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Support Vector Machines

I a.k.a. maximum margin classifiers

I a family of related

I supervised

I learning methods

I for classification and regression

I try to minimize the classification error

I while maximizing the geometric margin
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Hype

SVMs are very popular today

I often the best solutions on classification benchmarks

I can handle large data sets

I an active research area

I but don’t believe the hype (at least, all of it)

I good performance is not guaranteed

I selection of feature maps is critical

I requires prior knowledge and experiments

I and fine-tuning of parameters
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Overall concept and architecture

I select a feature space H and a mapping function Φ : x 7→ Φ(x)

I select a classification (output) function σ

y(x) = σ(
∑

i ϑi 〈Φ(x),Φ(xi )〉)

I during training, find the support-vectors x1 . . . xn

I and weights ϑ which minimize the classification error

I map test input x to Φ(x)

I calculate dot-products 〈Φ(x)Φ(xi )〉
I feed linear combination of the dot-products into σ

I get the classification result
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Block-diagram
handwritten digit recognition
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Introduction SVM

Example: learning a checkers board
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History
Three revolutions in machine learning (Shawe-Taylor & Cristianni 2004)

I 1960s: efficient algorithms for (linear) pattern detection
I e.g., Perceptron (Rosenblatt 1957)
I efficient training algorithms
I good generalization
I but insufficient for nonlinear data

I 1980s: multi-layer networks and backpropagation
I can deal with nonlinear data
I but high modeling effort, long training times
I and risk of overfitting

I 1990s: SVMs and related Kernel Methods
I “all in one” solution
I considerable success on practical applications
I based on principled statistical theory
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History: SVM

I seminal work by Vladimir Vapnik

I B. E. Boser, I.M. Guyon, and V. N. Vapnik, A training algorithm
for optimal margin classifiers., 5th Annual ACM Workshop on
COLT, pages 144-152, Pittsburgh, 1992

I C. Cortes and V. Vapnik, Support-Vector Networks, Machine
Learning, 20, 1995.
http://www.springerlink.com/content/k238jx04hm87j80g/

I H. Drucker, C.J.C. Burges, L. Kaufman, A. Smola, and
V. Vapnik Support Vector Regression Machines, Advances in
Neural Information Processing Systems 9, NIPS 1996, 155-161

I The “bible”: V. Vapnik, The Nature of Statistical Learning
Theory, Springer, 1995
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Review: binary classification

task:

I classify input test patterns x

I based on previously learned training patterns

I simplest case is binary classification,

I two-classes y(x) = {+1,−1}

A first example algorithm:

I classify based on distance to the

I center-of-mass of the training pattern clusters

I result can be written as y = sgn(
∑

i wi · xi + b)
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Review of the linear classifier SVM

Simple classification example
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Simple classification example (cont’d)

I two classes of data points (’o’ and ’+’)

I calculate the means of each cluster (center of mass)

I assign test pattern x to the nearest cluster

I can be written as y = sgn(
∑m

i=1 αi 〈x , xi 〉+ b)

I with constant weights αi = { 1
m+

, 1
m−
}
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Review of the linear classifier SVM

Simple classification example (cont’d)

I centers of mass:
c+ = 1

m+

∑
{i |yi=+1} xi ,

c− = 1
m−

∑
{i |yi=−1} xi ,

I boundary point c: c = (c+ + c−)/2

I classification: y = sgn〈(x − c),w〉
I norm: ||x || :=

√
〈x , x〉

I rewrite: y = sgn(〈(x , c+)〉 − 〈(x , c−)〉+ b)
with b = (||c−||2 − ||c+||2)/2

I all together:

y = sgn
( 1

m+

∑
{i |yi=+1}

xi 〈x , xi 〉 −
1

m−

∑
{i |yi=−1}

xi 〈x , xi 〉+ b
)
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Linear classification

denotes +1

denotes -1

fx y

I find w and b, so that y(x ,w , b) = sgn(w · x − b)
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Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

I one possible decision boundary
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Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

I and another one
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Maximum margin classification SVM

Linear classification

denotes +1

denotes -1

fx y

which is best?

