UH
L2 University of Hamburg

Introduction

Outlook

v

Networks with feedback connections

v

Associative memory

v

Hopfield model

Self-organizing maps
Dimensionality reduction

Principal Component Analysis

vV v. v Y

Independent Component Analysis

Hendrich (=] = = = o>

Department of Informatic:

AL 64-360



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Introduction

AL 64-360

Remember: Eight major aspects of a PDP model

>

| 4
>
>
>

a set of processing units

the current state of activation

an output function for each unit

a pattern of connectivity between units

a propagation rule for propagatin patterns of activities through
the network of connectivities

> an activation rule for combining the inputs impinging on a unit

» a learning rule whereby patterns of connectivity are modified by

Hendrich

experience

the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)
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Remember: Multi-layer perceptrons

Multi-layer perceptrons:
» map an input-space into an output space

» using only feed-forward computations

» continous neuron activation functions (e.g. sigmoid)

» backpropagation learning algorithm

» therefore, neighborhood of input vector x is mapped to a
neighborhood of output vector y (image of x)

» continous mapping networks

Hendrich (=] = = = o> B)
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Associative Memory

Associative memories

Hendrich

goal of learning is to associate known-input vectors (patterns)
with given output vectors

» input vectors x’ near to x should be mapped to y

> e.g., noise-reduction: noisy input vectors are mapped to the

original patterns

similar to clustering algorithms

» implemented with networks with or without feedback

» but feedback networks produce better results

[=] = = = o>
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BAM: network

» hetero-associative: x — y— x' —y —x" —y" ..

(Kosko 1988)

o> 6
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Associative Memory

Auto-associative memory

Recollection

Key Recollection Key
(b)

(a)
Fig. 6.2a—b. Demonstration of noise suppression and autoassociative recall in the orthogonal
projection operation

» complete whole memory from a little fragment
» complete whole memory from noisy input
» considered a main function of the human cortex

Hendrich
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Auto-associative memory

\A\L\G\ \S\ \S\

A A M A,

» popular example: word-completion task
» first and last letters more important than middle letters

> etc.

Hendrich (=] = = = o> 8
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Pure feedback network: architecture

> network initialized with external input, S(t =0) =/
> next states calculated via neuron activation

» output readout once stable (attractor states)

» output readout after fixed number of iterations

Hendrich (=] = = = o> 9



UH
Department of Informatic:
L2 University of Hamburg

Associative Memory

Feedback network: iterations

Hendrich

> example: pattern-recognition, pattern-completion
» network state updated several times
> iterative improvement of current network state

» more economical than feed-forward network with many layers

[=] = = = o>
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Hendrich

dback networks: unfolding

The simplest way to deal with a recurrent network is to consider a finite num-
ber of iterations only. Assume for generality that a network of n computing
units is fully connected and that w;; is the weight associated with the edge
from node ¢ to node j. By unfolding the network at the time steps 1,2,...,7,
we can think of this recurrent network as a feed-forward network with T stages
of computation. At each time step ¢ an external input x(¢) is fed into the net-
work and the outputs (0(1”7 ...,07(: )) of all computing units are recorded. We
call the n-dimensional vector of the units’ outputs at time t the network state
0®). We assume that the initial values of all unit’s outputs are zero at t = 0,
but the external input x(0) can be different from zero. Figure 7.24 shows a
diagram of the unfolded network. This unfolding strategy which converts a
recurrent network into a feed-forward network in order to apply the back-
propagation algorithm is called backpropagation through time or just BPTT
(383].

network with feedback connections:

MIN Faculty

AL 64-360

» equivalent to n-layer network with same forward connections

» but only for fixed number of feedback iterations

[m] = = = o>
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Associative Memory

Jordan-network, Elman-network

0

hidden layer 2
hidden layer |

context layer 1
input layer

» feed-forward architecture with some feedback connections

autput layer

output units

hidden units

T2

i

» internal state (context)

» complex behaviour, see SNNS/JavaNNS for implementation

Hendrich (=] = = = o>
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Brain modeling: mostly associative?
Assocna(ion—‘
Feature Command
detector neurons
% t ' %
Sensory Motor -
analyzer system
Relay Spinal
nuclei cord
i
==
Stimutus - Sense organ. Muscles - Response
(Amit 1986)
1%
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Network state evolution

» network initialized in (random) input state
» will the network stabilize at all?
» will the network converge to the nearest attractor?

» how fast will the network converge?

