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Overview (Review) SVM

Support Vector Machines

I a.k.a. maximum margin classifiers

I a family of related

I supervised

I learning methods

I for classification and regression

I try to minimize the classification error

I while maximizing the geometric margin
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Overview (Review) SVM

Support Vector Machine

I based on the linear classifier

Four new main concepts:

I Maximum margin classification

I Soft-margin classification for noisy data

I Introduce non-linearity via feature maps

I Kernel trick: implicit calculation of feature maps

I use Quadratic Programming for training

I polynomial or gaussian kernels often work well
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Overall concept and architecture

I select a feature space H and a mapping function Φ : x 7→ Φ(x)

I select a classification (output) function σ

y(x) = σ(
∑

i ϑi 〈Φ(x),Φ(xi )〉)

I during training, find the support-vectors x1 . . . xn

I and weights ϑ which minimize the classification error

I map test input x to Φ(x)

I calculate dot-products 〈Φ(x)Φ(xi )〉
I feed linear combination of the dot-products into σ

I get the classification result
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Maximum margin and support vectors

"support vectors"

denotes +1

denotes -1

fx y

I the (linear) classifier with the largest margin

I data points that limit the margin are called the support vectors
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Soft-margin classification

I allow some patterns to violate the margin constraints

I find a compromise between large margins

I and the number of violations

Idea:

I introduce slack-variables ξ = (ξi . . . ξn), ξi ≥ 0

I which measure the margin violation (or classification error)
on pattern xi : y(xi )(w · Φ(xi ) + b) ≥ 1− ξi

I introduce one global parameter C which controls the
compromise between large margins and the number of
violations
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Soft-margin classification

I introduce slack-variables ξi

I and global control parameter C

maxw ,b,ξ P(w , b, ξ) = 1
2w2 + C

∑n
i=1 ξi

subject to:
∀i : y(xi )(w · Φ(xi ) + b) ≥ 1− ξi

∀i : ξi ≥ 0

I problem is now very similar to the hard-margin case

I again, the dual representation is often easier to solve
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Nonlinearity through feature maps

General idea:

I introduce a function Φ which maps the input data into a higher
dimensional feature space

Φ : x ∈ X 7→ Φ(x) ∈ H

I similar to hidden layers of multi-layer ANNs

I explicit mappings can be expensive in terms of CPU and/or
memory (especially in high dimensions)

I “Kernel functions” achieve this mapping implicitly

I often, very good performance
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Common SVM feature maps
kernels

I zk = ( polynomial terms of xk of degree 1 to q)

I zk = ( radial basis functions of xk)

I zk = ( sigmoid functions of xk)

I . . .

I combinations of the above, e.g.

I K (x , z) = K1(x , z) + K2(x , z);

I K (x , z) = K1(x , z) · K2(x , z);

Note:

I feature map Φ only used in inner products

I for training, information on pairwise inner products is sufficient
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Quadratic polynomial map: scalar product

I Calculating 〈Φ(x),Φ(y)〉 is O(m2)

I For comparison, calculate (x · y + 1)2 :

I (x · y + 1)2 = ((
∑m

i=1 xi · yi ) + 1)2

=
(∑m

i=1 xiyi

)2
+ 2

(∑m
i=1 xiyi

)
+ 1

=
∑m

i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

=
∑m

i=1(xiyi )
2 + 2

∑m
i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

= Φ(x) · Φ(y)

I We can replace 〈Φ(x),Φ(y)〉 with (x · y + 1)2, which is O(m)
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References: web resources

I see full references in part one (AL 3a)

I L. Bottou, O. Chapelle, D. DeCoste, J.Weste (Eds), Large-Scale
Kernel Machines, MIT Press, 2007

I C. J. C. Burges, A Tutorial on Support Vector Machines for
Pattern Recognition, Data Mining and Knowledge Discovery 2,
121–167 (1998)

I A.Ben-Hur, D. Horn, H. T. Siegelmann, V. Vapnik, Support
Vector Clustering, Journal of Machine Learning Research 2,
125–137 (2001)
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Applications of SVM

I data clustering

I multi-class classification

I visual pattern (object) recognition

I text classification: string kernels

I DNA sequence classification

I function approximation

I . . .