I which boundary is best?
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Maximum margin classification SVM

Remember: Perceptron

I can use the Perceptron learning algorithm

I to find a valid decision boundary

I convergence is guaranteed,

I iff the data is separable

I algorithm stops as soon as a solution is found

I but we don’t know which boundary will be chosen
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Maximum margin classification SVM

Perceptron training algorithm
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The classifier margin

check the "margin"!

which is best?

yx f

denotes -1

denotes +1

I define the margin as the width that the boundary could be
increased before hitting a data point.
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Maximum margin classification SVM

The classifier margin

denotes +1

denotes -1

fx y

which is best?

I a second example: margin not symmetrical
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Maximum margin classifier

yx f

denotes -1

denotes +1

I the classifier with the largest margin
I the simplest kind of SVM (called the linear SVM)
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Maximum margin classification SVM

Support vectors

"support vectors"

denotes +1

denotes -1

fx y

I data points that limit the margin are called the support vectors
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Why maximum margin?

I intuitively, feels safest

I least chance of misclassification if the decision boundary is not
exactly correct

I statistical theory (“VC dimension”) indicates that maximum
margin is good

I empirically, works very well

I note: far fewer support-vectors than data points (unless
overfitted)

I note: the model is immune against removal of all
non-support-vector data points
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Maximum margin classification SVM

The geometric interpretation
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Step by step: calculating the margin width

M

"predict class = +1 zone"

"predict class = -1 zone"

classifier decision boundary

"plus" plane

"minus" plane

I how to represent the boundary (hyperplane)

I and the margin width M

I in m input dimensions?
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Maximum margin classification SVM

Calculating the margin width

M

"predict class = +1 zone"

"predict class = -1 zone"

classifier decision boundary

"plus" plane

"minus" plane

I plus-plane: {x : w · x + b = +1}
I minus-plane: {x : w · x + b = −1}
I classify pattern as +1 if w · x + b ≥ +1

and −1 if w · x + b ≤ −1
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Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I w is perpendicular to the decision boundary

I and the plus-plane and minus-plane

I proof: consider two points u and v on the plus-plane and
calculate w · (u − v)
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Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I select point X+ on the plus plane

I and nearest point X− on the minus plane

I of course, margin width M = |X+ − X−|
I and X+ = X− + λw for some λ

Hendrich & Zhang 31



University of Hamburg

MIN Faculty

Department of Informatics

Maximum margin classification SVM

Calculating the margin width

M X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I w · (X− + λw) + b = 1

I w · X− + b + λw · w = 1

I −1 + λw · w = 1

I λ = 2
w ·w
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Maximum margin classification SVM

Calculating the margin width

M w¢w= = 2M
X-

X+ wx + b = 0

wx+b = +1

wx+b = -1

"predict class = +1 zone"

"predict class = -1 zone"

I λ = 2
w ·w

I M = |X+ − X−| = |λw | = λ|w |
I M = λ

√
w · w = 2/

√
w · w
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Training the maximum margin classifier

Given a guess of w and b we can

I compute whether all data points are in the correct half-planes

I compute the width of the margin

So: write a program to search the space of w and b to find the
widest margin that still correctly classifies all training data points.

I but how?

I gradient descent? simulated annealing? . . .

I usually, Quadrating programming
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Learning via Quadratic Programming

I QP is a well-studied class of optimization algorithms

I maximize a quadratic function of real-valued variables

I subject to linear constraints

I could use standard QP program libraries

I e.g. MINOS
http://www.sbsi-sol-optimize.com/asp/sol products minos.htm

I e.g. LOQO http://www.princeton.edu/˜rvdb/loqo

I or algorithms streamlined for SVM (e.g. large data sets)
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Quadratic Programming

General problem:

I find arg maxu

(
c + dTu + 1

2uTRu
)

