LIMIT.

Because only the application software uses the values set by the limit routines, they can be used
to implement things different from their original defined purpose. For instance, setDispLimit ()
could be used to implement avelocity limit rather than atrajectory error limit. A monitor function
which did this would look the same as the one above, except that it would have to compute a ve-
locity transform instead of a displacement transform. It could do this by keeping the old value of
T6 around in a static variable, multiplying it by the new value of T6 every cycle, and then scaling
the outputs to units-per-cycle rather than units-per-second:

TRSF 01dT6;
float scale;

scale = rcclGetInterval() / 1000.0;

multRiTrsf (&disp, &o0ldT6, mnp->t6);
trsfToRpy (&rz, &ry, &rx, &tmp);

rx *= scale;

ry *= scale;

rz *= scale;

disp.p.x *= scale;

disp.p.y *= scale;

disp.p.z *= scale;

01dT6 = *mnp->t6;

7.2 Compliance Specification Routines

Compliant motions can be specified with routines similar to the limit routines:

comply (mnp, format, valuel, value2, ...)
MANIP *mnp;
char *format;
float valuel, value2, ...

RCCL/RCI Release 4.2, December 12,1995

7.2. COMPLIANCE SPECIFICATION ROUTINES 155

lock (mnp, format)
MANIP *mnp;
char *format;

setComply (mnp, mask, bias)
MANIP *mnp;
unsigned long mask;
FORCE *bias;

comply () takes aformat string indicating which DOFs should be put into compliant mode. The
codes are the same as those used to describe force limitswiththe1imit () routine: £x, fy, fz, tx,
ty, and tz. For each selected DOF, an additional argument is provided indicating the biasforce to
be associated with the compliance.

A compliance specification for a particular DOF takes effect with the next requested motion
and stays in effect for all subsequent motions until explicitly canceled. To take a particular DOF
out of comply mode, the primitivelock () can becalled, wherethe DOFsto belocked are specified
using the same format as for the comply () routine. For example, suppose the program wishes to
establish acompliance along the ~ axis with abias force 10.0 (Newtons) for the next three moves,
and in addition, specify a zero-bias compliance about the = and i axes for the second motion. This
could be specified as follows:

comply (mnp, "fz", 10.0);

move (mnp, pl);

comply (mnp, "tx ty", 0.0, 0.0);
move (mnp, pl);

lock (mnp, "tx ty");

move (mnp, p3);

lock (mnp, "fz");

Compliance can also be described in amore “ machine oriented” way using the primitive set-
Comply (), which takesamask selecting the desired comply DOFsand aFORCE type argument con-
taining the corresponding biases. Using this, the above example could be coded as:

FORCE bias;

bias.f.z = 10.0;

setComply (mnp, ALONG_Z, &bias);

move (mnp, pl);

bias.m.x = bias.m.y = 0.0;

setComply (mnp, (ALONG_Z|ABOUT_X|ABOUT_Y), &bias);
move (mnp, p2);

setComply (mnp, ALONG_Z, &bias);

move (mnp, p3);

setComply (mnp, O, &bias);

RCCL/RCI Release 4.2, December 12,1995

156 7. FORCE CONTROL AND MOTION LIMIT DETECTION

Since compliance specifications are “sticky” (i.e., they remain in effect for more than one mo-
tion request), it is useful to have aroutine available that reads back the current settings so that in-
termedi ate specifications can be made without disturbing the overall context. The routine

getComply (mnp, mask, bias)
MANIP *mnp;
unsigned long *mask;
FORCE *bias;

returnsthe current compliance settings. 1nthe following example, we specify compliance along the
x and y axes for two motions, without any knowledge of the surrounding context:

FORCE bias;
FORCE oldbias;
unsigned long oldmask;

getComply (mnp, &oldmask, &oldbias);

bias = oldbias;

bias.t.x = bias.t.y = 0.0;

setComply (mnp, (oldmask|ALONG_X|ALONG_Y), &bias);
move (mnp, pl);

move (mnp, p2);

setComply (mnp, oldmask, &oldbias);

getComply () returnsthe comply state currently set at the planning level. On the other hand, a
function responsible for implementing compliance at the control level will need to know the spec-
ification in effect for the current motion. Thisis obtained with the routinegetActiveComply ():

getActiveComply (mnp, mask, bias)
MANIP *mnp;
unsigned long *mask;
FORCE *bias;

To implement compliant motionin RCCL, the applications generally use some variation of the
position accommodation technique described in [Maples and Becker 1986]. With this paradigm,
correctional displacements responding to the sensed forces are added to some coordinate framein
the manipulator’starget position. In effect, the manipulator is made to “track” the observed force
errors. Because the lowest level of control is still a position servo (responding to positional set-
points output by the trgjectory generator) the response of such a system to changes in force values
is somewhat damped. This, however, is usually desirable, as force control systems can otherwise
be quite unstable.

It is easy to see that accommodation-based compliant control can be implemented by a func-
tional transform that has access to force sensor data. Let the compliance specification be given by

RCCL/RCI Release 4.2, December 12,1995

7.3. PROGRAM EXAMPLE: “COMPLY” 157

aselection matrix S and aset of biasforcesf., let the observed forces (in the comply frame) bef,,
let the corresponding error bef., let the value of the comply transform be C, and let p beagain as-
sociated with the force error. Then the computation done by the compliance function is effectively

f. = S(f.—1f)

C = C diffToTrsf(pf.)

The term pf. represents a small Cartesian displacement, which is converted into atransform using
diffToTrsf (), and then accumulated in C. This computation will be performed in the following
example program.

Theforce control law presented above isasimple proportional one; more elaborate control laws
can be devel oped with characteristics suitable for different sorts of tasks.

7.3 Program Example: “Comply”

Thisprogram uses RCCL primitivesto implement avery simple compliance package, which isthen
used to put the manipulator into a“free” mode created by zero-bias compliance along each of the
three coordinate axes. In thismode, the arm will allow itself to be “pushed around” in any tranda-
tional direction. The force sensor connected to the robot is the usual 6 DOF wrist model manufac-
tured by the Lord Corporation. The valuesread back from it are availablein the forceInput field
of the HOW structure.

planning level module

#include <rccl.h>
#include <errorCodes.h>
#include '"manex.560.h"

COMPLY_CTRL_BLK *complyInit (mnp, tgain, rgain)
MANIP *mnp;
float tgain, rgain;
{
COMPLY_CTRL_BLK *cbk;
TRSF *comply;

extern computeForce();
extern complyFxn();

comply = allocTrans (NULL, UNDEF); /*1%/
cbk = ALLOC_MEM (NULL, COMPLY_CTRL_BLK, UNDEF);
cbk->tgain = tgain; /*2%/

cbk->rgain = rgain;

cbk->comply = comply;

cbk->mnp = mnp;

transMotionEval (comply, complyFxn, (int)cbk, mnp); /*3%/

RCCL/RCI Release 4.2, December 12,1995

158 7. FORCE CONTROL AND MOTION LIMIT DETECTION

return (cbk);

}

complyRun (cbk)
COMPLY_CTRL_BLK *cbk;

{
cbk->init = YES;
runMonitorFxn (cbk->mnp, computeForce, (int)cbk); /*4x/
rcclBlock();
¥
main()
{
TRSF_PTR b, e;
POS_PTR p1;
MANIP *mnp;
JNTS rcclpark;
COMPLY_CTRL_BLK *cbk;
rcclSetOptions (RCCL_ERROR_EXIT);
e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);
b = allocTransRot (NULL, UNDEF, B_X, B_Y, B_Z, xunit, 180.0);
mnp = rcclCreate (getDefaultRobot(), 0);
cbk = complyInit (mnp, 0.01, 0.0); /*5%/
pl = makePosition (NULL, T6, e, cbk->comply, EQ, b, TL, cbk->comply);
rcclStart();
complyRun (cbk); /*6%/
setMod (mnp, ’c’);
setTime (mnp, F_DEFAULT, F_UNDEF);
comply (mnp, "fx fy fz", 0.0, 0.0, 0.0); /*T*x/
move (mnp, pl);
while (1) /*8%/
{ FORCE f;
accessMem (cbk, &cbk->force, &f, 6*sizeof(float)); /*9%/
printVi ("%10.4f\n", (float*)&f, 6);
delay (500.0);
¥
¥

control level module

#include <rccl.h>
#include <puma_kynvar.h>

RCCL/RCI Release 4.2, December 12,1995

7.3. PROGRAM EXAMPLE: “COMPLY”

int arg;
MANIP *mnp;
{

#include <errorCodes.h>

#include '"manex.260.h"

#define SENSOR_Z_OFFSET 90.0
#define NEWTONS_PER_POUND 4.448
#define LB_PER_UF (1.0/40.0)
#define NEWTONS_PER_UF (4.448/40.0)
#define MM_PER_INCH 25.4

computeForce (arg, mnp)

COMPLY_CTRL_BLK *cbk;
FORCE forcel;
FORCE force2;

char #fxnlName = "computeForce()";
/*10%/
if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr ((void#*)arg)) == NULL)
{ rciAbort (EFatal, "%s -- can’t find control block\n", fxnName);
return;
¥
if (cbk->init)

SET_FORCE_READ (mnp->rbt, 1); /*12%/
cbk->init = NO;
cbk->valid = 0;

}
else
{ if (mnp->how->force0lK) /*13%/
{ TRSF stoc;
forcel.f.x = mnp->how->forceInput [0]*NEWTONS_PER_UF;
forcel.f.y = mnp->how->forceInput[1]*NEWTONS_PER_UF;
forcel.f.z = mnp->how->forceInput [2]*NEWTONS_PER_UF;
forcel.m.x = mnp->how->forceInput [3]*NEWTONS_PER_UF*MM_PER_INCH;
forcel.m.y = mnp->how->forceInput [4]*NEWTONS_PER_UF*MM_PER_INCH;
forcel.m.z = mnp->how->forceInput [5]*NEWTONS_PER_UF*MM_PER_INCH;
multRiTrsf (&stoc, mnp->tool, getTransByAddr(cbk->comply));
stoc.p.z —= SENSOR_Z_OFFSET; /*14%/
transForce (&force2, &forcel, &stoc);
accessMem (cbk, &force2, &cbk->force, 6*sizeof(float));
cbk->valid = 1; /*15%/
}
else
{ cbk->valid = 0; /*16%/
}
}

RCCL/RCI Release 4.2, December 12,1995

159

160 7. FORCE CONTROL AND MOTION LIMIT DETECTION

complyFxn (t, arg, mnp)
TRSF *t;

int arg;

MANIP *mnp;

{

char #fxnlName = "complyFxn()";

COMPLY_CTRL_BLK *cbk;
FORCE complyValues;
unsigned long complyMask;
FORCE forceError;

DIFF accomodate;

TRSF accomTrst;

if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr ((void#*)arg)) == NULL)

{ rciAbort (EFatal, "%s -- can’t find control block\n", fxnName);
return;
¥
if ('cbk->valid)
{ if (cbk->badDataCount++ > 4) /*17*/
{ rciAbort (0, "bad force data for 4 consecutive cycles\n");
¥
return;
¥

cbk->badDataCount = O;
bzero ((char*)&forceError, sizeof (FORCE));
getActiveComply (mnp, &complyMask, &complyValues); /*18%/

if (complyMask & ALONG_X)
{ forceError.f.x = (complyValues.f.x - cbk->force.f.x);

}
if (complyMask & ALONG_Y)
{ forceError.f.y = (complyValues.f.y - cbk->force.f.y);

}

if (complyMask & ALONG_Z)

{ forceError.f.z = (complyValues.f.z - cbk->force.f.z);
}

if (complyMask & ABOUT_X)
{ forceError.m.x = (complyValues.m.x - cbk->force.m.x);

}
if (complyMask & ABOUT_Y)
{ forceError.m.y = (complyValues.m.y - cbk->force.m.y);

}
if (complyMask & ABOUT_Z)
{ forceError.m.z = (complyValues.m.z - cbk->force.m.z);

¥ /*19%/

accomodate.t.x = forceError.f.x * cbk->tgain;
accomodate.t.y = forceError.f.y * cbk->tgain;

RCCL/RCI Release 4.2, December 12,1995

7.3. PROGRAM EXAMPLE: “COMPLY” 161

accomodate.t.z = forceError.f.z * cbk->tgain;
accomodate.r.x
accomodate.r.y
accomodate.r.z

forceError.m.x * cbk->rgain;
forceError.m.y * cbk->rgain;
forceError.m.z * cbk->rgain;

diffToTrsf (&accomTrsf, &accomodate); /*20%/

multTrsf (t, &accomTrsf, t); /*21%/

NOTE - this example has been coded for the PUMA 560 robot and lives at comply.560.c and
complyCtrl.560.cin $RCCL/demo.rccl. No equivalent program has been written for the
PUMA 260 because no force sensor is currently available (force sensors tend to be too big for the
PUMA 260).