» basins of attraction

Hendrich (=] = = = o> 14
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Basins of attraction

Energy landscape model

mirm2|
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q2r m3l

m3r

X0 M1
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M1 basin of attraction

Q1

Q2

M3
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Basins of attraction

Basins of attraction: single iteration

Hendrich

Table 12.1. Percentage of 10-dimensional vectors with a Hamming distance (H)
from 0 to 4, which converge to a stored vector in a single iteration. The number of
stored vectors increases from 1 to 10,

Number of stored vectors (dimension 10)

1 2 3 4 5 6 7 8 9 10
100.0100.0100.0100.0100.0100.0100.0100.0100.0100.0f
100.0100.0 90.0 85.0 60.0 60.0 54.3 56.2 45.5 33.0f
100.0 86.7 64.4 57.2 40.0 31.8 22.5 23.1 17.0 13.3
100.0 50.0 38.6 254 135 83 48 59 31 24
1000 00 97 74 45 27 09 08 03 0.2

B o b — oo™

» example network, n =10, p = 1...4 stored patterns

[m] = = = o>
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Basins of attraction: five iterations

Table 12.2. Percentage of 10-dimensional vectors with a Hamming distance (I)
from 0 to 4, which converge to a stored vector in five iterations. The number of
stored vectors increases from 1 to 7.

Number of stored vectors (dimension 10}
H 1 2 3 4 5 6 T

0[100.0100.0100.0100.0100.0100.0100.04
1{100.0100.00 90.0 85.0 60.0 60.0 54.3
2|100.0100.0 72.6 71.1 41.8 348 27.9
3
4

100.0 80.0 48.6 47.5 183 108 8.5
100.0 42.8 21.9 223 68 3.7 2.0

Hendrich (=] = = = o> 17
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Basins of attraction

Basins of attraction: multiple iterations
1 2 3 4
5 6 7 8
Fig. 12.5. The grey shading of each concentric circle represents the percentage of
vectors with Hamming distance from 0 to 4 to stored patterns and which converge to

them. The smallest circle represents the vectors with Hamming distance 0. Increasing
the number of stored patterns from 1 to 8 reduces the size of the basins of attraction.




UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

Basins of attraction AL 64-360

Basins of attraction: few patterns (n = 10)

2 stored 3 stored
vectors < vectors
% %
*\ recursive .. recursive
50 Ky 50 .
0 1 2 3 4 5 0 1 2 3 4 5

10 5 stored

vectors

- ._recursive

» all patterns stable

> recognition rate vs. Hamming distance of input patterns

Hendrich (=] = = = o> 19
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Basins of attraction: saturated network (n = 10)

100
4 stored 0 5 stored
‘vectors vectors
%
%
0 . 0
. recursive
\-.._recusive
0
o 1 2 3 4 s o 1 2 3 4 s
100
6 stored
vectors
%
50
N\ recursive
o
o 1 2 3 4 s o 1 2 3 a4 s

Fig. 12.6. Comparison of the percentage of vectors with a Hamming distance from
005 from stored patterns and which converge to them

» all patterns still stable

» but basins of attraction smaller

o>
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Basins of attraction

Basins of attraction (n = 100)

Fig. 12.8. Basin of attraction in 100-dimensional space of a stored vector. The
number of stored patterns is 4, 6, 10 and 15, from top to bottom, left to right.

o> 21
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BAM: network
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BAM: energy function

With the BAM we can motivate and explore the concept of an energy function
in a simple setting. Assume that a BAM is given for which the vector pair
(x,y) is a stable state. If the initial vector presented to the network from
the left is xp, the network will converge to (x,y) after some iterations. The
vector yo is computed according to yg = sgn(xoW). If yq is now used for a
new iteration from the right, excitation of the units in the left layer can be
summarized in an excitation vector e computed according to

et = Wyq.