I of course, streamlined kernels for each domain

I let’s take a look at a few examples. . .
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SVC - support vector clustering
Ben-Hur, Horn, Siegelmann, Vapnik (2001)

I map data points to high-dimensional feature space

I using the Gaussian kernel

I look for the smallest sphere that encloses the data

I map back to data space

I to get the set of contours which enclose the cluster(s)

I identifies valleys in the data probability distribution

I use soft-margin SVM to handle outliers

Hendrich & Zhang 14



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for clustering SVM

SVC: Example data set and results
Gaussian kernel K(x , z) = e−q (x−z)2 , radius q
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Example SVM applications - SVM for clustering SVM

SVC: Example data set, number of support vectors
Gaussian kernel K(x , z) = e−q (x−z)2 , radius q
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SVC: Noisy data

I Use soft-margin SVM learning algorithm

I with control parameter C

I and slack variables ξi ≥ 0

I non-support vectors: inside the cluster

I support vectors: on the cluster boundary

I bounded support vectors: outside the boundary (violation)

I number of bounded support vectors is nbsv < 1/C

I fraction of outliers: p = 1/NC
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Example SVM applications - SVM for clustering SVM

SVC: Noisy data and bounded support vectors
Soft-margin SVM learning with control parameter C
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Example SVM applications - SVM for clustering SVM

SVC: Noisy data and bounded support vectors
Soft-margin SVM learning with control parameter C

I Remember: larger C implies larger margin

I at the cost of more bounded support vectors

I with yi 〈wi , xi 〉 ≥ 1− ξi
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Example SVM applications - SVM for clustering SVM

SVC: Strongly overlapping clusters

Hendrich & Zhang 20



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for clustering SVM

SVC: Comparison with classical clustering
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Selecting the control parameter

I training result depends on the specified control parameter C

I how to select the value of C?

I depends on the application and training data
I Numerical Recipes recommends the following

I start with C = 1
I then try to increase or decrease by powers of 10
I until you find a broad plateau where the exact value of C doesn’t

matter much
I a good SVM solution should classify most patterns correctly,
I with many αi = 0 and many αi = C , but only a few in between
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Multi-class classification

I many practical classification problems involve more than just
two classes!

I for example, clustering (see above), object recognition,
handwritten digit and character recognition, audio and natural
speach recognition, etc.

I but standard SVM handles only exactly two classes

I “hard-coded” in the SVM algorithm

I What to do?
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Example: multi-class classification

I exmulticlassall from SVM-KM toolbox (3 classes)

I demo
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One versus the rest classification

To get an M-class classifier:

I construct a set of M binary classifiers f 1, . . . , f M

I each trained to separate one class from the rest

I combine them according to the maximal individual output
before applying the sgn-function

arg max
j=1,...,M

g j(x), where g j(x) =
m∑

i=1

(
yiα

j
ik(x , xi ) + bj

)

I the winner-takes-all approach
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One versus the rest: winner takes all

I the above algorithm looks for arg max g j(x)

I the M different classifiers have been trained
I on the same training data
I but with different binary classification problems

I unclear whether the g j(x) are on comparable scales
I a problem, when several (or none) classifiers claim the pattern
I try to balance/scale the g j(x)

I all classifiers trained on very unsymmetrical problems
I many more negative than positive patterns

I (e.g. digit-7 vs. all handwritten characters and digits)
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One versus the rest: reject decisions

I The values of g j(x) can be used for reject decisions in the
classification of x

I consider the difference between the two largest g j(x) as a
measure of confidence

I if the measure falls short of a threshold θ, the classifier rejects
the pattern

I can often lower the error-rate on other patterns

I can forward un-classified patterns to human experts
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Pairwise classification

I train a classifier for each possible pair of classes
I for M classes, requires M(M − 1)/2 binary classifiers

I digit-0-vs-digit-1, digit-0-vs-digit-2, . . . , digit-8-vs-digit-9

I (many) more classifiers than one-vs-the-rest for M > 3

I and probably, longer training times

I but each individual pairwise classifier is (usually) much simpler
than each one-vs-the-rest classifier
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Pairwise classification: tradeoff

I requires (M − 1)M/2 classifiers vs M one-vs-the-rest

I each individual classifier much simpler
I smaller training sets (e.g. digit-7 vs. digit-8)

I for super-linear learning complexity like O(n3), the shorter
training times can outweigh the higher number of classifiers

I usually, fewer support vectors
I training sets are smaller
I classes have less overlap

Hendrich & Zhang 29



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for multi-class classification SVM