The comply package implemented in thisprogram consists of two planning level routines, com-
plyInit () andcomplyRun(),andtwo control level routines, computeForce() and complyFxn().

complyInit() should be called after themnp structurefor the robot has been created (/*5*/).
It allocates acomply transform and sets up an internal data structure used to communicate with the
control level functions. It also setsthe trandational and rotational compliance gains, which it takes
as arguments. At (/*1x*/), the comply transform (which will be used to accumulate the necessary
force accommodations) is allocated. Communication with the control level routines will be done
using a memory object of the type COMPLY_CTRL_BLK (defined in "manex.560.h"). Thistypeis
defined asfollows:

typedef struct {
float tgain;
float rgain;
TRSF *comply;
MANIP *mnp;
FORCE force;
int valid;
int init;
} COMPLY_CTRL_BLK;

The fields include the trandational and rotational accommodation gains tgain and rgain; com-
ply, which is the planning level address of the comply transform and is used by the control level
function to get avalid pointer to it; force, which contains force sensor values transformed into the
comply frame; valid, a boolean value stating whether or not the force values are valid for the cur-
rent control cycle; and init, another boolean value used to initialize the force computation function.
complyInit() setsthefieldstgain and rgain to the gain values passed in as arguments (/*2x*/),
sets the comply field to the comply transform address, and uses transMotionEval () to bind the
comply transformto the function complyFxn () on aper-motionbasis(/*3*/). Theroutinereturns
apointer to the comply control block, which will be passed back as an argument to complyRun().

RCCL/RCI Release 4.2, December 12,1995

162 7. FORCE CONTROL AND MOTION LIMIT DETECTION

The gains which are passed to complyInit () are very application specific. They depend, in
genera, on the characteristics of the robot and its position servos, the task being performed, and
the trgjectory control rate.

Having allocated a comply transform by calling complyInit (), the main program needs to
incorporate it into the target position of any motion which is to respond to comply requests. In
particular, the comply transform should be the last transform in the target position’s TOOL frame.
In the current program example, thisis done for the position p1, defined as follows:

Té E COMPLY = B

where E isthe end-effector transform, B is a convenient starting location in space, and COMPLY
is the comply transform.

The program starts the trajectory generator and calls complyRun () (/*6%*/), which starts up a
permanent monitor function to compute the force values in the current manipulator TOOL frame
(/*4%/). complyRun() setsthe init field of the comply control block to tell the monitor to turn
on the force torque sensor.

Compliant motions may now be requested using the system comply () primitive and motions
to target positions which contain the comply transform. The desired “free manipulator” effect is
achieved by requesting a zero-force compliance along all three trandational degrees of freedom
(/*7%/). The compliant motion itself is set to have an indefinite time limit. Whileit isin progress,
the program occupiesitself by printing out the force sensor values computed by the monitor func-
tion. The monitor writes the force values into the force field of the comply control block for the
planning level to read out. To guarantee consistency of the force data, thefield iswritten and read
usingaccessMem() (/*9*/), athough (inthiscase) thisisdone morefor show than from necessity.

Two control level functions are used to implement the compliance: computeForce (), which
computesthe forces as seen in the compliance frame, and complyFxn (), which uses these to deter-
mine the necessary changesto the COMPLY transform. Partitioning the computation in this way
is reasonabl e (though not essential).

computeForce () runsall thetime, computing force valuesfor anyonewho caresto read them.
It begins by using its application argument to get a pointer to the comply control block (/*10%/).
Theforce sensor readingsthemsel ves are obtained from the mani pul ator’ SHOW structure (see section
6.1.3).

If cbk->init hasbeen set by theplanninglevel, thisindicatesthat thingsarejust starting up and
the RCI interface must betold to start reading the forcetorque sensor. Thisisdonewith acall tothe
macro SET_FORCE_READ() (/*12x/), after which init iscleared and computeForce() returns,
since valid force torque data will not be ready for at least another control cycle.

To determinewhether the HOW structure containsvalid force/torqueval uesfor the current control
cycle, the field how->forceOK is examined (/*13*/), and if true, the force values are read out of
theforcelInput field and converted from sensor unitsinto Newtonsand Newton-millimeters. (The
conversion values in this program are specific to the 6 DOF Lord sensor.) Once the force values
have been read in, they till must be converted to the coordinate frame in which the COMPLY
transform is being computed. The transform STOC is defined to map from the wrist sensor frame
tothe COMPLY frame. Recall that the application code was requested to make COMPLY the last

RCCL/RCI Release 4.2, December 12,1995

7.4. PROGRAM EXAMPLE: “CYLIN” 163

transform in the TOOL part of the target position. If therest of TOOL isdescribed by T, then we
have

T COMPLY = TOOL

If we have another transform F which maps from the T6 frame to the sensor, then STOC is given
by
STOC = F!'T

which can be computed as
STOC = F! TOOL COMPLY ™

since TOOL is constantly maintained by the trgjectory generator and is available asthe tool field
inthe MANIP structure. STOC iscomputed at location (/*14*/). Since F issimply an offset along
z with no rotational component, some computation can be saved by simply subtracting this off set
from TOOL COMPLY ~* rather than premultiplying by F~'. Once we have STOC, it is used
by transForce() to map forces from the sensor frame into the comply frame. These values are
then written into the comply control block and the valid field is set (/*15%*/). For any control
cycle in which no valid force values are available, the valid field iscleared (/*16%/).

The function complyFxn () executes only when the target motion position contains the COM -
PLY transform. Itsjobisto usetheforce values computed by computeForce () and perturb COM-
PLY to accommodate the error between these values and desired force bias for whatever degrees
of freedom happen to be in compliance mode. Again, the function uses its application argument to
get a pointer to the comply control block. It immediately checks the valid field to seeif thereis
proper force datafor thiscycle, and if not, then the function bumps acounter and returns. When the
counter exceeds a certain value, it means that force data values have been unavailable for several
consecutive cycles, and the program is aborted (/*17x/).

The next thing the routine doesisuse getActiveComply () to obtain the current comply mask
and bias forces. The force error isinitialized to zero, and then for each compliant DOF given by
the mask, the corresponding field is set to the difference between the desired bias force and the
observed force (/*19%/). The required accommodations are determined by multiplying the force
errors by the appropriate gain to get a displacment. This displacement is small enough to treat as
adifferential’, so it can be converted to a transform using diffToTrsf () (/*20%/). Successive
perturbations are accumulated into COMPLY by post multiplication (/*21%/).

7.4 Program Example: “Cylin”

This demo program was written at the Jet Propulsion Laboratory on a PUMA 560 robot. It uses
guarded force-limit motions and compliance to locate asmall cylinder and then comply around the
outsideof it. It assumesthat therobot isfitted with aforce/torque sensor and apeg-likeend-effector,
and that thereis a small cylinder in the work space which the operator can position the robot near
using the teach routine.

Lif it is not, then the gains are too high and there will be stability problems.

RCCL/RCI Release 4.2, December 12,1995

164

planning

7. FORCE CONTROL AND MOTION LIMIT DETECTION

level module

#define
#define
#define
#define
#define
#define

{

}

main ()

#include <rccl.h>
#include <math.h>
#include

extern forceMonitor();
extern rotzFxn();
extern COMPLY_CTRL_BLK *complyInit();

float square(x)
float x;

"manex.560.h"
PEG_LENGTH 230.0 /* length of comply peg */
PEG_RADIUS 9.5 /* radius of comply peg */
DROP_DEPTH 35.0 /* vertical dist. to probe points */
MAX_RADIUS 70.0 /* max. likely radius of cylinder */
NUM_TURNS 2 /* no. of times to go around cylinder */
MSEC_PER_REV 12000.0 /* speed to go around cylinder at */

return (x*x);

MANIP *mnp;

JNTS rcclpark;

char *robotlName;
COMPLY_CTRL_BLK *cbk;

TRSF_PTR start, rotz, offset, peg, touch;
float xvall[3], yvall3];

POS_PTR idle, seek, turn;

int 1i;

float centerX;
float centerY;
float radius;

rcclSetOptions (RCCL_ERROR_EXIT);
robotName = getDefaultRobot();
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);
}

start = allocTrans (NULL, UNDEF);

offset = allocTrans (NULL, UNDEF);

rotz = allocTrans (NULL, UNDEF);

peg = allocTransXyz (NULL, UNDEF, 0.0, 0.0, PEG_LENGTH);
touch = allocTrans (NULL, UNDEF);

RCCL/RCI Release 4.2, December 12,1995

7.4. PROGRAM EXAMPLE: “CYLIN”

rcc

rcc
sol

/*

set
off
for

{

RCCL/RCI R

mnp = rcclCreate (robotName, 0);

cbk = complyInit (mnp, 0.005, 0.00);

idle = makePosition (NULL, T6, peg, EQ, start, TL, peg);
seek = makePosition (NULL, T6, peg, rotz, EQ,

/*1%/

start, rotz, offset, TL, rotz);

turn = makePosition (NULL, T6, peg, rotz, cbk->comply, EQ,

start, rotz, offset, TL, cbk->comply);

1Start ();

complyRun (cbk);

DROP_DEPTH-10.0);
1Teach (mnp, "TEACH> ", NULL);
veTrans (start, seek, start, mnp->here);

locate the points around the cylinder */

runMonitorFxn (mnp, forceMonitor, (int)cbk);

Mod (mnp, ’c’);

set->p.x = MAX_RADIUS;
(i=0; i<3; i++)

int mid;

TRSF delta;

rotToTrsf (rotz, zunit, 120.0%i);
move (mnp, seek);

offset->p.z = DROP_DEPTH;

move (mnp, seek);

limit (mnp, "£fx", 5.0);
setCartVel (mnp, 10.0, F_DEFAULT);
distance (mnp, "dx', -MAX_RADIUS);
updateTrans (mnp, touch, idle, start, mnp->t6);
mid = move (mnp, seek);
setCartVel (mnp, F_DEFAULT, F_DEFAULT);
setTime (mnp, 0.0, F_DEFAULT);
move (mnp, seek);
offset->p.z = 0.0;
move (mnp, seek);
waitForStop (mid);
if (motionStopCode(mid) '= ON_FORCE)
{ printf ("Did not touch cylinder\n");
rcclRelease (1);
exit (-1);
¥
multLiTrsf (&delta, start, touch);
xvall[i] = delta.p.x;
yvall[i] = delta.p.y;