The vector pair (xo,yo) is a stable state of the network if sgn(e) = xo. All
vectors e close enough to xq fulfill this condition. These vectors differ from
%o by a small angle and therefore the product xgeT is larger than for other
vectors of the same length but further away from xq. The product

E=—xpe’ = —xoWyg‘

is therefore smaller (because of the minus sign) if the vector Wy lies closer
to xg. The scalar value FE' can be used as a kind of index of convergence to
the stable states of an associative memory. We call E the energy function of
the network.

o> 2
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BAM: energy function (with neuron thresholds 0)

This can be done by extending the input vectors with an additional constant
component. Each n-dimensional vector x will be transformed into the vector
(@1,...,@n,1). We proceed in a similar way with the k-dimensional vector
y. The weight matrix W must be extended to a new matrix W’ with an
additional row and column. The negative thresholds of the units in the right
layer of the BAM are included in row n + 1 of W’ whereas the negative
thresholds of the units in the left are used as the entries of the column k + 1
of the weight matrix. The entry (n + 1, k+ 1) of the weight matrix can be set
to zero. This transformation is equivalent to the introduction of an additional
unit with constant output 1 into each layer. The weight of each edge from
a constant unit to each one of the others is the negative threshold of the
connected unit. It is straightforward to deduce that the energy function of
the extended network can be written as

1 1 1
E(x,y:) = 7§xiWy1T + Ee,y;f + Exﬁ?. (13.5)
The row vector of thresholds of the k units in the left layer is denoted in the
above expression by 0. The row vector of thresholds of the n units in the
right layer is denoted by 6,..

o> 24
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BAM: stable states

Proposition 19. A bidirectional associative memory with an arbitrary weight
matric W reaches a stable state in a finite number of iterations using either
synchronous or asynchronous updates.

Proof. For a vector x = (x1,22,...,2,), a vector y = (y1,¥2,...,yx) and an
n x k weight matrix W = {w;;} the energy function is the bilinear form

Wi Wig c Wik Y1
1 War Wap + Wak Yo
E(x,y) = —5(9317902,-“,1“) . . .

Wnl Wn2 * - Wnk Yk

The value of E(x,y) can be computed by multiplying first W by yT and the
result with —x/2. The product of the i-th row of W and yT represents the
excitation of the i-th unit in the left layer. If we denote these excitations by

g1,92; - - -, gn, the above expression transforms to
91
E(x,y) = 7%(11,.%2, e Ty) :(]2
on

Q> 25
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Digression: chaos

Digression: dynamic systems and chaos

» dynamic systems: differential equations, X = ®(x)
» dynamic maps: discrete time, x(t 4+ 1) = ®(x)

» study the time evolution of the systems

» but non-linear systems typically show chaotic behaviour

o . L N . SR
p ~. e ~
\ ‘ r -~
NAN T iy [ t PN <
-\ b e r
N - \ < S 3
=
[ —— = 00 b A 0 0 :*-n\; 00 - —— ]
= - > ' 3 >
~ - N ~
S N A % 4 | Ty - Meod
~ i
J S i f ety \
0 0 0 0
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Digression: chaos

Example: logistic map

Hendrich

>

vy

vVvyVvyVvYVYyVvVYVYyY

Logistic map: xpt1 = rxn(1 — xp)

MIN Faculty
Department of Informatics

AL 64-360

Models population growth, population growth parameter r

x € [0,1]

0 < r < 1: population eventually dies
1 < r < 2: population stabilizes at (r —1)/r

2 < r < 3: population oscillates, finally reaches (r —1)/r
3 < r < 14 v6: population osciallates between two values

3.45 < r < 3.54: oscillations between four values
3.57 < r < 4: chaos
4 < r: population diverges

typical behaviour for non-linear systems with feedback

[=] = = = o>

Wikipedia, Logistic_.Map
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Logistic map: bifurcation diagram

1.0

0.8

~
wd Al
A

0.4

02

0.0 T T T T T T T T T T T T T
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Digression: chaos

Chaotic brain?!

Hendrich

» chaos typical even in the 1-dimensional case

> gets a lot worse in high-dimensional systems

» neurons are highly non-linear
> brain has 10! neurons

» with lots of feedback connections

» how to explain stable behaviour at all?

» how to explain memory?

[m] = = = o>

Department of Informatic:

AL 64-360



MIN Faculty F2030
iti Department of Informatics
L2 University of Hamburg

Digression: chaos AL 64-360

Asynchronous dynamics: energy decreases

In asynchronous networks at each time ¢ we randomly select a unit from the
left or right layer. The excitation is computed and its sign is the new activation
of the unit. If the previous activation of the unit remains the same after this
operation, then the energy of the network has not changed.