Pairwise classification: tradeoff

I requires (M − 1)M/2 classifiers vs M one-vs-the-rest

I but fewer support vectors per classifier

I if M is large, will be slower than M one-vs-the-rest
I example: digit-recognition task and the following scenario:

I after evaluating the first few classifiers,
I digit 7 and digit 8 seem unlikely (“lost” in the first rounds)
I rather pointless to run the digit-7-vs-digit-8 classifier

I embed the pairwise classifiers into a directed acyclic graph
I each classification run corresponds to a graph traversal
I much faster than running all pairwise classifiers
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Error-correcting output coding

I train a number of L binary classifiers f 1, . . . , f L

I on subproblems involving subsets of the M classes
I e.g. separate digits 0..4 from 5..9, 0..2 from 3..9, etc.

I If the set of binary classifiers is chosen correctly,

I their responses {±1}L determine the output class of a test
pattern

I e.g., log2(M) classifiers on binary-encoding . . .

I use error-correcting codes to improve robustness against
individual mis-classifications

I note: newest schemes also use the margins of the individual
classifiers for decoding
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Error-correcting output coding

I example: Hamming (7,4) code
I linear error-correcting block-code
I 4 databits, 3 parity bits
I detects and corrects 1-bit errors
I generator matrix G and decoding matrix H

I more efficient codes
I BCD (Bose, Chaudhuri, Hocquenghem)

e.g. BCH(15,7,5) corrects 2-bit errors
I RS (Reed-Solomon)
I . . .
I large block-sizes required for low overhead
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Multi-class objective functions
LWK p.213

I re-design the SVM algorithm to directly handle multi-classes

I yi ∈ {1, . . . M} the multi-class label of pattern xi

I m ∈ {1, . . . ,M}

minimizewr∈H,ξr
i ∈IRm,br∈IR

1

2

M∑
r=1

||wr ||2 +
C

m

m∑
i=1

∑
r 6=yi

ξr
i

subject to 〈wyi , xi 〉+ byi ≥ 〈wr , xi 〉+ br + 2− ξr
i , with ξr

i ≥ 0.

I optimization problem has to deal with all SVMs at once

I large number of support vectors

I results comparable with one-vs-the-rest approach
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Summary: multi-class classification
LWK p.214

I Basic SVM algorithm only supports binary classifications

I Several options for M-class classification

1 M one-versus-the-rest classifiers

2 M(M − 1)/2 pairwise binary classifiers

3 suitably chosen subset classifiers (at least, log2 M),
plus error-correcting codes for robustness

4 redesigned SVM with multi-class objective function

I no approach outperforms all others

I often, one-vs-the-rest produces acceptable results
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SVN for visual pattern recognition

I one very popular application of SVNs

I can work on raw pixels

I or handcrafted feature maps

I MNIST handwritten digit recognition

I NORB object recognition

I histogram based classification
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MNIST handwritten characters data set

I set of handwritten digits

I based on NIST database 1 and -3 (b&w)

I 20x20 pixel grayscale images (interpolated from 28x28 b&w)

I used as a benchmark for (multi-class) classifiers

I training set with 60.000 patterns

I test set with 10.000+ patterns

I http://yann.lecun.com/exdb/mnist/

I current best classifier achieves 0.38% error
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MNIST data set: example ’4’

http://www.cvl.isy.liu.se/ImageDB/images/external images/MNIST digits/mnist train4.jpg
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MNIST benchmark

I typical published results on raw MNIST

I 0% percent errors on training set
I about 3% errors on the test set

I apparently, training and test set don’t match perfectly

I some test patterns quite different from training patterns

I difficult to achieve very good error rates

I several approaches based on extra training patterns
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MNIST results overview
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MNIST experiments with SVMs

I G. Loosli, L. Bottou, S. Canu, Training Invariant SVMs Using
Selective Sampling, in Large-Scale Kernel Machines, 2007

I an approach to improve the classification error rate

I by increasing the training set

I with automatically synthesized patterns

I derived from the original training patterns

I 100 random deformations of each original image

I 6 million training images. . .

Hendrich & Zhang 40



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for visual pattern recognition SVM

Virtual training set

I synthesize new training patterns
I by applying deformations on each original pattern

I affine transformations (sub-pixel accuracy)
translations, rotations, scaling

I deformation-fields (elastic transformation)
I thickening
I . . .