/*2%/

printf ("Position robot about %g mm. above cylinder, with peg down\n",

/*3%/
/*4x/

/*5%/

/*6%/

/*T%/

/*8%/

/*9%/

/*10%/

/*11%/

/*12%/

/*13%/

/*14%/

/*15%/

printf ("point %d: x = %g, y = %g\n", i+1, xvallil, yvallil);

elease 4.2, December 12,1995

165

166

7. FORCE CONTROL AND MOTION LIMIT DETECTION

offset->p.x = 0.0;
move (mnp, seek);
waitForCompleted (mnp);

computeCenter (xval[0], yval[0], xvall[1], yvall[i], /*16%/
xval[2], yvall[2], ¢erX, ¢erY);

printf ("Cylinder center is at (%g, %g)\n", centerX, centerY);

multTrsfXyz (start, centerX, centerY, 0.0); /*17*/
radius = sqrt (square(xval[0] - centerX) + square(yvall[0] - centerY))
- PEG_RADIUS;

printf (“radius = %g\n", radius);
rcclSetModes (mnp, TRACKING_MODE); /*18%/
setCartVel (mnp, 10.0, F_DEFAULT);

identTrsf (rotz);

move (mnp, turn);

offset->p.x = radius + PEG_RADIUS + 5.0;

move (mnp, turn);

offset->p.z = DROP_DEPTH;

move (mnp, turn);

comply (mnp, "fx", 2.0); /*19%/
offset->p.x = radius;

move (mnp, turn);

waitForCompleted (mnp);

transMotionEval (rotz, rotzFxn, 0, mnp); /*20%/
comply (mnp, "fx'", 10.0); /*21%/
setTime (mnp, F_DEFAULT, NUM_TURNS*MSEC_PER_REV);

move (mnp, turn);

waitForCompleted (mnp);
delay (1000.0); /*22%/

setCartVel (mnp, F_DEFAULT, F_DEFAULT);

lock (mnp, "fx");

setTransConst (rotz);

offset->p.x = radius + PEG_RADIUS + 5.0;

move (mnp, seek);

offset->p.z = 0.0;

move (mnp, seek);

offset->p.x = 0.0;

move (mnp, seek); /*23%/
stop (mnp, 1000.0);

waitForCompleted (mnp);
rcclRelease (1);

RCCL/RCI Release 4.2, December 12,1995

7.4. PROGRAM EXAMPLE: “CYLIN”

167

control level module

#include <rccl.h>
#include '"manex.560.h"

#tdefine MSEC_PER_MINUTE (60.0%1000.0);
#define RPM 5

rotzFxn (t, arg)
TRSF *t;

int arg;

{

/* produce a rotation about z at 5 rpm */

static float ang = 0.0;
ang += 360.0%RPM*rcclGetInterval()/MSEC_PER_MINUTE;
rotToTrsf (t, zunit, ang);

}

forceMonitor (arg, mnp)
int arg;

MANIP *mnp;

{

char *fxnName = "forceMonitor()";
COMPLY_CTRL_BLK *cbk;

int limitMask;
FORCE limitValues;

if ((cbk = (COMPLY_CTRL_BLK*)getMemByAddr((void*)arg)) == NULL)

{ rcidbort (0, "%s —— can’t find control block\n", fxnName);
return;
¥
getActiveForcelLimit (mnp, &limitMask, &limitValues); /*24x%/
if (limitMask && cbk->valid) /*25%/
{

if ((limitMask & ALONG_X &&
FABS(cbk—>force.f.x) > limitValues.f.x)

|| (1imitMask & ALONG_Y &&
FABS(cbk->force.f.y) > limitValues.f.y)

|| (1imitMask & ALONG_Z &&
FABS(cbk—>force.f.z) > limitValues.f.z)

|| (1imitMask & ABOUT_X &&
FABS(cbk—>force.m.x) > limitValues.m.x)

|| (1imitMask & ABOUT_Y &&
FABS(cbk->force.m.y) > limitValues.m.y)

|| (1imitMask & ABOUT_Z &&
FABS(cbk—>force.m.z) > limitValues.m.z))

RCCL/RCI Release 4.2, December 12,1995

168 7. FORCE CONTROL AND MOTION LIMIT DETECTION

{ stopCurrentMotion (mnp, ON_FORCE); /*26%/
rciPrintVf ("LIMIT X %11.4f\n", &cbk->force, 8);
}
}

NOTE - this example has been coded for the PUMA 560 robot and lives at comply.560.c and

complyCtrl.560.cinthedirectory $RCCL/demo.rccl. An equivalent program for the PUMA
260 livesat cylin.260.cand cylinCtrl.260.c, except that it only simulates the presence of
the cylinder and does not do any real compliance.

This program makes use of the compliance package defined in the previous example. Compli-
anceisenabled by calling complyInit () and complyRun() after thecallsto rcclCreate() and
rcclStart (), respectively (/x1x/, /+x2x/). Theoperator isinstructed to movetherobot so that the
peg tip is positioned several millimetersabove the cylinder, with the peg facing down. To facilitate
this, the program enters the teach routine (/*3+/). When the teach routine returns, the transform
START isingtantiated so that the position equation seek definesthe current robot location (/x4x /).

The program is now ready to begin the guarded motions to locate the cylinder exactly. A per-
manent monitor function, forceMonitor(),isset up to detect forcelimits (/*5%/). This monitor
will use the force values calculated by the monitor computeForce() (see the previous example),
whichwas set running by theroutine complyRun (). Itisassumed that the pegtip islocated roughly
above the center of the cylinder. The exact location of the center is determined using three guarded
moves, in which the robot moves away from cylinder, down, and then back towards it in hope of
making contact. Each move is spaced radially 120° apart. The different via points used to do the
moves are created by making local modificationsto the transform OFFSET in seek.

forceMonitor () checksforcelimitsindependently along or about each specified axis. For best
accuracy, therefore, theforce limit for each guarded move should lieaong asingle axis (the = axis
isused in this case)?. How may this be done when the motions themselves approach the cylinder
from three different directions? The answer isto rotate the tool frame itself between moves so that
its x axisis aways parallel to the line of approach. Thisis the purpose of the transform ROTZ.
The reason thisworks s that the force values themselves are computed by the function compute-
Force () and hence are described with respect to the current tool frame (offset by the COMPLY
transform, but COMPLY istheidentity at this point in the program, and so we do not worry about
it).

To keep from having to actually rotate the end-effector when the TOOL frame is rotated, an-
other ROTZ is placed on the other side of the position equation to cancel out the net rotation (the
transform OFFSET, whichliesin between, doesnot interfere because it containsonly trand ations).

Each guarded motion starts at a position located MAX_RADIUS millimeters away from the pre-
sumed cylinder center. Thislocationisspecified by setting the » coordinateof offset toMAX_RADIUS
(/+6x/). Thisworksfor all the guarded motionsbecause the OFFSET frameis constantly rotated so
asto be paralld to the approach axis (/*7x*/). The motion sequence consists of moving out along
the radius (/*8+/), dropping down (/*9%*/), and coming back in with a force limit set along the

2 Alternatively, the monitor function could be implemented to interpret its limit information differently.

RCCL/RCI Release 4.2, December 12,1995

7.4. PROGRAM EXAMPLE: “CYLIN” 169

Figure33: Thethree guarded motions used to locate the cylinder.

x axis (/*12x/) (see figure 33). The velocity is set low to prevent damage on contact (/*10%/),
and updateTrans () isused to request that the transform touch be evaluated when the guarded
move terminates (/*11x*/). Upon contact, the robot moves back out (/*13*/) and up (/*14x*/).
The program waits for each guarded move to complete, checks the associated motion stop code to
make sure that contact was actually achieved, and then uses the transform touch to determine the
location of the contact point in the zy plane of the frame START.

When the guarded moves are complete, the collected = and y coordinates of the three contact
pointsare used to computetherea center of thecylinder (/*16x/) (thefunction computeCenter ()
isdefined in acompanion file). The START transform is then updated correspondingly (/*17x/).

The last part of the program involves moving the manipulator back to the cylinder and com-
plying around it. The comply motions are done with the manipulator in “tracking mode’ (/*18x/)
(section 9.1.2). This ensures that if adelay occurs between adjacent compliant motions, such that
the following one is not on the motion queue when the previous one ends, the robot will continue
to track the last target (and hence remain in comply mode), rather than entering the idle state and
“freezing” whereitis. Aswith the force limits, the compliance is specified along the = axis only.
For the approach move, during which contact ismade, asmall biasforceisset (/*19x*/); for thenext

RCCL/RCI Release 4.2, December 12,1995

170 7. FORCE CONTROL AND MOTION LIMIT DETECTION

move, which movesthe peg around thecylinder (/*21x/),alarger biasforceisused. The action of
moving the peg around the cylinder is achieved by binding ROTZ to arotation function (/*20%/).
When the circular motion has finished, the program waits for another 10 seconds (/*22*/) toillus-
trate the effect of tracking mode: the rotation around the cylinder should continue during thistime.
Finally, the arm is moved back up to its starting position (/*23x*/).

The control level module for this program contains the rotation function rotzFxn () used for
the compliant move and the force monitor function forceMonitor (). It aso loadsin the routines
complyFxn () and computeForce (), which belong to the comply package. The force limit mon-
itor uses the force data computed by the comply routine computeForce(). It gets the force limit
specification for the current motion (/*24x*/), checks to see that the force datais valid (/*25%/),
and cancels the motion if the observed forces exceed any of the specified limit values (/*26x*/).

RCCL/RCI Release 4.2, December 12,1995

171

8. Multi-Robot Capabilities

8.1 Controlling Multiple Robots

Multi-RCCL allows several robotsto be controlled from within one program. All the programmer
needs to do is make separate callsto rcclCreate () for each robot, and then refer to the different
MANTIP structuresasrequired. At the Jet Propulsion Laboratory, therearetwo robotscalled "Right"
and "Left". A piece of code which moves both of them to their starting positions looks like this:

MANIP *right, *left;
JNTS parkR, parkL;

getRobotPosition (parkL.v, "rcclpark", "Right");
getRobotPosition (parkL.v, "rcclpark", "Left");

right = rcclCreate ("Right", 0);
left rcclCreate ("Left", 0);

rcclStart () ;

movej (right, &parkR);
movej (left, &parkR);

waitForCompleted (right);
waitForCompleted (left);

rcclRelease (1);

The only real limitation to this capability is the CPU power available to do all the necessary
trajectory computations. To this end, the multi-CPU versions of the system are quite useful. The
trajectory generation task for each robot can be assigned to a different CPU. rcclCreate() tries
to do this by default, starting with the auxiliary CPUs. If for some reason the application wants to
have the trgjectory task for a robot run on a particular CPU, then this can be specified explicitly
using the CPU selection mask (the second argument to rcc1Create()). In the example above,

right = rcclCreate ("Right", 0x2);
left rcclCreate ("Left", 0x2);

would explicitly assign both robotsto CPU 1 (the CPUs are numbered starting at 0, where O isthe
arbiter CPU).

RCCL/RCI Release 4.2, December 12,1995

172 8. MULTI-ROBOT CAPABILITIES

8.2 Virtual Manipulators

Another, particularly useful capability of Multi-RCCL is the ability to create “virtual manipula-
tors’. These are basically T6 frames without the attached robot. They are controlled by the same
data structures and routines as normal RCCL robots, are assigned to tragjectory task on a particul ar
CPU, and can be moved with the usual motion primitives. Their only restriction isthat joint level
features are not defined for them; i.e,, calling setJointVel () or doing setMod (’j’) onavirtua
manipulator will cause an error.

A virtual manipulator is created with acall to rcclCreate(). The system will set up avirtual
manipulator if the name of the robot (given by the first argument) is not equal to the name of any
real robot configured into the system. Naturally, the name foo isacommon one:

vmnp = rcclCreate ("foo", 0);

The t6 (and related fields) of the MANIP structure are initialized to the identity. The joint angle
structures, such as j 6 and thelike, are smply zeroed and | eft that way. The only interpolation mode
allowed for avirtual manipulator is Cartesian (which of course meansthat unlike manipulators cor-
responding to real robots, the default interpolation mode for virtual manipulatorsis Cartesian).