The state of unit 7 on the left layer will change only when the excitation g;
has a different sign than x;, the present state. The state is updated from z; to
z}, where o} now has the same sign as g;. Since the other units do not change
their state, the difference between the previous energy F(x,y) and the new
energy E(x',y) is

E(x,y) - EXx,y)=- ;g,v(zi —al).
Since both z; and —z; have a different sign than g; it follows that
E(x,y) - B(x',y) > 0.
The new state (x,y) has a lower energy than the original state (x,y). The
same argument can be made if a unit on the right layer has been selected, so

that for the new state (x,y’) it holds that

E(x,y) - BE(x,y') > 0,

Q> 30
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Digression: chaos
Energy: equivalent forms

The value of E(x,y) can be computed by multiplying first W by yT and the
result with —x/2. The product of the i-th row of W and y™ represents the
excitation of the i-th unit in the left layer. If we denote these excitations by

91,02, - - ., gn the above expression transforms to
91
E(x,y) = —%(11,1‘2, o T) ”
on

We can also compute E(x, y) multiplying first x by W. The product of the i-th
column of W with x corresponds to the excitation of unit ¢ in the right layer.
If we denote these excitations by ey, es, ..., e, the expression for E(x,y) can
be written as
Y
1 Y2
E(x,y) = —5(61&214-»161:) .

Yk
Therefore, the energy function can be written in the two equivalent forms

1

n
Gii.
2; i

k
1
E(xy) = -3 E eiy; and E(x,y)=—
i=1

31
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Digression: chaos

Energy: limit cycles with asymmetric couplings

Hendrich

A connection matrix with a zero diagonal can also lead to oscillations in
the case where the weight matrix is not symmetric. The weight matrix

0-1
w=(17)
describes the network of Figure 13.3. It transforms the state vector (1, —1)
into the state vector (1,1) when the network is running asynchronously. After
this transition the state (—1,1) can be updated to (—1,—1) and finally to

(1,—1). The state vector changes cyclically and does not converge to a stable
state.

[m] = = = o>

AL 64-360
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Digression: chaos

Energy: non-zero diagonal elements

unit 1
Wiz Wiz
e W3 °
unit 2 unit 3

Fig. 13.2. A Hopfield network of three units

It is easy to show that if the weight matrix does not contain a zero diagonal,
the network dynamics does not necessarily lead to stable states. The weight

matrix
-1 0 0
W= 0-1 0
0 0-1

for example, transforms the state vector (1,1,1) into the state vector
(=1,-1,—-1) and conversely. In the case of asynchronous updating, the net-
work chooses randomly among the eight possible network states.

33
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Energy: asymmetric couplings

-1
» network oscillates
» Note: we can try to use asymmetric couplings to store state

sequences in the network

> Note: possible, but doesn't work very well

Hendrich (=] = = = o> 34
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The Hopfield model

Hopfield model

Hendrich

>
>
4
>
>

vV v.v vy

fully-connected network

binary neurons, s; = {—1,+1}

network initialized with external input state s(0)
asynchronous network update

si(t +1) = sgu(3; wys;(1))

symmetric couplings, zero diagonal (w;; = 0)
allows to define an energy function

stable attractors

use Hebb learning to store a set of patterns x*

(Hopfield 1982)
=) =] - = vaQ

AL 64-360
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Feedback network: architecture

a

n 0 oo
B

8

> network initialized via separate input layer

> network dynamics via feedback connections

Hendrich (=] = = = o> 36
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The Hopfield model

Hopfield model: symmetric couplings

Hendrich

The symmetry of the weight matrix and a zero diagonal are thus necessary
conditions for the convergence of an asynchronous totally connected network
to a stable state. These conditions are also sufficient, as we show later.

The units of a Hopfield network can be assigned a threshold 6 different
from zero. In this case each unit selected for a state update adopts the state
1 if its total excitation is greater than #, otherwise the state —1. This is the
activation rule for perceptrons, so that we can think of Hopfield networks as
asynchronous recurrent networks of perceptrons.

The energy function of a Hopfield network composed of units with thresh-
olds different from zero can be defined in a similar way as for the BAM. In
this case the vector y of equation (13.5) is x and we let 8 = 6, = 0,..

[m] = = = o>
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Hopfield model: energy function

Definition 17. Let W denote the weight matriz of a Hopfield network of n
units and let @ be the n-dimensional row vector of units’ thresholds. The enerqy
E(x) of a state x of the network is given by

1
Ex) = —§xWxT +6xT.

The energy function can also be written in the form

n n n

E(X) = 7% ZZwijxiwj + ZG,TE,

j=1i=1 i=1

Hendrich (=] = = = o> 38
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Hopfield model: flipflop network

Hendrich

The energy function of a Hopfield network is a quadratic form. A Hop-
field network always finds a local minimum of the energy function. It is thus
interesting to look at an example of the shape of such an energy function. Fig-
ure 13.4 shows a network of just two units with threshold zero. It is obvious
that the only stable states are (1, —1) and (—1,1). In any other state, one of
the units forces the other to change its state to stabilize the network. Such
a network is a flip-flop, a logic component with two outputs which assume
complementary logic values.