Goal:

I a transformation invariant classifier

I more robust to slight variations in the test patterns

I but handling transformations can also increase the test set error

I of course, much higher training effort and time
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MNIST modified training patterns
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MNIST effect of transformations
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LASVM training algorithm

I due to the problem size, training is done using an iterative
algorithm, one pattern a time.

I several choices to select the next training pattern:
I random selection: picks a random unseen training example
I gradient selection: pick the most poorly classified example

(smallest value of yk f (xk) among 50 randomly selected unseen
training examples)

I active selection: pick the training example that is closest to the
decision boundary (smallest value of |f (xk)|) among 50 randomly
selected unseen training examples)

I autoactive selection: randomly sample at most 100 unseen
training examples, but stop as soon as 5 fall inside the margins
(will become support vectors). Pick the one closest to the
decision boundary.

Hendrich & Zhang 44



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for visual pattern recognition SVM

MNIST benchmark results
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MNIST benchmark results explanation
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MNIST evolution of training and test errors
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MNIST SVM experiment results
G. Loosli, L. Bottou, S. Canu, Training Invariant SVMs Using Selective Sampling
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NORB

I Natural images of 3D-objects, 96x96 pixels

I 50 different toys in 5 categories

I 25 objects for training, 25 for testing

I each object captured in stereo from 162 viewpoints
(9 elevations, 18 azimuths)

I objects in front of uniform background

I or in front of cluttered background (or missing object)

I http://www.cs.nyu.edu/˜ylclab/data/norb-v1.0/
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NORB normalized-uniform training set
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NORB jittered-cluttered training set
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NORB data set

I recognition basically can only rely on the shape of the object

I all other typical clues eliminated or unusable

I different orientations (viewing angles)

I different lighting conditions

I no color information (grayscale only)

I no object texture

I different backgrounds (cluttered set)

I no hidden regularities

Hendrich & Zhang 52



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for visual pattern recognition SVM

Error rates: normalized uniform set

I five binary SVMs, one for each class

I trained on the raw pixel images (d = 96 · 96 · 2 = 18432)

I convolutional network uses handcrafted feature map

I hybrid system trains SVMs on those features
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Feature functions for the NORB set
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Example SVM applications - SVM for visual pattern recognition SVM

Some feature functions for the NORB set
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Error rates: jittered cluttered set

I again, SVM trained on raw pixels

I convolutional network uses handcrafted feature maps

I hybrid system trains SVM on those feature maps
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Error rates: SVM training and setup

I SVM with 43% error-rate?

I six one-vs-the-rest binary SVMs (one per catogory)
I training samples are raw 108x108 pixel images

I again, use a virtual training set
I ±3 pixel translations
I scaling from 80% to 110%
I rotations ±5o

I changed brightness ±20 and contrast
I a total of 291.600 images

I overall, a 23 328-dimensional input vector

I only the Gaussian width σ as a free parameter
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Poor performance of SVM on raw pixels?

I Gaussian kernel basically computers matching score (based on
Euclidean distance) between training templates and the test
pattern

I very sensitive to variations in registration, pose, illumination

I most of the pixels in NORB are background clutter

I hence, template matching dominated by background
irregularities

I a general weakness of standard kernel methods: their inability
to select relevant input features

I feature maps must be hand-crafted by experts
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Example: Histogram correlation kernel
A. Barla et.al., Image Kernels, LNCS 2388, 83–96

I calculate image histograms

I use histogram intersection as the feature

I instead of in addition to raw pixels

I applied to indoor/outdoor image classification

I e.g. for improved color image printing

I test set with 300 indoor and outdoor test images each

I http://www.benchathlon.net/img/todo/

Hendrich & Zhang 59



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for visual pattern recognition SVM

Histogram intersection kernel

I histograms A and B of images Aim and Bim with N pixels

I each histogram has m bins, Ai (i = 1, . . . ,m)

I histogram intersection:

Kint(A,B) =
m∑

i=1

min{Ai ,Bi}

I note: this can be written as a kernel

I represent A as an N ×m vector A defined as A :=

(

A1z }| {
1, 1, . . . , 1, 0, 0, . . . , 0| {z }

N−A1

,

A2z }| {
1, 1, . . . , 1, 0, 0, . . . , 0| {z }

N−A2

, . . . ,

Amz }| {
1, 1, . . . , 1, 0, 0, . . . , 0| {z }

N−Am

)