Because a virtual manipulator has no physical constraints, it can be assigned any acceleration
or velocity limit desired. When created, it is given the same default Cartesian velocity limitsasthe
rest of the manipulatorsin the system, along with the acceleration limits DEFAULT _TRANS_ACCEL
and DEFAULT _ROT_ACCEL.

Sometimes, when moving avirtual manipulator to a position, it isnice to ssimply “put it there”,
rather than having to moveit there with amove () command. Again, thisis possible because there
are no physical constraints on the manipulator. The primitive

maintain (vmnp, pos)
MANIP *vmnp;
POS *pos;

isdesigned to do this: it “puts’ vmnyp at the target position pos and keepsit there indefinitely, until
another move or maintain request is received.

One place where virtual manipulators are useful isin system testing, since there is no robot to
worry about or even to start up. As asimple example, we present the following program based on
one of the internal RCCL testing routines. The program tests to see that the system is behaving
correctly withregardto the setCartVel () primitive. To do so, it reads back the number of control
cycles assigned by the system to a particular motion (the o value; see section 4.4.1) and checks
that this corresponds to the specified velocity. The check count is much easier to determine if the
trangition timeisset to 0, which isrisky on areal robot but completely natural on avirtua one.

MANIP *vmnp;
TRSF *target;
POS *p0;

int sigmaCheck;
int sigma;

RCCL/RCI Release 4.2, December 12,1995

8.2. VIRTUAL MANIPULATORS 173

target = allocTrans (NULL, UNDEF);
pO0 = makePosition (NULL, T6, EQ, target, TL, T6);

vmnp = rcclCreate("foo", 0);
rcclStart();

target->p.z = 123.0;

setCartVel (vmnp, 123.0, F_UNDEF);

setTime (vmnp, 0.0, F_DEFAULT);

move (vmnp, p0);

rcclBlock() ;

getActiveMotionCounts (vmnp, NULL, &sigma);
sigmaCheck = NINT(1000.0/rcclGetInterval());

if (sigma '= sigmaCheck)

{ printf ("sigma = %d vs. %d\n", sigma, sigmaCheck);
t

The virtual manipulator is told to move from itsinitial (identity) position to atarget position that
has a displacement of 123 aong the = axis. Since the trandational velocity is also set explicitly to
123, and the transition timeis set to 0, the time required for this motion should be 1 second. Thisis
verified by reading back the actual motion segment count o with the routine getActiveMotion-
Counts (). The preceding call to rcc1Block () ensuresthat at least one control cycle has el apsed
since the move request and that o has in fact been computed.

Another, more application oriented use of the virtual manipulator is in controlling the trajec-
tory of a robot arm by making it track a remote frame. Suppose that a robot target position p0 is
composed of the usua 16, E, and Z (base) frames, plus another frame OBJ defined with respect to
Z.

Z Tée E = OBJ

Now suppose that OBJ happens to be the T6 frame for a virtua manipulator. If this virtual ma-
nipulator is moved to, or made to follow, some arbitrary target position pv, defined (generaly) as
as

OBJ = TARGET,

then we will have the kinematic Situation seen in figure 34.

Any motion of the virtual manipulator will be tracked by the real manipulator. If the motion of
the real robot to p0 is set for indefinite duration, then an entire set of motions can be specified for
it by moving only the virtual manipulator.

setTime (mnp, F_DEFAULT, F_UNDEF);
move (mnp, po0);

. now control ’mnp’ using ’vmnp’

move (vmnp, pl);
stop (vmnp, 1000.0);

RCCL/RCI Release 4.2, December 12,1995

174 8. MULTI-ROBOT CAPABILITIES

A

16

oBJ TARGET

Figure34: Kinematicgraphinwhicharobot’starget positionisboundtoavirtua
mani pul ator.

move (vmnp, p2);
. and now release ’mnp’

waitForCompleted (vmnp);
stopCurrentMotion (mnp);

These induced motions will differ from direct motions on mnp because the coordinate frame in
which the drive parameters are computed will be the TOOL frame of vmnp, not mnp. Thiscanin
fact beuseful if it isnecessary to move arobot with the drive transform computed somewhere other
than adjacent to the TOOL frame.

The transition and path segment times for induced motions, unless explicitly stated, will be
based on the default acceleration and vel ocity limitsfor the virtual manipulator rather than thereal
manipulator. Because of this, it may be desirable to set these limitson the virtual manipulator to be
equal to thelimitsfor the real manipulator. A piece of code that doesthisis

float tval, rval;
getCartVel (mnp, &tval, &rval);
setCartVel (vmnp, tval, rval);

getCartAccel (mnp, &tval, &rval);
setCartAccel (vmnp, tval, rval);

where the velocity and acceleration scale factors are assumed to be 1; if not, they can be “brought
over” aswell:

setSpeed (vmnp, getSpeed (mnp));
setAccelScale (vmnp, getAccelScale (mnp));

RCCL/RCI Release 4.2, December 12,1995

8.2. VIRTUAL MANIPULATORS 175

It is possible not only to drive areal manipulator with a virtual one, but to connect two real
manipul ators together in a “master-dave” configuration. All we need to do is to create a “dave
position” for the dave robot which explicitly contains the T6 transform for the master robot. For
example, consider the following:

MANIP *master, *slave;
POS *ps;

master = rcclCreate ("Right", 0);
slave = rcclCreate ("Left", 0);

. set up appropriate transforms ’a’ and ’b’
connecting the slave to the master at
the base and tool tips ...

ps = makePosition (NULL, a, T6, b, EQ, master->t6);

setTime (slave, F_DEFAULT, F_UNDEF);
move (slave, ps);

. slave i1s now bound to master ...

After thiscodeisexecuted, therobot “Left” isslaved to therobot “ Right” for al subsequent motions
(until the moveto ps is canceled). The kinematic situation is essentially the same as in figure 34,
except that Z isreplaced by A and E by B.

COMPL‘Y/(\Bﬁ

T6 T6 master
slave master target

Figure35: Kinematic graph for a simple master-slave robot configuration.

When manipulatorsare connected together and made to move around, aproblemisusually cre-
ated by the residual forces which build up between them: they start doing “isometric exercises’

RCCL/RCI Release 4.2, December 12,1995

176 8. MULTI-ROBOT CAPABILITIES

T~ COMPLY, <+—
COMPLYl i/ E,

Figure36: Kinematic graph for two manipulators holding a common object.

with one another. In general, this can be solved by insertinga COMPLY transform at some point
in the kinematic chain between the two robots. The COMPLY transformis attached to areal-time
function that adjustsits valuesto cancel out the residual forces. Whilethistransform can be placed
anywhere between the two robots, it is desirable in practice to place it as close as possible to the
place where the forces are actually sensed. If they are sensed in or near the T6 frame of the dave
manipulator, then we will want to construct a slave kinematic loop like the one in figure 35.

It isalso possible to dave two or morereal robots to a single master manipulator, which may be
either avirtual manipulator or another real robot. Thereshould be at least one COMPLY transform
for every extrareal manipulator inthegraph. If the master manipulator isavirtual manipulator, then
we have a kinematic situation which is useful if we want two or more real robots to manipulate a
common physical object. This situation is shown in figure 36.

Each manipulator is*“connected” to the physical object using a position equation that |ookslike
A Tée E COMPLY = OBJ G

Transform A maps from the object base frame to the manipulator base frame; E is the transform
from T6 to the point at which the object is grasped; OBJ islocation of the object (equal tothe“T6”
of the virtual manipulator controlling the object); and G transforms from the object location to the
grasp point. On the assumption that the force sensors are located near the grasp points, the COM -
PLY transforms are placed there as well. This example uses two comply transforms, which is not
strictly necessary since there are only two real manipulators. However, using two transforms po-
tentially allowsusto “balance” the interactions between the two robots and achieve true distributed
load sharing.

No attempt will be made to discuss here the ways in which the comply transforms can be com-

RCCL/RCI Release 4.2, December 12,1995

8.3. PROGRAM EXAMPLE: “TRACKII” 177

puted to achieve cooperative control between manipulators, asthisisstill an active areaof research.
In particular, the RCCL site at the Jet Propulsion Laboratory is studying problems of this sort.

8.3 Program Example: “Trackll”

A virtual manipulator which is used to drive a slave manipulator is sometimes referred to as an
object frame. This program demonstratestwo manipul atorstracking asingle object frame. Because
the program runsin free space with no kinematic connection between the two arms, thereisno need
for any of the COMPLY transformsdiscussed above. A diagram of the kinematic relationshipsis
given in figure 37. The object frame is made to trace sequences of boxes and circles, with both
attached robots duplicating these motions.

planning level module

#include <rccl.h>
#include '"manex.560.h"

extern int circleFxn();
#define CIRCLE_RADIUS 50

main()

{
JNTS rcclparkl;
JNTS rcclpark2;
TRSF_PTR offset, e, track;
POS_PTR mnpPos, objPos;
MANIP_PTR mnpl, mnp2, obj;
float tval, rval;

char *robotNamel "Rsun"; /*1%x/
char *robotName2 = '"Lsun";

rcclSetOptions (RCCL_ERROR_EXIT);

if (!getRobotPosition (rcclparkl.v, "rcclpark'", robotNamel))

{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);

}

if (!getRobotPosition (rcclpark2.v, "rcclpark'", robotName2))

{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);

}

e = allocTransXyz (NULL, UNDEF, 0.0, 0.0, TOOLZ);
track = allocTrans (NULL, UNDEF);
offset = allocTrans (NULL, UNDEF);

RCCL/RCI Release 4.2, December 12,1995

178

8. MULTI-ROBOT CAPABILITIES

mnpl = rcclCreate (robotNamel, 0);
mnp2 = rcclCreate (robotName2, 0);
obj = rcclCreate ("foo", 0); /*2%/

mnpPos = makePosition (NULL, T6, e, EQ, offset, obj—>t6, TL, e);

objPos = makePosition (NULL, T6, EQ, track, TL, T6);
rcclStart();

movej (mnpl, &rcclparkil);
movej (mnp2, &rcclpark2);
waitForCompleted (mnpil); /*3%/
waitForCompleted (mnp2);

setMod (mnpl, ’c’);

setTime (mnpl, F_DEFAULT, F_UNDEF);

solveTrans (offset, mnpPos, offset, mnpl->t6);

move (mnpl, mnpPos);

setMod (mnp2, ’c’);

setTime (mnp2, F_DEFAULT, F_UNDEF);

solveTrans (offset, mnpPos, offset, mnp2->t6);

move (mnp2, mnpPos); /*4x/

getCartVel (mnpl, &tval, &rval);

setCartVel (obj, tval, rval);

getCarthAccel (mnpl, &tval, &rval);

setCartAccel (obj, tval, rval); /*5x/

while (1)

{ distance (obj, "dx", 50.0);
move (obj, obj->last);
distance (obj, "dz", -100.0);
move (obj, obj->last);
distance (obj, "dx'", -100.0);
move (obj, obj->last);
distance (obj, "dz", 100.0);
move (obj, obj->last);
distance (obj, "dx", 50.0);
move (obj, obj->last); /*6%/

waitForCompleted (obj);

setTime (obj, F_DEFAULT, 2000.0);

transMotionEval (track, circleFxn, CIRCLE_RADIUS, obj);
move (obj, objPos); /*¥T*/
move (obj, obj->park); /*8%/

control level module

RCCL/RCI Release 4.2, December 12,1995

8.3. PROGRAM EXAMPLE: “TRACKII” 179

#include <rccl.h>
#include <fastmath.h>
#include '"manex.560.h"

circleFxn (t, radius, mnp)
TRSF *t;

int radius;

MANIP *mnp;

{

float scale;
scale = motionScale(getActiveMotionId(mnp));

radius * (COS (PIT2*scale) - 1.0);
radius * (SIN (PIT2*scale));

t->p.y
t->p.x

NOTE — this example has been coded for the PUMA 560 and livesat trackII.560.cand
trackIICtrl.560.cin$RCCL/demo.rccl. An equivalent program for the PUMA 260 lives at
trackII.260.cand trackIICtrl.260.c.