The energy function of a flip-flop with weights wis = ws; = —1 and two
units with threshold zero is given by

E(ﬂﬂuﬂb) = I1%g,

[m] = = = o>
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Hopfield model: flipflop network energy function

» one of two stable states (lowest energy)

> assumes “smooth” activation functions (more about this later)

Hendrich (=] = = = o> 40
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Hopfield model: OR function

unit 1

unit 2 unit 3

» computations with the Hopfield network?

» example: OR function

Hendrich (=] = = = o> 41
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The Hopfield model

Hopfield model: XOR function tables

state 1{—1 —1 —1
state 2f 1 -1 1
state 3(—1 1 1
state 4 1 1 -1

From the point of view of the third unit (third column) this is the XOR
function. If the four vectors shown above are to become stable states of the
network, the third unit cannot change state when any of these four vectors
has been loaded in the network. In this case the third unit should be capable
of linearly separating the vectors (—1,—1) and (1,1) from the vectors (—1,1)
and (1,—1), which we know is impossible. The same argument is valid for
any of the three units, since the table given above remains unchanged after
a permutation of the units’ labels. This shows that no Hopfield network of
three units can have these stable states. However, the XOR problem can be
solved if the network is extended to four units. The network of Figure 13.7
can assume the following stable states, if adequate weights and thresholds are
selected:
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Hopfield model: XOR network diagram

unit 1

unit 2 unit 3

o> 43
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The Hopfield model

Hopfield model: Ising spin model

external field

N

» neuron model is equivalent to /sing model of magnetism

> magnetic field h; = 3°7_; wyx; + h*

» can reuse techniques from theoretical phyiscs for network

analysis
» possible to calculate the storage capacity of the network
Hendrich (=] = = = o>
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Hopfield model: Hebbian learning

Hendrich

A Hopfield network can be used as an associative memory. If we want to
“imprint” m different stable states in the network we have to find adequate
weights for the connections. In the case of the BAM we already mentioned
that Hebbian learning is a possible alternative. Since Hopfield networks are
a specialization of BAM networks, we also expect Hebbian learning to be
applicable in this case. Let us first discuss the case of a Hopfield network with
n units and threshold zero.

Hebbian learning is implemented by loading the m selected n-dimensional
stable states x1,Xs,...,X,, on the network and by updating the network’s
weights (initially set to zero) after each presentation according to the rule

k

& .. . .
wij — wi +ajwg,  Gj=1,...,n and i#j.

The symbols 2§ and &% denote the i-th and j-th component respectively of
the vector x;. The only difference from an autoassociative memory is the

[m] = = = o>
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Hopfield model: Minover learning

Hendrich

Minover PSG learning( network NV, patterns £#, desired stabilities {A;,}):
begin

end

initialize the couplings J;; to random or Hebb values
for all neurons S; do (parallel)
repeat
calculate all pattern stabilities &;,
select the pattern £ with lowest stability &,
Jij = Jij+ N71-O(Aiy — ki) - EYEY
until (all k;, > Aj,)
end for
calculate new norm ||.J;;||
return J;;

o & - = DAl 46
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Hopfield model: letter recognition

When an axion of cell A
is nearenough
to exc1te cell’B

Hendrich (=] =& = = o> 47
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Hopfield model: letter recognition

2EXYLEA
5BX¥_£-_@

> example input patterns and stable attractors

» append additional index bits to patterns

Hendrich
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Hopfield model: Perceptron equivalence

The interesting result which can immediately be inferred from the equivalence
of Hopfield networks and perceptrons is that every learning algorithm for
perceptrons can be transformed into a learning method for Hopfield networks.
The delta rule or algorithms that proceed by finding inner points of solution
polytopes can also be used to train Hopfield networks.