I Then Kint(A,B) = A · B
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Histogram kernel: recognition results

kernel r.r.(%)
histogram intersection 93.1
linear 88.8
2-nd deg polynomial 89.2
3-rd deg polynomial 89.4
4-rd deg polynomial 88.1
Gaussian (σ = 0.1) 89.1
Gaussian (σ = 0.3) 86.5
Gaussian (σ = 0.5) 87.8

I 600 training images, 123 indoor and 260 outdoor test images

I histogram used 15× 15× 15 bins in HSV colorspace

I other kernels trained on pixel data
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Summary: visual pattern recognition

I SVM can be trained on and applied to raw pixel data

I use virtual training set for better generalization

I but no performance guarantees

I good results on MNIST

I but total breakdown on NORB

I must use appropriate feature maps

I or hybrid architectures
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Text classification
LSKM p0.41

I another high dimensional problem. . .
I e.g. Reuters RCV1 text corpus

I 810.000 news stories from 1996/1997
I partitioned and indexed in 135 categories
I http://trec.nist.gov/data/reuters/reuters.html

I represent word frequencies, e.g. bag of words

I or represent substring correlations

I train a SVM on the corpus

I classify the given input texts
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Bag of words representation
LWK 13.2

Sparse vector kernel

I map the given text into a sparse vector

I where each component corresponds to a word

I and component is set to one when the word occurs

I dot products between such vectors are fast

I but ignores the ordering of the words

I no vicinity information (e.g. words in one sentence)

I only detects exact matches (e.g. mismatch on mathces)
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String kernel

I efficient kernel that computes the dot product

I in the feature space spanned by all substrings of documents

I compuational complexity is linear in the document length and
the length of the substring

I allows to classify texts on similarity of substrings

I the more substrings match, the higher the output value

I use for text classification, DNA sequence analysis, . . .
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String kernel: definitions

I a finite alphabet Σ, so Σn the set of all string of length n

I Σ∗ =
⋃∞

n=0 Σn the set of all finite strings

I length of a string s ∈ Σ∗ is |s|
I string elements are s(1) . . . s(|s|)
I s t is the string concatenation of s and t

subsequences u of strings:

I index sequence i := (i1, . . . , i|u|) with 1 ≤ i1 < dots < i|u| ≤ |s|
I define u := s(i) := s(i1) . . . s(i|u|)

I l(i) := i|u| − i1 + 1 the length of the subsequence in s
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String kernel: feature space

I feature space H := IR(Σn) built from strings of length n

I one dimension (coordinate) for each element of Σn

I feature map

[Φn(s)]u :=
∑

i :s(i)=u

λl(i)

I with decay parameter λ, 0 < λ < 1

I the larger the length of the subsequence in s, the smaller its
contribution to [Φn(s)]u.

I sum over all subsequences of s which equal u
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String kernel: the actual kernel

I consider the dimension of H for the string asd

I [Φn(Nasdaq)]asd = λ3 (one exact match of length 3)

I [Φn(lass das)]asd = 2λ5 (two matches of length 5:
tasttdtt and tatstdtt)

I kernel corresponding to the map Φ(n) is:

kn(s, t) =
∑
u∈Σn

[Φn(s)]u[Φn(t)]u =
∑
u∈Σn

∑
(i ,j):s(i)=t(j)=u

λl(i)λl(j)

I normalize: use k(s, t)/
√

k(s, s)k(t, t)
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DNA sequence classification
LWK table 13.2 p.417

I DNA sequence contains coding sequences which encode
proteins, but also untranslated sequences

I find the start points of proteins (TIS: translation initiation sites)

I out of {A,C ,G ,T}, typically an ATG triplet

I certain local correlations are typical

I matchp+j(x , x ′) is 1 for matching nucleotides at position p + j ,
0 otherwise

I construct kernel that rewards nearby matches

winp(x , x ′) =
(∑+l

j=−l νjmatchp+j(x , x ′)
)d1

k(x , x ′) =
(∑l

p=1 winp(x , x ′)
)d2
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WK kernel with shifts
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SVM-based regression

I use SVMs for function approximation?