OFFSET, OFFSET,

Figure37: Kinematic diagram for the program “trackll”.

The names of thetwo robotsare“Rsun” and “Lsun” (/*1*/). The name of the object frame, in
keeping with tradition, is“foo” (/*2*/). The position mnpPos, defined as

T6é E = OFFSET OBJ

RCCL/RCI Release 4.2, December 12,1995

180 8. MULTI-ROBOT CAPABILITIES

connects each manipul ator tothe object frame(/*3*/). OFFSET isset totheinitial valueof T6 E.
The object frameitself is moved either with relative motions specified with respect to obj->1ast,
or by changing the value of TRACK in the smpletarget position objPos:

T6é = TRACK

After the trgjectory generator is started, both robots are moved to their usual starting positions.
The OFFSET transform in mnpPos isthen updated for each of them, and both are bound to position
mnpPos indefinitely (/*4x/). Before each motion request is issued, the transform offset isin-
stantiated for each robot so that mnpPos definesits current location. The velocity and acceleration
limitsfor the object frame are then set equal to those for the first manipulator (/*5x*/) (both robots
are assumed to be of the same type).

The program next executes a loop in which the object frame is made to first trace out a box,
and then acircle. The “box” motion is accomplished with a series of relative motions (/*6x/).
The*“circle’” motionisdone by binding the transform TRACK to acircletracing function (/x7x/).
The last motion in the loop is a move to obj->park, which ensures that the next position of the
object frame does not drift from one iteration of the loop to the next (/*8+/) (the park location for
virtual manipulatorsis the identity transform).

RCCL/RCI Release 4.2, December 12,1995

181

9. Other Features

9.1 Program Modes and Options

Multi-RCCL provides several program-selectable options which will cause the program and the
manipul ators to behave in different ways.

9.1.1 Options

Options are used to control behavior associated with the entire program. Each option has an asso-
ciated bit code, and may be set or read back with the routines

unsigned long rcclSetOptions (mask)
unsigned long mask;

unsigned long rcclClearOptions (mask)
unsigned long mask;

unsigned long rcclPutOptions (mask)
unsigned long mask;

unsigned long rcclGetOptions (mask)
unsigned long mask;

rcclSetOptions() and rcclClearOptions Set or clear, respectively, the options indicated by
mask. rcclPutOptions () loads al the optionsat once. rcclGetOptions() returnsthe settings
of the options specified by mask.

The program options currently implemented include

Default Value

RCCL_ERROR_EXIT not set
RCCL_SIMULATE not set
RCCL_LEAVE_POWER_ON not set

RCCL_ERROR_EXIT,if set, causesmost RCCL and RCI functionsto print diagnostic information
and exit theprogramintheevent of anerror. Thisisuseful intoplevel applicationsand devel opment
work, becauseit savesthe programmer from having to performexplicit error checks on the routines.
If aparticular function responds to this option, it will be documented as doing so in the reference
manual. Setting the option also causes the RCI option EXIT_0ON_ERROR to be set.

RCCL_SIMULATE, if set beforethefirst call to rcclCreate (), will cause the programto runin
simulator mode (see section 9.3). (If it is set after thefirst call to rcclCreate(), it will have no
effect.)

RCCL/RCI Release 4.2, December 12,1995

182 9. OTHER FEATURES

RCCL_LEAVE_POWER_ON causestherobot arm power to beleft onwhen rcclRelease () iscalled,
regardless of the setting of that function’s powerOn argument. The power will still be switched off
if the control task isterminated by an RCI abort.

9.1.2 Modes

Modes control activity specific to aparticular manipulator. They are set and read with routinessim-
ilar to those for the RCCL options:

unsigned long rcclSetModes (mnp, mask)
MANIP *mnp;
unsigned long mask;

unsigned long rcclClearModes (mnp, mask)
MANIP *mnp;
unsigned long mask;

unsigned long rcclPutModes (mnp, mask)
MANIP *mnp;
unsigned long mask;

unsigned long rcclGetModes (mnp, mask)
MANIP *mnp;
unsigned long mask;

unsigned long rcclGetActiveModes (mnp, mask)
MANIP *mnp;
unsigned long mask;

mnp IS the manipulator with which the modes are associated. rcclSetModes() and rcclClear-
Modes set or clear, respectively, the modesindicated by mask. rcc1PutModes () loadsall themodes
at once. rcclGetModes () returnsthe settings of the modes specified by mask. Not al mode set-
tings actually take effect immediately; some take effect only with the next requested motion. Be-
cause of this, rcclGetModes () may not necessarily return the mode settings that are currently ac-
tive; thisinformation should instead be obtained with rcclGetActiveModes ().

The following modes are currently implemented:

Takes Effect Default Value
TRACKING_MODE immediately not set
INTEGRATE_MODE immediately not set
T60_EVAL immediately not set
COMPLETE_AT_TB with next motion set
GRAVITY_FEEDFORWARD immediately not set

RCCL/RCI Release 4.2, December 12,1995

9.1. PROGRAM MODES AND OPTIONS 183

TRACKING_MODE causesthetrajectory generator to continuetracking thelast target position when
it runs out of motion requests to execute. It isuseful when we don’t want a“break in the action” to
occur in the event of atime gap between successive motion requests.

INTEGRATE_MODE enables integration in the PID servo loop controlling the robot’s actuators.
This option isdefined only for real manipul ators running on systems where the attached servo con-
troller box does in fact allow integration to be enabled or disabled. It is principally intended for
PUMA robots connected to the Unimation controller. Enabling integration reduces the steady-state
servo error but can aso reduce stability, particularly in cases where a higher level feedback loop is
implemented within the trgjectory generator.

T60_EVAL causes the trgjectory generator to maintain the observed values of T6 and the joint
values in the t6o and j6o fields of the MANIP structure. This is normally not done because the
information is frequently not needed and is expensive to compute.

COMPLETE_AT_TB tellsthetrajectory generator that thetime at which one motion officially ends
(and another begins) isthe midpoint of the transition to the next motion (except for “stop” requests;
see below). At thistime, the MANIP structure’ shere field is updated, the motions' status flags are
set correctly, computations which have been requested with updateTrans () are carried out, and
any end-of-motionsignal that has been requested with setMotionSig() isdelivered. If thisoption
isnot set, then the time at which a motion officially ends is the beginning of the transition to the
next motion. “stop” requests form an exception to this option: stop motions are always considered
to end at the beginning of the transition to the next motion.

GRAVITY_FEEDFORWARD causes the trajectory generator to compute the gravity loading for the
manipulator and feed it forward to the servo level controllers. This option isvery site specific and
was implemented specifically for the Jet Propulsion Laboratory.

9.1.3 The Parameter File

Some program control parameters are defined in an ASCI| file that isread by the system each time
an RCCL program startsup. Thefileisnamed . rciparams; astandard copy existsin the directory
$RCCL/conf. The user can also create a private copy of thisfilein her/his home directory (which
overridesthe system version) or in the current directory (which overrides al other versions).

A typical .rciparans filelookslikethis:

system parameter defs for rci

name = RCISYS ARBCLOCK=5.0

#

parameter set used by utility programs

name=sysprogs cpus=0x01 scheduling=0N_TRIGGER interval=20

#
parameter set used by RCCL
name=RCCL cpus=0x3 simulate=0 interval=30 timeout=10

Not al of the thingsin thisfile are relevant to RCCL; the parameter sets named RCISYS and
sysprogs are used by other parts of the RCCL/RCI system. In the example here, the RCCL pa-
rameters are at the bottom and are denoted by the construction name=RCCL. All of the parameters

RCCL/RCI Release 4.2, December 12,1995

184 9. OTHER FEATURES

havetheform <field>=<value>, where<field>isafield nameand <value> iseither aninteger,
afloat, or a string (delimited by either white space or by quotes ("'*)). In the above example, the
parameters cpus, simulate, interval, and timeout are defined.

In general, RCCL recognizes the following parameters:

cpus (hex integer)

interval (integer)

speed (float)

tvel (float)

rvel (float)

simulate (boolean integer OR string)
timeout (integer)

scheduling (string)
leavePowerOn (boolean integer)

cpus isabitmask describing which CPUs can be used to run the trgjectory generator tasks. On
single CPU systems, this parameter must have the value 0x1.

interval definesthe sampleinterval (in milliseconds) at which the trgjectory generator isrun.
It is the same quantity which can be set or obtained within the program by rcclSetInterval ()
or rcclGetInterval()

speed isan optiona velocity scale factor; if specified, all the velocity settings in the program
aremultiplied by it. For instance, setting speed=0 . 1 will cause manipul ator motionsto run roughly
1/10 asfast (except for cases wherethe motion timeisset explicitly with setTime ()). Thisscaling
factor is applied on top of the program scaling factor controlled by setSpeed ().

tvel and rvel areoptional parameterswhich define the default trand ational and rotational ve-
locities for Cartesian interpolated motions. These are the same quantities controlled by the prim-
itive setCartVel(). If these parameters are not set, the program uses the defined constants DE-
FAULT_TRANS_VEL and DEFAULT_ROT_VEL.

simulateisanoptional parameter, which, if set to anon-zerointeger, causesthe programtorun
in simulator mode (which has the same effect as setting the option RCCL__SIMULATE at the beginning
of the program). The program will attempt to connect its robots to a smulator program which is
running on the current machine and has the name of the current user. To explicitly specify either
the name of the ssimulator, or the machine on which it isrunning, the simulate parameter can be
given asadtring instead. The format used by thisstring is described in simAddress(5).

timeout isan optional parameter which definesthelength of timethetrajectory generator task(s)
will wait for aresponse from the robots before deciding something is seriously wrong and aborting
the program. Theunitsof timeout are control cycles, soif the control level isbeing run at 50 msec.
(i.e, intervalis50), and timeout iSSet to 10, then the system will wait 500 msec. beforeissuing
atimeout abort. The default value of timeout is 2. If the system real-time response is poor and
this value needs to be boosted, the highest reasonable value is probably around 10.

scheduling definesthe scheduling discipline used by the trgjectory generator task(s). The de-
fault scheduling disciplineisON_TRIGGER. Other scheduling disciplinesare0N_CLOCK and ON_FUNCTION.

RCCL/RCI Release 4.2, December 12,1995

9.2. ERROR HANDLING AND RECOVERY 185

It is also possible to set the scheduling discipline from within an RCCL program by calling rc-
clScheduling() beforethefirstcall torcclCreate (). Consult themanual pageRCCL_params(5)
for details on what these scheduling disciplines are all about.

leavePower0On causes theRCCL_LEAVE_POWER_ON option (see above) to be set during thefirst
call to rcclCreate(). Thiswill cause the robot power to be left on after the program finishes,
providing the program does not terminate with an RCI abort.

More information about the RCCL parametersis given in the manual page RCCL_params (5).
Information about the format of the . rciparams file may befound in the manual page rciParam-
eters(3).

9.2 Error Handling and Recovery

9.2.1 The Error Stack

Most RCCL and RCI routinesreturn either NULL or -1 if they fail, depending on whether theroutine
normally returnsa pointer or an integer. Also, they will usually place diagnostic information on the
task’s error stack. Thisis a specia buffer used for storing error codes and messages. Theideais
that when someinternal routinefails, it places acode and a message on the error stack; when higher
level routines discover the error, they too can place information on the error stack. When the error
is discovered at the top level, the error stack contains afairly complete trace of what went wrong
and where.