‘We have already shown in Chap. 10 that learning problems for multilayer
networks are in general NP-complete. However, some special architectures
can be trained in polynomial time. We saw in Chap. 4 that the learning prob-
lem for Hopfield networks can be solved in polynomial time, because there
are learning algorithms for perceptrons whose complexity grows polynomi-
ally with the number of training vectors and their dimension (for example,
Karmarkar’s algorithm). Since the transformation described in the previous
section converts m desired stable states into nm vectors to be linearly sep-
arated, and since this can be done in polynomial time, it follows that the
learning problem for Hopfield networks can be solved in polynomial time. In
Chap. 6 we also showed how to compute an upper bound for the number of
linearly separable functions. This upper bound, valid for perceptrons, is also
valid for Hopfield networks, since the stable states must be linearly separable
(for the equivalent perceptron). This equivalence simplifies computation of
the capacity of a Hopfield network when it is used as an associative memory.

o> 49
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Hopfield model: applications?

» model works well for associative memory

» other applications?

» in particular, parallel fast computation of difficult problems?

> interest triggered by paper on traveling-salesman problem

(Hopfield 1984)
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Hopfield model: eight rooks problem

» Put n rooks on an nxn chessboard

» so that they cannot take each other

solve with Hopfield network, nxn neurons
consider sorted into rows and columns

active neuron suppresses other neurons in same row/column

vV v v vy

network converges to solution
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Hopfield model: eight rooks problem

The network of Figure 13.16 can solve this problem for a 4 x 4 board.
Each field is represented by a unit. Only the connections of the first unit in
the board are shown to avoid cluttering the diagram. The connections of each
unit to all elements in the same row or column have the weight —2, all others
have a weight zero. All units have the threshold —1. Any unit set to 1 inhibits
any other units in the same row or column. If a row or column is all set to 0,
when one of its elements is selected it will immediately switch its state to 1,
since the total excitation (zero) is greater than the threshold —1.
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Hopfield model: eight queens problem

The well-known eight queens problem can also be solved with a Hopfield net-
work. Tt is just a generalization of the rooks problem, since now the diagonals
of the board will also be considered. Each diagonal can be occupied at most
once by a queen. As before with the rooks problem, we solve this task by
overlapping multiflop problems at each square. Figure 13.17 shows how three
multiflop chains have to be considered for each field. The diagram shows a
4 x4 board and the overlapping of multiflop problems for the upper left square
on the board. This overlapping provides us with the necessary weights, which
are set to w;; = —2, when unit ¢ is different from unit j and belongs to the
same row, column or diagonal as unit j. Otherwise we set w;; to zero. The
thresholds of all units are set to —1.
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Hopfield model: eight queens problem

» w;;j = —2 for neurons on same row, column, diagonal

» neuron threshold —1

» problem: this doesn't work always
» energy function has local minima with less than n queens
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Hopfield model: traveling salesman problem

The Traveling Salesman Problem (TSP) is one of the most celebrated bench-
marks in combinatorics. It is simple to state and visualize and it is NP-
complete. If we can solve the TSP efficiently, we can provide an efficient
solution for other problems in the class NP. Hopfield and Tank [200] were
the first to try to solve the TSP using a neural network.
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Hopfield model: solving the TSP

Hendrich

Solving the TSP requires minimizing the length of the round trip, that is
of

n
L= % Z dij TikTj k11,
i5,k

where z; represents the state of the unit corresponding to the entry ¢k in
the matrix. When x;; and z; 4 are both 1, this means that the city S; is
visited in the k-th step and the city S; in the step k+ 1. The distance between
both cities must be added to the total length of the round trip. We use the
convention that the column n + 1 is equal to the first column of the matrix,
so that we always obtain a round trip.

In the minimization problems we must include the constraints for a valid
round trip. It is necessary to add the energy function of the rooks problem to
the length L to obtain the new energy function E, which is given by

n n n n

E= %Z dijTij k41 + %(Z(Z 2 — D24 O mi - 1)%),

i,k j=1 i=1 i=1 j=1
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Hopfield model: storage capacity

Hendrich

The properties of Hopfield networks have been investigated since 1982 us-
ing the theoretical tools of statistical mechanics [322]. Gardner [155] published
a classical treatise on the capacity of the perceptron and its relation to the
Hopfield model. The total field sensed by particles with a spin can be com-
puted using the methods of mean field theory. This simplifies a computation
which is hopeless without the help of some statistical assumptions [189]. Using
these methods Amit et al. [24] showed that the number of stable states in a
Hopfield network of n units is bounded by 0.14n. A recall error is tolerated
only 5% of the time. This upper bound is one of the most cited numbers in
the theory of Hopfield networks.
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Hopfield model: stochastic noise

b

> noise can improve network convergence

> because network can escape from local minima
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