I especially, for high-dimensional functions?

basic idea is very similar to classification:

I estimate linear functions f (x) = 〈w , x〉+ b

I based on (x1, y1), . . . , (xm, ym) ∈ H × IR
I use a ||w ||2 regularizer (“maximum margin”)

I use optimization algorithm similar to SVM training

I use feature-maps to generalize to the non-linear case
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ε-insensitive loss function
Vapnik 1995

I need a suitable cost-function

I define the following ε-insensitive loss function:

|y − f (x)|ε = max{0, |y − f (x)| − ε}

I threshold ε ≥ 0 is chosen a-priori

I small ε implies high approximation accuracy

I no penalty, when error below some threshold

I similar to classification loss-function: no penalty for
correctly-classified training patterns
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The ε-tube
around the ε-insensitive loss function

)x(f

x

²) + x(f

²) { x(f

²

-tube²

I geometrical interpretation: allow a tube

I of width ε around the given function values
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Goal of the SVR learning

Given:

I a dot product space H
I (mapped) input patterns (x1, y1), . . . , (xm, ym) ∈ H × IR

Goal:

I find a function f with a small risk (or test error),
R[f ] =

∫
c(f , x , y)dP(x , y)

I where P is the probability measure for the observations

I and c is a loss function, e.g. c(f , x , y) = (f (x)− y)2

I loss function can be chosen depending on the application
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Regularized risk functional

I find a function f with a small risk (or test error),
R[f ] =

∫
c(f , x , y)dP(x , y)

I where P is the probability measure for the observations

I and c is a loss function, e.g. c(f , x , y) = (f (x)− y)2

I cannot minimize c directly, because P is not known

I Instead, minimize the regularized risk functional

1

2
||w ||2 + C · Rε

emp, where Rε
emp :=

1

m

m∑
i=1

|yi − f (xi )|ε

I Rε
emp measures the ε-insensitive training error

I C controls the trade-off between margin and training error
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Main idea

I minimize the regularized risk functional

1

2
||w ||2 + C · Rε

emp

I where Rε
emp := 1

m

∑m
i=1 |yi − f (xi )|ε measures the training error

I constant C determines the trade-off

To obtain a small risk

I control both the training error (Rε
emp)

I and the model complixity (||w ||2)
I in short, “explain the data with a simple model”
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ε-SVR objective function

I again, rewrite as (soft-margin) optimization problem:

minimizewr∈H,ξ(∗)∈IRm,b∈IR

1

2
||w ||2 +

C

m

m∑
i=1

(
ξi + ξ∗

)
subject to

I
(
〈x , xi 〉+ b

)
− yi ≤ ε + ξi

I yi −
(
〈w , xi 〉+ b

)
≤ ε + ξ∗i

I ξ
(∗)
i ≥ 0

I where (∗) means both the variables with and without asterisks.
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ε-SVR dual problem

I introduce two sets of Lagrange multipliers α
(∗)
i and η

(∗)
i

I and minimize

L :=
1

2
||w ||2 +

C

m

m∑
i=1

(
ξi + ξ∗

)
−

m∑
i=1

(
ηiξi + η∗i ξ

∗
i

)
−

m∑
i=1

αi

(
ε + ξi + yi − 〈w , xi 〉 − b

)
−

m∑
i=1

α∗i
(
ε + ξ∗i + yi − 〈w , xi 〉 − b

)
I subject to α

(∗)
i , η

(∗)
i ≥ 0.
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SV expansion
For the whole details, see LWK 9.2 (p. 254ff)

I solution of the optimization problem results in the SV expansion

f (x) =
m∑

i=1

(
α∗i − αi )〈xi , x〉+ b

I w can be written as a linear combination

I of a subset of the training patterns xi

I algorithm can be desribed in terms of dot products between the
data

I when evaluating f (x), we need not to compute w explicitly

Hendrich & Zhang 79



University of Hamburg

MIN Faculty

Department of Informatics

Example SVM applications - SVM for function approximation SVM

Example: function approximation

I exreg1dls from SVM-KM toolbox (gaussian basis function)

I only a few support-vectors
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Example: function approximation

I exreg1dls from SVM-KM toolbox (4th-order polynom)

I fails to approximate the target function sin(exp(x))
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Example: function approximation

I exreg1dls from SVM-KM toolbox (ht radial basis function)

I very many support-vectors, but good approximation
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SVM complexity analysis

what is the complexity of SVM classification?