A typical thing for atop level application to do when it finds that aroutine has returned an error
isto print the contents of the error stack and exit. This is done with the routine printErrors(),
and is commonly coded like this:

if (routine() == -1) /* error indicated by -1 in this case */
{ printErrors();

exit(-1);
t

NOTE: printErrors () must not becalled fromthecontrol level. rciPrintErrors (NULL)
should be used instead. See below.

One should verify that aroutine doesin fact use the error stack beforecalling printErrors();
otherwise, the error stack is likely to be empty and nothing interesting will be printed. When in
doubt, consult the reference manual entry for the routinein question.

Application software can also add its own error codes and messages to the error stack. The
common way of doing thisisto use theroutine errorMsg():

errorMsg (code, format, values ...)
int code;
char *format;

RCCL/RCI Release 4.2, December 12,1995

186 9. OTHER FEATURES

The error code is the first argument to the routine. The message is specified by aprintf () style
format string (second argument) followed by a variable number of arguments containing values
referred to by the format string. As an example of using the error stack, consider the following
program:

main()
{
if (routinel() == -1)
{ printErrors();
exit (-1);
}
}
routinel ()
{
char *fxnName = "routinel()";
if (routine2() == -1)
{ errorMsg (1, "%s -- function call failed\n", fxnName);
return (-1);
}
return (1);
}
routine2()
{
char *fxnName = "routine2()";
errorMsg (1, "%s -- not written yet!\n", fxnName);
return (-1);
}
Running thiswill produce the following output:
routinel() -- function call failed
routine2() -- not written yet!

If, instead of exiting, the application software wishes to continue running, it should clear the
error stack by calling clearErrors (). Interactive programs will frequently print the error stack,
clear the errors, and continue running, asin

if (routine() == -1)
{ printErrors();
clearErrors();

b

Itisalso possibleto referencetheerror codesontheerror stack. Theseareprimarily intended for
use by software (versus messages, which are mainly for usersto look at). In cases where software

RCCL/RCI Release 4.2, December 12,1995

9.2. ERROR HANDLING AND RECOVERY 187

continues to run after detecting an error, error codes may be useful in helping the software decide
what sort of action to take. The routine getErrorCode(n) returns the error code from the n-th
position on the stack, where O corresponds to the information most recently added. Application
code which uses the error codes typically looks something like this:

if (routine() == -1)

{ if (getErrorCode(0) == ENotSetup)
{ setUpData();
t

t

Error codes are a so sometimes * passed on” when a calling routine adds its own information to
the error stack:

if (routine() == -1)
{ errorMsg (getErrorCode(0), "routine() failed\n");
return (-1);

b

The error codes used by RCCL/RCI aredefined inthefile<errorCodes.h>. Error codesaren’'t
used as much as the error messages.

Each RCI task hasitsown private error stack, which becomes the current stack when the task’s
context isinvoked. If you call errorMsg () fromthe planning level and then fromthe control level,
thefirst message will goto the standard error stack, and the second will go to the control task’serror
stack.

To explicitly reference the error stack for an RCI task from outside that task’s context, one may
use the routines

rciPrintErrors (td)

rciErrorMsg (td, code, fmt, ...)
rciClearErrors (td);
rciGetErrorCode (td, n)

These behave identically to the error stack routines described above, except that they use the error
stack of the RCI task whose descriptor is specified by the additional first argument. If the supplied
task descriptor isNULL, then the current error stack isused. rciPrintErrors() canalso becalled
from the control level, whereas printErrors() cannot. Recall that to get the descriptor for the
RCI task associated with a particular manipulator mnp, one may use the macro MANIP_TASK (mnp).

When an error occurs at the control level, and one wishes to exit the program, it is necessary
tocal rcidbort () instead of exit () (seesection 9.2.2). Thereisaspecia formof rciAbort (),
caled rciAbortErrors (), which transfers the messages on the error stack into the abort message
buffer and then callsrciAbort () itself. A piece of code that invokesthislookslike:

if (routine() == -1)

{ rcilbortErrors();
return;

t

RCCL/RCI Release 4.2, December 12,1995

188 9. OTHER FEATURES

Care should be taken to not let errors from routines that use the error stack go undetected, or
informationwill collect onthe stack. Theerror stacksfor the control tasksare cleared automatically
at the start of every control cycle. For more information on the error stack, see the manual pages
errorStack(3) and rciErrorStack(3), or the RCl User's Guide.

9.2.2 Aborting

Itisillegal tocall exit () fromthecontrol level. Instead, RCI providesan abort utility which allows
aprogram to be aborted (from anywhere) by calling the following routine:

rciAbort (code, format, values ...)
int code;
char *format;

The first argument specifies a code associated with the abort, while the second and following ar-
guments specify an abort message using aprintf () style format string and a variable number of
value arguments.

Internally, rciAbort () causes a SIGHUP signal to be sent to the planning level, where it is
caught by RCI system software. All control tasks are released, which (for RCCL) means the tra-
jectory generator is switched off. The default action is then to print the abort message, along with
some other information (which RCI task called the abort, what CPU was it running on, how many
control cycles had elapsed) and exit the program.

As an example, consider the following ssmple program:

#include <rccl.h>

abortAtOnce (arg, mnp)

int arg;
MANIP *mnp;
{
rciAbort (10, "Aborting for fun, arg=/d\n", arg);
t
main()
{
MANIP *mnp;
mnp = rcclCreate ("foo", 0);
rcclStart () ;
printf ("Here we go ...\n");
runMonitorFxn (mnp, abortAtOnce, 123);
while(1);
t

Thiswill produce the following output and exit:

RCCL/RCI Release 4.2, December 12,1995

9.2. ERROR HANDLING AND RECOVERY 189

Here we go ...

RCI ABORT: task ’'RCCL1’ on cpu 1, cycle 6
Aborting for fun, arg=123

Abortsmay beissued by the application code at any time. They may also beissued by thetrajec-
tory generator if the manipulator hitsajoint limit or encounters asingularity, or some other aspect
of the control process fails. Aborts will also be issued sometimes in the case of internal software
failure.

More information on rciAbort () may be found in the manual pages, or in the RCI User’s
Guide.

9.2.3 Catching Aborts Yourself

As seen in the previous section, the default action for an abort handler to is to print information
about the abort and exit the program. Thisis often satisfactory, but for some applications the user
may wish to catch aborts and process them within the program.

The RCI routine

(*rciAbortHandler) (handlerFxn)
int (*handlerFxn) ();

specifies an application defined function to be called when an abort occurs and returns a pointer
to the previous handler. The system will still catch the abort signal and shut down the tragjectory
generator and other RCI tasks, but it will call the handler function instead of printing the abort in-
formation and exiting. The handler is called with the following arguments:

handler (code, msg, td)
int code;

char *msg;

RCI_DESC *td;

{

b

code and msg are the code and message specified by the call to rciAbort (). td pointsto the de-
scriptor of the RCI task which initiated the abort.

The handler can do various things. For example, it can print out the abort information and exit
the program, similar to what the default handler does (although establishing the handler might then
be somewhat pointless). It might be used to print out extra debugging information before exiting;
thisisacommon application when systems are under development. Or it might just return, inwhich
case the program goes on as before, except the trgjectory generator has been shut off and must be
started again by calling rcclStart ().

Usually, if it desirable to keep executing the program after an abort, the best way to do thisis
to longjmp () out of the abort handler to some defined checkpoint and restart the trajectory gener-
ator from there. If you don’t know what 1ongjmp () is, then you should find out (check either aC

RCCL/RCI Release 4.2, December 12,1995

190 9. OTHER FEATURES

programming guide or the UNIX manual page for longjmp(3), or ask whichever programmer at
your site has the longest hair).

An example of using an abort handler with 1longjmp is given by the following program:

#include <rccl.h>
#include <setjmp.h>

jmp_buf env;

handleAbort (code, msg, td)
int code;

char *msg;

RCI_DESC *td;

{
printf ("\nABORT called\n");
rcclAbortReset () ;
longjmp (env, 1);
b
doAbort (arg, mnp)
int arg;
MANIP *mnp;
{
rciAbort (10, ""); /*1%/
b
main()
{
MANIP *mnp;

int first = YES;

rciAbortHandler (handleAbort);
mnp = rcclCreate ("foo", 0);
if (setjmp (env))
{ first = NO;
t
printf ("Starting ...\n");
rcclStart () ;
if (first == YES)
{ runMonitorFxn (mnp, doAbort, 123);
t
while(1);
t

The program starts, aborts itself, catches the abort with its own handler, and then starts up again.

RCCL/RCI Release 4.2, December 12,1995

9.2. ERROR HANDLING AND RECOVERY 191

Notice that the call to rciAbort () givesanull message, since no use is made of the message by
thehandler (/*1*/). Another discussion of using longjmp () withrciAbort () isfoundinthe RCI
User’s Guide.

There are several caveats that should be observed when doing things with abort handlers. The
first is that many of the RCCL routines are not re-entrant (if you don’'t know what re-entrant is,
consult your local system guru). Basically, this means that things might fail if you call an RCCL
or RCI routine from a handler while another (or perhaps the same) RCCL or RCI function isin
progress in the main program. For instance, consider what might happen if the main program is
insdeacall toallocTrans () when an abort fires. If the handler “long jumps’ out to a catch point,
theoriginal call toallocTrans () will never return properly and some of itsinternal datastructures
could beleft in an undefined state. Technically, thisisaproblem with most UNIX packagesaswell;
for instance, the stdio library isnot guaranteed to function correctly if itsroutinesareexited in this
way. Similar problems can occur if onetriesto call library routinesinside asignal handler.

The RCCL routine rcclAbortReset () should be caled before doing a Longjmp () out of a
handler. This does afew thingsto try and fix up the system state, although it is not guaranteed to
be perfect. In general, care should be taken not to 1ongjmp () out of routinesthat allocate memory
or manipulator objects, suchasallocTrans(),allocMem(),rcclCreate(), etc. Motion request
primitives are generallysafer because the motion queue isreset when rcclStart () iscaled.

9.2.4 Program Crashes

When you run aregular UNIX program and an exception occurslike a divide by zero or amemory
fault, you generally get amessage like

Floating exception (core dumped)

/
or

Segmentation fault (core dumped)

/

The same thing will happen with an RCCL program, if the exception occurs within the planning
task. If instead the exception occursin one of the control tasks, then what happens depends on the
host system.

OnMicroVAX and Sun4 systems, theexception resultsinasignal being sent tothe RCI planning
level, which then prints out some diagnostic information and exits the program. The information
printed includes the CPU on which the exception occurred, some information about the type of
exception, apc (program counter), and astack trace. A program crash for adivide by zero on CPU
1 might look like this:

Program Crash on CPU 1
arithmetic trap, pc = 0x68 (floating divide by zero fault)

Stack trace follows --

RCCL/RCI Release 4.2, December 12,1995

192 9. OTHER FEATURES

PC values arguments

68 : 0 864ac
24927 8c200
17fb9 3c4d4 0
lcaa4d : 3c4d4
1c7b2 3cb40
1c738 1

The pc and the stack trace are useful in deciding where the crash occurred. The pc is the exact
place where the program was executing when the exception happened. The stack traceliststhe call
addresses (ontheleft) and arguments(on theright) for the routinesleading up to the exception point.
The deepest routines are listed in top. Although thisis not a symbolic stack dump, one can use the
UNIX debugger adb to find out what routine names correspond to the indicated addresses.

A word of caution regarding stack dumps on SPARC machines: all theroutineswill belisted as
though they were called with six arguments, even if they werenot. Thisisan artifact of the SPARC
hardware. If the routine was called with more than six long words of argument, only the first six
will be printed. If fewer than six long words of argument were used, then one should just ignore
the remaining words.

There isinsufficient space here to go into great detail about interpreting stack dumps. One can
look at the document doc/stacktrace.doc, which describes how to do thisfor VAXen (the idea
for other machinesis similar). You might ask why a core dump is not created instead of a smple
stack trace. The reason isthat the control level may be executing on another CPU, and uploading
a core dump from the remote CPU was just a bit too complicated to implement right now.