I subject to n linear inequality constraints
a11u1 + a12u2 + · · ·+ a1mum ≤ b1

a21u1 + a22u2 + · · ·+ a2mum ≤ b2

. . .
an1u1 + an2u2 + · · ·+ anmum ≤ bn

I subject to e additional linear equality constraints
a(n+1)1u1 + a(n+1)2u2 + · · ·+ a(n+1)mum = bn+1

. . .
a(n+e)1u1 + a(n+e)2u2 + · · ·+ a(n+e)mum = bn+1
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QP for the maximum margin classifier

Setup of the Quadratic Programming for SVM:

I M = λ
√

w · w = 2/
√

w · w
I for largest M, we want to minimize w · w

I assuming R data points (xk , yk) with yk = ±1

I there are R constraints:
w · xk + b ≥ +1 if yk = +1
w · xk + b ≤ −1 if yk = −1
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QP for the maximum margin classifier

I solution of the QP problem is possible

I but difficult, because of the complex constraints

Instead, switch to the dual representation

I use the “Lagrange multiplier” trick

I introduce new dummy variables αi

I this allows to rewrite with simple inequalities αi ≥ 0

I solve the optimization problem, find αi

I from the αi , find the separating hyperplane (w)

I from the hyperplane, find b
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Maximum margin classification SVM

The dual optimization problem
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Maximum margin classification SVM

Dual representation
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Maximum margin classification SVM

Dual representation of Perceptron learning
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Summary: Linear SVM

I based on the classical linear classifier

I maximum margin concept

I limiting data points are called Support Vectors

I solution via Quadratic Programming

I dual formulation (usually) easier to solve
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Classification of noisy input data?

I actual “real world” training data contains noise
I usually, several “outlier” patterns
I for example, mis-classified training data

I at least, reduced error-margins
I or worse, training set not linearly separable
I complicated decision boundaries

I complex kernels can handle this (see below)
I but not always the best idea
I risk of overfitting

I instead, allow some patterns to violate the margin constraints
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Soft-margin classification SVM

The example data set, modified

what should we do?

denotes +1

denotes -1

fx y

I not linearly separable!
I trust every data point?
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Soft-margin classification SVM

Example data set, and one example classifier

what should we do?

denotes +1

denotes -1

fx y

I three points misclassified
I two with small margin, one with large margin
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Soft-margin classification SVM

Noisy input data? Another toy example
LWK, page 10

I allow errors?
I trust every data point?
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Soft-margin classification
Cortes and Vapnik, 1995

I allow some patterns to violate the margin constraints

I find a compromise between large margins

I and the number of violations

Idea:

I introduce slack-variables ξ = (ξi . . . ξn), ξi ≥ 0

I which measure the margin violation (or classification error)
on pattern xi : y(xi )(w · Φ(xi ) + b) ≥ 1− ξi

I introduce one global parameter C which controls the
compromise between large margins and the number of
violations
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Soft-margin classification

I introduce slack-variables ξi

I and global control parameter C

maxw ,b,ξ P(w , b, ξ) = 1
2w2 + C

∑n
i=1 ξi

subject to:
∀i : y(xi )(w · Φ(xi ) + b) ≥ 1− ξi

∀i : ξi ≥ 0

I problem is now very similar to the hard-margin case

I again, the dual representation is often easier to solve
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Soft-margin classification SVM

Slack parameters ξi , control parameter C
(LSKM chapter 1)
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Soft-margin classification SVM

Lagrange formulation of the soft-margin SVM
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Soft-margin classification SVM

Dual formulation of soft-margin SVM
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Soft-margin classification SVM

The optimization problem
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Soft-margin classification SVM

How to select the control parameter?

I of course, the optimization result depends on the specified
control parameter C

I how to select the value of C?