I n examples (training patterns)

I soft-margin control parameter C

I S support vectors, R free support vectors

two intuitive bounds:

I O(nS) when few support vectors (C small)

I O(R3) if many support vectors (C large)

I so, both quadratic and cubic terms
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Number of support vectors

assume an oracle which tells us

I the patterns that are not support vectors (αi = 0)

I and the bounded support vectors (αi = C )

I remaining R free support vectors are determined by R linear
equations (representing the derivatives of the object function)

I solving this system takes O(R3) operations
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Verifying a solution

I n examples

I S support vectors

I verification that vector α is a solution

I compute the gradient g of the dual

I and check the optimality conditions

I requires O(n · S) operations
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SVM training time: example
LSKM: SVM training with primal and dual represenations
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Computation of Kernel values?

I computing kernels can be expensive,
e.g. consider images with thousands of pixels
e.g. consider documents with thousands of words

I computing the full kernel matrix is wasteful

I gradient computation only depend on Kij which invole support
vectors (otherwise multiplied by zero)

I the kernel matrix does not fit in memory

I use special caching, or re-compute on-the-fly
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Efficient algorithms?
See LSKM p.12ff

I use traditional QP solver: works, but

I kernel-matrix is seldom sparse (only the SVs are)
I kernel-matrix rarely fits in memory
I high-accuracy solution not required

I use “chunking”: guess the support-vectors
I select a “working set” and solve
I usually works well, due to generalization
I misclassified patterns are SV candidates

I use efficient direction search to improve the αi

I to speed up the training
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Decomposition method
LSKM p. 17
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SMO with maximum violating pair
LSKM p. 19
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SVM primal training
LSKM p. 41
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Sparse vector and matrix representation
LSKM chapter 3, p. 51ff

I basic SVM training and classification algorithms:
I loops over weighted scalar products αi 〈xi , x〉
I for all training patterns xi

I but after training, most weights αi = 0

I only the support vectors have αi ,SV 6= 0

I study sparse representations of vectors and matrices

I to reduce the storage requirements

I to improve performance
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Sparse matrix by vector multiplication

I vector v1 stored as sorted table of (index,value) pairs

I complexity of DOT is O(|v1|)
I memory accesses more expensive than the multiply-add
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Sparse sparse dot product
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Sparse matrix vector product
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Sparse matrix vector product
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Transpose matrix vector product
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Sparse list merging
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Training time on large data set
LSKM p0.41
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VC dimension
Vapnik-Chervonenkis dimension

I a measure of the capacity

I of a statistical classification algorithm

I defined as the cardinality of the largest set of points

I that the algorithm can shatter

I Informally, the capacity of a classification model is related to
how complicated it can be.

I higher capacity: can handle complicated situations,

I but might overfit
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VC dimension: example
LWK p.20
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VC dimension vs. test errors
LWK p.20
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VC dimension: Gaussian kernels

I SVM with Gaussian kernel can classify every input function

I if the Gaussian kernels are “narrow” enough

I Gaussian-kernel SVM has infinite VC dimension
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Summary

I Support Vector Machine
I maximum-margin linear classifier
I concept of support vectors
I soft-margin classifier
I feature-maps and kernels to handle non-linearity
I training via Quadratic Programming algorithms

I (multi-class) classification and clustering

I pattern and object recognition

I regression and function approximation

I algorithms and complexity estimates

I still an active research topic
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Thanks for your attention!

I Questions?

I bug-reports and feedback:
hendrich@informatik.uni-hamburg.de
zhang@informatik.uni-hamburg.de
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A bit of fun: from Learning with Kernels
LWK p.363. . . the whole book is like this :-)
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Software: libsvm

I C.-C. Chang & C.-J. Lin, libsvm
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/
Bindings to C/C++, Java, . . .

I Alain Rakotomamonjy, Stephane Canu, SVM and Kernel
Methods Matlab Toolbox, http://asi.insa-
rouen.fr/enseignants/˜arakotom/toolbox/index.html

I W. H. Press, S. A. Teukolsky, W.T. Vetterling, B. P. Flannery,
Numerical Recipes – The Art of Scientific Computing,
Cambridge University Press, 2007 (all algorithms on CD-ROM)

I several other software packages (Matlab, C/C++, . . . )
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Example datasets

I the libsvm page links to several training datasets
http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

I MNIST handwritten digits
http://yann.lecun.com/exdb/mnist/

I NORB object recognition datasets
http://www.cs.nyu.edu/˜ylclab/data/norb-v1.0/
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