On SGI systems, a crash at the control level will generate a core file for the RCI control level.
A signal is sent to the RCI planning level, which then prints a message similar to

Program crash in RCI control level. Check core file.

and forces a program exit.

On VxWorks systems, a crash at the control level will result in the usual VxWorks exception
message and the suspension of the VxWorkstask, called rciCtrl, which implementsthe RCI con-
trol level. The RCI planning level isnot notified. However, when the planning level exits, the task
rciCtrlisnot deleted (as normally happens), but is left around for examination by VxWorks de-
bugging primitives.

9.3 The Simulator

RCCL/RCI supplies a program, named robotsim, that provides 3D graphic simulation for one or
more robots. These robots can be “connected to” and controlled by an RCCL program. The sim-
ulator provides away to graphically preview programs, single step individual control cycles, and
provide ssimulated sensor inputs.

To use robotsim, the user needs to do two things:

RCCL/RCI Release 4.2, December 12,1995

9.3. THE SIMULATOR 193

1. Start the ssimulator program running, using a command like
% robotsim <robotName>

It may be preferableto do thisin aseparate window, since the ssimulator normally prints mes-
sages while it operates (although this can be suppressed with the -s option).

2. Setthe RCCL program itself to runin simulator mode. There are several ways of doing this,
as discussed in the following section.

9.3.1 Making RCCL Use the Simulator

An RCCL program will run in smulator mode if
rcclSetOptions (RCCL_SIMULATE)

iscalled at thevery beginning of the program (beforethefirst call torcclCreate()), or if theRCCL
parameter simulate IS Set to anon-zero value in the . rciparans file (see section 9.1.3). RCCL
will then connect its robots to a ssmulator program instead of to areal robot controller.

Simulator programs have “names’ so as to distinquish them from one another and allow dif-
ferent ones to be run on the same system at the same time. The program robotsim, for example,
normally sets its name to the user name under which it isinvoked. Unless told otherwise, RCCL
will try to connect its robots to a smulator program which is running on the current machine and
hasthe name of the current user. To specify asimulator running on adifferent machine or with adif-
ferent name, the simulate parameter can be set to a simulator address string instead of anon-zero
integer. Similarly, the routine

rcclSetSimulator(''<address string>")

canbecalledin placeof rcclSetOptions (RCCL_SIMULATE). In both cases the address string can
specify the desired simulator name, and/or the host machine on which it is running. The format of
the address string is described in the manual page simAddress(5).

When running the smulator, particularly on the same machine, it may be desirable to “turn
down” the RCCL sample interval, because of the computational |oad introduced by the simulator.
When doing simulation runs, thisauthor usually setsthetrgjectory generator to run at 100 msec., ei-
ther by using the interval parameter inthe . rciparansfile, or by calling rcclSetInterval ().

In simul ation mode, thetrajectory generator isrun off of SIGALRM instead of akernel level inter-
rupt. The advantage of thisisthat the“control level” isnow runin UNIX user mode. In particular,
it ispossible to set breakpoints in the control level functions and step through them with a debug-
ger. This capability proved invaluable when developing the RCCL system code, particularly the
trajectory generator.

One problem is that the smulator’s use of SIGALRM prevents application software from using
this signal. Specificaly, it means that application software must not call sleep() (which uses
SIGALRM), but must use nap () instead.

RCCL/RCI Release 4.2, December 12,1995

194 9. OTHER FEATURES

9.3.2 Simulator Features

By default, the ssmulator will create a graphics window containing a representation of the robot(s)
being smulated. Graphics are available on systems with Xwindows, SunView, or GL (the SGI
graphicslibrary). Xwindows and SunView use wireframe graphics (with backface removal), while
GL uses full shaded graphics.

Specific features of the smulator program presently include:

¢ theability to “simulate” more than one robot;

¢ aconfiguration filethat can be used to define other graphic objects to be displayed in addition
to the robot;

¢ aninteractivemodewhich allowstheuser to singlestep through control cyclesand set various
“inputs’ to the smulated robot controller;

¢ theability to control the graphics view point by moving a mouse cursor across the window;

¢ an optional graphic “teach pendant”, attached to the graphics window, which can be used to
simulate teach pendant inputs to the RCCL or RCI application.

For detailed information about the smulator program, the manual page robotsim(1) should
be consulted. The smulator is still in a state of development, and new features are frequently ap-
pearing.

If the smulator is run interactively, then there are commands which allow the operator to set
sensors to specific values. The interactive mode also allows the operator to single-step through
different control cycles, setting different sensor values at different points. This can be useful, but
is aso tedious, and many applicationsinvolving rea-world input can be debugged more easily by
using rciPrintf () on-line.

Thelimitation of the simulator isthat it ssimulates only arm movements: it has no knowledge of
the workspace around it or real-world events. Dynamics are only roughly ssimulated in the form of
gravity loadings. However, adding modulesto do dynamic modeling or collision detection should
not be difficult.

9.3.3 A Sample Program Running in Simulation

The best way to learn about the simulator isto runit, so to thisend the reader is encouraged to run
the following example program.

planning level module

#include <rccl.h>
#include <stdio.h>

RCCL/RCI Release 4.2, December 12,1995

9.3. THE SIMULATOR

extern simMonitor();

extern FILE *setpClf;
extern FILE *setplJlf;
FILE *clf;
FILE #*j1f;

main()

{

TRSF_PTR t;
POS_PTR pO;
MANIP *mnp;

JNTS rcclpark;
char *robotlName;

rcclSetOptions (RCCL_ERROR_EXIT | RCCL_SIMULATE); /*x(1)*x/
rcclSetInterval (100); /*(2)*%/

robotName = getDefaultRobot();
if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
{ printf ("position ’rcclpark’ not defined for robot\n");
exit(-1);
}
t = allocTrans (NULL, UNDEF);
pO = makePosition (NULL, T6, EQ, t, TL, T8);

mnp = rcclCreate (robotName, 0);
rcclStart();

runMonitorFxn (mnp, simMonitor, 0); /*(3)*/

movej (mnp, &rcclpark);
waitForCompleted (mnp);
readTrans (mnp->here, t); /*(4)*/

if ((clf = fopen ("clf", "w")) == NULL) /*(B)*/
{ printf ("Can’t open Cartesian log file ’clf’\n");
exit (-1);
}
if ((jl1f = fopen ("jlf", "w")) == NULL)
{ printf ("Can’t open joint log file ’clf’\n");
exit (-1);
}
setpJ1f = jlf;
setpClf = clf;
rcclBlock(); /*(6)*x/

setMod (mnp, ’c’);
t—>p.x += 100.0;

move (mnp, p0);

stop (mnp, 1000.0);
movej (mnp, &rcclpark);
stop (mnp, 1000.0);

RCCL/RCI Release 4.2, December 12,1995

195

196 9. OTHER FEATURES

waitForCompleted (mnp); /*(T)*/

setpJ1lf = NULL; /*(8)*/
setpClf = NULL;

fclose (clf);

fclose (jlf);

rcclRelease (YES);

control level module

#include <rccl.h>

simMonitor (arg, mnp)
int arg;

MANIP *mnp;

{

int sigma, tau;

getActiveMotionCounts (mnp, &tau, &sigma);

NOTE — this example should run on all PUMA robots. Itlivesat sim.c and simCtrl.cin
$RCCL/demo.rccl.

This program is essentially the same as the program “simple”, except that afew changes have
been made to demonstrate the simulator features.

Before running the program, the user needs to set the smulator program running. Thisis best
done with the command

% robotsim <robotName> -p rcclpark

<robotName> should be the name of the default system robot. The option -p rcclparktells
the smulator to start with the robot in the rcclpark position. Thisis not essential, but it saves
the program from having to first move the robot there. Aswas indicated above, it is desirable to
run the smulator on a separate terminal or in another window, since it will try to print things. To
some extent, the smulator emulates the moper program that is normally loaded into Unimatation
controllers, and so when it starts up it prints the same messages asmoper:

<robotName> Moper started
<robotName> listening

Although the simulator handles robots other than PUMASs, it acts asthough they all have aUnimate
controller.

RCCL/RCI Release 4.2, December 12,1995

9.3. THE SIMULATOR 197

If running the smulator in another window isimpossible, then you probably want to runitin
the background, in silent mode so it won't print anything. Do this with the command

robotsim <robotName> -p rcclpark -s &

The ssimulator is now running and waiting for a connection from an RCCL (or RCI) program.
To put itself into simulation mode, the example program here explicitly sets the RCCL_SIMULATE
option and sets the control interval to 100 msec. (/*1x*/, /*2x*/), so thereis no need to make any
changes in the .rciparanms file. When the program starts up, the simulator will come alive by
printing

<robotName> active (slave)

The program moves the manipul ator to an initial position, doesa straight line motion to apoint 100
mm. along the « axis, stops, and returnsto the initial position. When the program calls rcclRe-
lease(),the simulator will print

<robotName> released
<robotName> listening

and go back to waiting for another program to connect toit. In particular, the above program can be
run again without having to restart the simulator — the simulator program, as a separate process, acts
like arunning robot controller and responds to whatever RCCL or RCI program triesto connect to
it. To exit from the simulator, simply break out of it using the interrupt character.

The smulator allows the RCCL system to create trajectory log filesin either joint or Cartesian
coordinates. Thisis the purpose of the variables setpJ1£ (for “setpoint joint log file€”) and set-
pCLlf (“setpoint Cartesian log file”). Whenever either of these is set to avalid file pointer, and the
trajectory generator isrunning in simulation mode, then the output setpointsfor each control cycle
areprintedinto therespectivefile. Informationisprinted to setpJ1£ injoint coordinates, using the
format

<mcount>[T] <jvall> <jval2> <jval3> ...

where mcount is the motion count for that cycle, ° T’ is printed if the motion isin transition, and
the<jvaln> arethejoint values (degreesfor rotational joints and millimetersfor prismatic joints).
Information is printed to setpClf in Cartesian coordinates, for which the format is similar:

<mcount>[B] <px> <py> <pz> <ang> <ux> <uy> <uz>

px, py, and pz arethetrandational coordinates, in millimeters, ang is the equivaent angle of rota-
tion, indegrees, and ux, uy, and uz arethe normalized coordinates of the equivalent axis of rotation.
This representation is used for rotations because it is less ambiguous than Euler angles. A specid
lineis also printed into each log file every time a new motion segment begins, giving information
about what sort of motion segment it is and what some of its parameters are. Trajectory logging
continues until the file pointers are cleared by the planning level.

The program opensthefiles"j1f" and "c1f" at (/*5%/); the setpJ1f and setpClf variables
are set at (/*6%/). The call to rcc1lBlock() makes sure that the trgjectory generator has noticed
that they are set and has started recording before the program proceeds further. When the program
has finished executing, the files should be in the current directory waiting for examination.

RCCL/RCI Release 4.2, December 12,1995

198 9. OTHER FEATURES

9.4 General Notes on the Environment

This section describes how to compile and run RCCL programs. Some of the description is im-
plementation specific. The information given here is supplied in greater depth in the RCCL/RCI
Sartup and Installation Guide. In case of conflict, the latter should take priority.

9.4.1 The User’s UNIX Environment

The first thing an RCCL/RCI user must do is set up an environment. Thisis best done by making
afew entriesin her/his . cshrc file. The basic set of entriesisillustrated by this example:

setenv RCCL /uil/rccl

setenv MANPATH $RCCL/man:/usr/man

setenv C_LD $RCCL/bin/ld # for MicroVAX systems only

set path=(. $RCCL/bin)

#

alias talkRobotX ’termlink -d /dev/RobotX -s 9600’

alias loadRobotX ’down -d /dev/RobotX -e 10000 -a 10000 \
$RCCL/1si11/RobotX -t~

Each of these will be described below.