I depends on the application and training data
I Numerical Recipes recommends the following

I start with C = 1
I then try to increase or decrease by powers of 10
I until you find a broad plateau where the exact value of C doesn’t

matter much
I good SVM solution should classify most patterns correctly,
I with many αi = 0 and many αi = C , but only a few in between
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Summary: soft-margin SVM

I same concept as the linear SVM

I try to maximize the decision margin

I allow some patterns to violate the margin constraints

I compromise between large margin and number of violations

I introduce a control parameter C

I and new inequality parameters ξi (slack)

I again, can be written as a QP problem

I again, dual formulation easier to solve
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Nonlinearity through feature maps

General idea:

I introduce a function Φ which maps the input data into a higher
dimensional feature space

Φ : x ∈ X 7→ Φ(x) ∈ H

I similar to hidden layers of multi-layer ANNs

I explicit mappings can be expensive in terms of CPU and/or
memory (especially in high dimensions)

I “Kernel functions” achieve this mapping implicitly

I often, very good performance
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Example 1-dimensional data set

x=0

denotes +1

denotes -1

I what would the linear SVM do with these patterns?
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Example 1-dimensional data set

M margin

classification boundary

denotes -1

denotes +1

x=0

I what would the linear SVM do with these patterns?

I not a big surprise!

I maximum margin solution
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Kernels and feature maps SVM

Harder 1-dimensional data set

x=0

denotes +1

denotes -1

I and now?

I doesn’t look like “outliers”

I so, soft-margin won’t help a lot
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Harder 1-dimensional data set

denotes +1

denotes -1

x=0

I permit non-linear basis functions

I zk = (xk , x2
k )
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Kernels and feature maps SVM

Harder 1-dimensional data set

x=0

denotes -1

denotes +1

I zk = (xk , x2
k )

I data is now linearly separable!
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Similar for 2-dimensional data set

denotes -1

denotes +1

I clearly not linearly separable in 2D

I introduce zk = (xk , yk ,
√

2xkyk)
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Common SVN feature maps
basis functions

I zk = ( polynomial terms of xk of degree 1 to q)

I zk = ( radial basis functions of xk)

I zk = ( sigmoid functions of xk)

I . . .

I combinations of the above

Note:

I feature map Φ only used in inner products

I for training, information on pairwise inner products is sufficient
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Kernel: definition

Definition 1 (Kernel): A Kernel is a function K , such that for all
x , z ∈ X :

K (x , z) = 〈φ(x), φ(z)〉.

where Φ is a mapping from X to an (inner product) feature space
F .
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Example: polynomial Kernel

I consider the mapping:
Φ(x) = (x2

1 ,
√

2x1x2, x
2
2 ) ∈ IR3

I evaluation of dot products:
〈Φ(x),Φ(z)〉

= 〈(x2
1 ,
√

2x1x2, x
2
2 ), (z2

1 ,
√

2z1z2, z
2
2 )〉

= x2
1 z2

1 + 2x1x2z1z2 + x2
2 z2

2

= (x1z1 + x2z2)
2 = 〈x , z〉2 = κ(x , z)

I kernel does not uniquely determine the feature space:
Φ′(x) = (x2

1 , x2
2 , x1x2, x2x1) ∈ IR4

also fits to k(x , z) = 〈x , z〉2
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Example: quadratic kernel, m dimensions

I x = (x1, . . . , xm)

I Φ(x) = (
1,√

2x1,
√

2x2, . . .
√

2xm,
x2
1 , x2

2 , . . . x2
m,√

2x1x2,
√

2x1x3, . . . ,
√

2xm−1xm )

I constant, linear, pure quadratic, cross quadratic terms

I in total (m + 2)(m + 1)/2 terms (roughly m2/2)

I so, complexity of evaluating Φ(x) is O(m2)

I for example, m = 100 implies 5000 terms. . .
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Example: quadratic kernel, scalar product

Φ(x) · Φ(y) =



1√
2x1√
2x2

. . .
x2
1

x2
2

. . .√
2x1x2√
2x1x3

. . .√
2xm−1xm



·



1√
2x1√
2x2

. . .
x2
1

x2
2

. . .√
2x1x2√
2x1x3

. . .√
2xm−1xm



=

1 +
∑m

i=1 2xiyi +
∑m

i=1 x2
i y2

i +
∑m

i=1

∑m
j=1 2xixjyiyj
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Example: scalar product