The environment variable RCCL should be set to the root directory of the RCCL system (which
is/ul/rcclinthe example). All further references to the root directory can now be made relative
to this.

The environment variable MANPATH should be set to alist of directories used by the UNIX man
program when looking for entries. It should contain $RCCL/man in addition to the usual directory
/usr/man; thiswill make RCCL reference manual pages available on-line. MANPATH may have a
different name on some UNIX systems.

On MicroVAX systems only, the environment variable C_LD must be set to $RCCL/bin/1d.
The user’s path should be set to contain $RCCL/bin, ahead of /bin and /usr/bin.

The aliases 1oadRobotX and talkRobotX are specific to systems interfaced to the Unimate
PUMA controller. They are used toload and talk to the interface software that runsin the controller
box, and are described in the next section.

9.4.2 Starting Things Up

The information in this section is mostly specific to systems interfaced to Unimate Mark X con-
trollers. Again, moredetailed informationisgiveninthe RCCL/RCI Startup and I nstallation Guide.
This section will review the basic steps.

1. Check that the robot controller is powered up. If not, turnit on. In the case of the Unimate
controller, get out of VAL and into ODT (the LSI11 prom monitor), which is easily done by
toggling the controller’s“run/halt” switch.

RCCL/RCI Release 4.2, December 12,1995

9.4. GENERAL NOTES ON THE ENVIRONMENT 199

2. Check that the necessary RCI interface software is running on the robot controller (for Uni-
mation controllers, thissoftwareis bundled into aprogram called moper). The easiest way to
tell if thisistrueisto try and run the RCCL program and see if the system complains about
not being able to connect to the controller. If thereis a problem, the program will abort with
a set of messages that look something like:

RCI ABORT: task ’'RCCL1’ on cpu 1, cycle O
rbtStartup() -- cannot connect to robot
priAttach() -- other end not listening

A similar thing will happen if the program isbeing run in ssimulator mode and the ssimulator
program is not running.

The moper program used on Unimation controllers is downloaded from the host machine
through the controller’s serial console line, using a program called down. The controller is
assumed to beinitially in ODT. down takes several arguments describing the entry point, the
load address, the name of the UNIX file containing themoper executable, the UNIX serial de-
vice connected to the controller console line, and aflag telling down to exit after it has started
moper UpP. These arguments are usually bundled into an aias called 1oadRobotX, such as
the one defined in theabove . cshrc example. The . cshre filein $RCCL containsthe sample
load aliases 10ad260, 10ad560, and Load760, which load the default moper programs (de-
finedin $RCCL/1s1i11) for typical PUMA 260, 560, and 760 robot/controller combinations.
Another alias, talkRobotX, is usually defined as well; thisinvokes the program termlink
and is used to create avirtual terminal interface to moper (over the controller’s seria line)
onceit isloaded.

3. Check that therobot iscalibrated. Again, if itisnot, the RCCL programwill exit with an error
saying so. To calibrate the PUMA robots, one usually uses the program pumacal, which is
described in the manual pages.

In summary, atypical startup procedure will be given as an example. The example system con-
sists of a PUMA 560 with a Unimation Mark Il controller connected to the RCCL host system.
Assume that the robot is named Fred and that all of its aliases are set up accordingly.

Turn on robot controller and toggle the run/halt switch
to force an exit from VAL.
Download moper using the alias loadFred:

% loadFred
disabled logins
a.text 19760, a.data 3056, a.bss 1334
Starting address is 4096
Entry address is 4096
Loading 24150 bytes ...

Loading completed.

RCCL/RCI Release 4.2, December 12,1995

200 9. OTHER FEATURES

Program terminated

/A
Now calibrate the robot.

% pumacal Fred

/

You should now be able to run RCCL applications indefinitely, until the controller is powered
off; moper will remain up and the robot should stay calibrated even if the host system crashes.

9.4.3 Compiling RCCL programs
9.4.3.1 Using non-ansi compilers

If you are compiling RCCL applicationsusing anon-ansi C compiler, you may need to define some
specia preprocessor symbols so that the compiler can handle the RCCL/RCI includefiles.

#define NO_PROTOTYPES 1
Define thisif your compiler does not understand prototypes (which applies
to some compilers on SunOS and BSD systems).

#define const
Define this if your compiler does not understand const (which applies to
some compilers on SunOS and BSD systems).

#define void int
Definethisif your compiler doesnot understand void (whichappliesto some
compilerson BSD systems).

If madeinside the application source code, these definitions should precede theinclusion of any
RCCL/RCI header files. You may want to put whatever definitionsyou usein anincludefileof their
own.

Alternatively, the definitionscan bemade directly on thecommand linefor cc (or rcc, described
in the next section). Usually the -D option is used to do this. The arguments to define everything
would look like

cc file.c -DNO_PROTOTYPES -Dconst= -Dvoid=int

9.4.3.2 The rcc command

RCCL programs should be compiled with the special rcc command instead of cc (theusual UNIX
command for the C compiler). rcc isafront end to cc which functionsidentically except that (1) it
automatically references the necessary RCCL libraries and include directories (including the math
library 1m), (2) it automatically namesits output file after thefirst distinct modulethat appearsinits
argument list, and (3) it takes the necessary steps to ensure that code in the control level modulesis

RCCL/RCI Release 4.2, December 12,1995

9.4. GENERAL NOTES ON THE ENVIRONMENT 201

loaded contiguously and can hence be easily locked down (or loaded into an auxiliary CPU) when
necessary.

When using the rcc command, all modules containing code or data referenced by the control
level should be grouped together and placed on the command lineto theright of the specia keyword
argument “CTRL":

% rcc <planning level files> CTRL <control level files>

Other than this, rcc acceptsall the usual argumentsused by cc, including - ¢, which suppressesthe
link phase to permit separate compilation.

We will now present a couple of examples. The example programin section 1.5 iscontained in
thesinglefile simple.560.c. There are no control level modules. To compileit, we simply do

% rcc simple.560.c

The necessary librariesand include directorieswill be referenced automatically, and the executable
will be placed in the file simple.560. To name the executable something else, just the usual -o
option can be used:

% rcc simple.560.c -o a.out
Asamorecomplicated example, consider the example programin section 5.2. Thisiscontained
intwo files, zigzag.560.c and zigzagCtrl.560.c. The second module contains control level
code, so the compilation command looks like this:

% rcc zigzag.560.c CTRL zigzagCtrl.560.c
gzag gzag

The executable will be placed in thefilezigzag.560. The modules could also be compiled sepa-
rately, asfollows:

h rcc -c zigzag.560.c
h rcc -c CTRL zigzagCtrl.560.c
h rcc zigzag.560.0 CTRL zigzagCtrl.560.0

Asalast example, suppose we have the planning level filesplani.cand plan2.c, the control
level filesctrll.candctrl2.c,andalibrarymylib . a, which contains code that will be executed
by both the planning and control levels. This can be compiled with the command

h rcc -c planl.c plan2.c CTRL ctrll.c ctrl2.c myLib.a

Moreinformationonthercc command can befoundinthemanual pagercc (1), andthe RCCL/RCI
Sartup and Installation Guide.

RCCL/RCI Release 4.2, December 12,1995

202 9. OTHER FEATURES

9.4.4 The Utility Programs

Thereareaset of programsavailablefor movingtherobot arm around (move), calibratingit (pumacal),
putting itsjointsin limp, or “free” mode (free), putting thejointsin weightlessmode (zerograv),
and measuring calibration parameters (primecal and potcal). These programs are not written
using RCCL; instead, they are written using a separate, joint-level-only, trgjectory generator called
CHASE, which livesinthedirectory $RCCL/chase. Each of these programsisdescribed in the RCI
User’'s Guide, aswell asin individual manual pages.

In general, the utility programstake the name of the robot to be controlled as an argument. If no
name is given, then the name of the system default robot, defined in thefile conf/defaultRobot,
is assumed.

There isaso ageneral purpose calculator program, caled arc (which stands rather lamely for
“A Robotics Calculator”). It is something of a cross between abasic infix calculator, RCCL, and
“Matlab”. It permits evaluation of arithmetic expressions (including matrices), variable assign-
ment, and various functions, including many of the RCCL functions for manipulating transforms
and vectors, aswell as the kinematic functionsfor specific robots.

9.4.5 The Utility Routines

RCI provides some utility routines which may used by RCCL applications. Only a couple of the
more useful ones will be described here. More information may be obtained from either the RCI
Reference Manual or the RCI User’s Guide.

The routine
char *getDefaultRobot ()

reads thefile $RCCL/conf/defaultRobot to obtain the name of the default system robot. Thisis
mainly useful for sites which make predominant use of one robot.
The routine
getRobotPosition (jvalues, posName, robotName)
float *jvalues;

char *posName;
char *robotName;

readsthefile $RCCL/conf/<robotName> . pos and looksfor a set of joint values named posName
If found, they arereturned inthe array jvalues.

9.4.6 Limitations

There are afew things RCCL users should avoid, or at |east be wary of:

control level syscalls—
System calls should be avoided from the control level. This restriction is
mandatory on Sun4 and MicroVAX systems, where system calls will result

RCCL/RCI Release 4.2, December 12,1995

9.4. GENERAL NOTES ON THE ENVIRONMENT 203

signals—

forking —

in a program crash. On systems such as VxWorks and the SGI machines,
wherethereal-timesupportisprovided directly by the host operating system,
system callsare possible but care should be used because they are oftentime
consuming and may interfere with the control level timing.

Do not use the UNIX signals SIGHUP or SIGXCPU. These have been expro-
priated by RCI for signaling abort and crash conditions. Also, when running
with the smulator, do not use the signal STGARLM. The simulator uses this
to control the trgjectory task. This also means that one cannot use sleep ()
when running an RCCL program under thesimul ator, sincethisusesSIGALRM.
Instead, the routinesdelay () or nap () may be used.

Sun4 systemsdo not tolerateacall to fork () or vfork () fromthe planning
level while the trgjectory generator isturned on.

RCCL/RCI Release 4.2, December 12,1995

204 9. OTHER FEATURES

References

[Allworth81] S.T. Allworth, Introduction to Real-Time Software Design. MacMillan Press, Ltd.,
London, 1981.

[Hayward and Paul 1986] Vincent Hayward and Richard Paul, “ Robot Manipulator Control Un-
der UNIX: RCCL, aRobot Control C Library”. International Journal of Robotics Research,
Winter, pp. 94 —111. (Vol. 5, No. 4)

[Kernighan and Ritchie 1978] Brian K. Kernighan and Dennis Ritchie, The C Programming
Language. Prentice-Hall, Englewood Cliffs, New Jersey 07632, 1978.

[Lee1982] C.S.G.Lee, “Robot ArmKinematics, Dynamics, and Control”. Computer, December
1982, pp. 62 —80. (Vol. 15, No. 12)

[Lloyd, etal 1988] JohnLloyd, MikeParker, and Rick McClain, “Extending theRCCL Program-
ming Environment to Multiple Robots and Processors’. |EEE Conference on Robotics and
Automation, Philadelphia, Pa., April 24-29, 1988, pp. 465 — 469

[Lloyd 1985] John Lloyd, “Implementation of a Robot Control Development Environment”, (M.
Eng. Thesis). Dept. of Electrical Engineering, McGill University, Montreal, Canada, De-
cember 1985.

[Paul 1981] Richard P. Paul, Robot Manipulators. Mathematics, Programming, and Control.
MIT Press, Cambridge, Mass., 1981.

[Paul and Shimano1976] Richard P. Paul and Bruce Shimano, “Compliance and Control”. Pro-
ceedings of the Joint Automatic Control Conference, West Lafayette, Indiana, July 27 — 30,
1976, pp. 694 — 699.

RCCL/RCI Release 4.2, December 12,1995