I calculating 〈Φ(x),Φ(y)〉 is O(m2)

I for comparison, calculate (x · y + 1)2 :

I (x · y + 1)2 = ((
∑m

i=1 xi · yi ) + 1)2

=
(∑m

i=1 xiyi

)2
+ 2

(∑m
i=1 xiyi

)
+ 1

=
∑m

i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

=
∑m

i=1(xiyi )
2 + 2

∑m
i=1

∑m
j=1 xiyixjyj + 2

∑m
i=1 xiyi + 1

= Φ(x) · Φ(y)

I we can replace 〈Φ(x),Φ(y)〉 with (x · y + 1)2, which is O(m)
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Polynomial kernels

I the learning algorithm only needs 〈Φ(x),Φ(y)〉
I for the quadratic polynomial, we can replace this by

(〈x , y〉+ 1)2

I optional, use scale factors: (a〈x , y〉+ b)2

I calculating one scalar product drops from O(m2) to O(m)
I overall training algorithm then is O(mR2)

I same trick also works for cubic and higher degree
I cubic polynomial kernel: (a〈x , y〉+ b)3,

includes all m3/6 terms up to degree 3
I quartic polynomial kernel: (a〈x , y〉+ b)4 includes all m4/24

terms up to degree 4
I etc.
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Polynomial kernels

I for polynomial kernel of degree d , we use (〈x , y〉+ 1)d

I calculating the scalar product drops from O(md) to O(m)

I algorithm implicitly uses an enourmous number of terms

I high theoretical risk of overfitting

I but often works well in practice

I note: same trick is used to evaluate a test input:
y(xt) =

∑R
i=1 αkyk(〈xk , x〉+ 1)d)

I note: αk = 0 for non-support vectors, so overall O(mS) with
the number of support vectors S .
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Kernel “Design”

How to get up a useful kernel function?

I derive it directly from explicit feature mappings

I design a similarity function for your input data, then check
whether it is a valid kernel function

I use the application domain to guess useful values of any kernel
parameters (scale factors)

I for example, for polynomial kernels make (a〈x , y〉+ b) lie
between ±1 for all i and j .
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Kernel composition

Given Kernels K1 and K2 over X × X , the following functions are
also kernels:

I K (x , z) = αK1(x , z), α ∈ IR+;

I K (x , z) = K1(x , z) + c , c ∈ IR+;

I K (x , z) = K1(x , z) + K2(x , z);

I K (x , z) = K1(x , z) · K2(x , z);

I K (x , z) = x ′Bz ,X ⊆ IRn,B pos. sem.-def.
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Gaussian Kernel

K (x , z) = exp
(
−||x − z ||2

2σ2

)
I with “bandwidth” parameter σ

I kernel evaluation depends on distance of x and z

I local neighborhood classification

I initialize σ to a characteristic distance between nearby patterns
in feature space

I large distance implies orthogonal patterns

Hendrich & Zhang 72



University of Hamburg

MIN Faculty

Department of Informatics

Kernels and feature maps SVM

The Kernel “Trick”

I rewrite the learning algorithm

I such that any reference to the input data happens from within
inner products

I replace any such inner product by the kernel function

I work with the (linear) algorithm as usual

I many well-known algorithms can be rewritten using the kernel
approach
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Summary: Kernels

I non-linearity enters (only) through the kernel

I but the training algorithm remains linear

I free choice of the kernel (and feature map)

I based on the application

I polynomial or Gaussian kernels often work well

I some examples of fancy kernels next week
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Summary: Support Vector Machine

I based on the linear classifier

Four new main concepts:

I maximum margin classification

I soft-margin classification for noisy data

I introduce non-linearity via feature maps

I kernel-trick: implicit calculation of feature maps

I use Quadratic Programming for training

I polynomial or Gaussian kernels often work well
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