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Outlook

I Networks with feedback connections

I Associative memory

I Hopfield model

I Self-organizing maps

I Dimensionality reduction

I Principal Component Analysis

I Independent Component Analysis
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Remember: Eight major aspects of a PDP model

I a set of processing units

I the current state of activation

I an output function for each unit

I a pattern of connectivity between units

I a propagation rule for propagatin patterns of activities through
the network of connectivities

I an activation rule for combining the inputs impinging on a unit

I a learning rule whereby patterns of connectivity are modified by
experience

I the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)
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Remember: Multi-layer perceptrons

Multi-layer perceptrons:

I map an input-space into an output space

I using only feed-forward computations

I continous neuron activation functions (e.g. sigmoid)

I backpropagation learning algorithm

I therefore, neighborhood of input vector x is mapped to a
neighborhood of output vector y (image of x)

I continous mapping networks
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Associative memories

I goal of learning is to associate known-input vectors (patterns)
with given output vectors

I input vectors x ′ near to x should be mapped to y

I e.g., noise-reduction: noisy input vectors are mapped to the
original patterns

I similar to clustering algorithms

I implemented with networks with or without feedback

I but feedback networks produce better results
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Variants of associative networks
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BAM: network

I hetero-associative: x 7→ y 7→ x ′ 7→ y ′ 7→ x ′′ 7→ y ′′ . . .

(Kosko 1988)
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Auto-associative memory

I complete whole memory from a little fragment

I complete whole memory from noisy input

I considered a main function of the human cortex
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Auto-associative memory

A

M AA

SSG

AL

NN

L

L

I popular example: word-completion task

I first and last letters more important than middle letters

I etc.
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Pure feedback network: architecture

I network initialized with external input, S(t = 0) = I
I next states calculated via neuron activation
I output readout once stable (attractor states)
I output readout after fixed number of iterations
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Feedback network: iterations

I example: pattern-recognition, pattern-completion

I network state updated several times

I iterative improvement of current network state

I more economical than feed-forward network with many layers

Hendrich 10



University of Hamburg

MIN Faculty

Department of Informatics

Associative Memory AL 64-360

Feedback networks: unfolding

network with feedback connections:

I equivalent to n-layer network with same forward connections

I but only for fixed number of feedback iterations
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Jordan-network, Elman-network

I feed-forward architecture with some feedback connections

I internal state (context)

I complex behaviour, see SNNS/JavaNNS for implementation
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Brain modeling: mostly associative?

(Amit 1986)
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Network state evolution

I network initialized in (random) input state

I will the network stabilize at all?

I will the network converge to the nearest attractor?

I how fast will the network converge?

I basins of attraction
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Energy landscape model

M1 basin of attraction
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Basins of attraction: single iteration

I example network, n = 10, p = 1 . . . 4 stored patterns
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Basins of attraction: five iterations
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Basins of attraction: multiple iterations
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Basins of attraction: few patterns (n = 10)

I all patterns stable

I recognition rate vs. Hamming distance of input patterns
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Basins of attraction: saturated network (n = 10)

I all patterns still stable

I but basins of attraction smaller
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Basins of attraction (n = 100)
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BAM: network

I hetero-associative: x 7→ y 7→ x ′ 7→ y ′ 7→ x ′′ 7→ y ′′ . . .
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BAM: energy function
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BAM: energy function (with neuron thresholds θ)
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BAM: stable states
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Digression: dynamic systems and chaos

I dynamic systems: differential equations, ẋ = Φ(x)

I dynamic maps: discrete time, x(t + 1) = Φ(x)

I study the time evolution of the systems

I but non-linear systems typically show chaotic behaviour
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Example: logistic map

I Logistic map: xn+1 = r xn(1− xn)
I Models population growth, population growth parameter r
I x ∈ [0, 1]

I 0 < r < 1: population eventually dies
I 1 < r < 2: population stabilizes at (r − 1)/r
I 2 < r < 3: population oscillates, finally reaches (r − 1)/r
I 3 < r < 1 +

√
6: population osciallates between two values

I 3.45 < r < 3.54: oscillations between four values
I 3.57 < r < 4: chaos
I 4 < r : population diverges
I typical behaviour for non-linear systems with feedback

Wikipedia, Logistic Map
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Logistic map: bifurcation diagram
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Chaotic brain?!

I chaos typical even in the 1-dimensional case

I gets a lot worse in high-dimensional systems

I neurons are highly non-linear

I brain has 1011 neurons

I with lots of feedback connections

I how to explain stable behaviour at all?

I how to explain memory?
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Asynchronous dynamics: energy decreases
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Energy: equivalent forms
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Energy: limit cycles with asymmetric couplings
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Energy: non-zero diagonal elements
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Energy: asymmetric couplings

I network oscillates

I Note: we can try to use asymmetric couplings to store state
sequences in the network

I Note: possible, but doesn’t work very well
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Hopfield model

I fully-connected network

I binary neurons, si = {−1,+1}
I network initialized with external input state s(0)

I asynchronous network update

I si (t + 1) = sgn(
∑

j wijsj(t))

I symmetric couplings, zero diagonal (wii = 0)

I allows to define an energy function

I stable attractors

I use Hebb learning to store a set of patterns xµ

(Hopfield 1982)
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Feedback network: architecture

I network initialized via separate input layer

I network dynamics via feedback connections
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Hopfield model: symmetric couplings
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Hopfield model: energy function
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Hopfield model: flipflop network

Hendrich 39



University of Hamburg

MIN Faculty

Department of Informatics

The Hopfield model AL 64-360

Hopfield model: flipflop network energy function

I one of two stable states (lowest energy)

I assumes “smooth” activation functions (more about this later)
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Hopfield model: OR function

I computations with the Hopfield network?

I example: OR function
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Hopfield model: XOR function tables

Hendrich 42



University of Hamburg

MIN Faculty

Department of Informatics

The Hopfield model AL 64-360

Hopfield model: XOR network diagram
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Hopfield model: Ising spin model

I neuron model is equivalent to Ising model of magnetism
I magnetic field hi =

∑n
j=1 wijxj + h∗

I can reuse techniques from theoretical phyiscs for network
analysis

I possible to calculate the storage capacity of the network
Hendrich 44



University of Hamburg

MIN Faculty

Department of Informatics

The Hopfield model AL 64-360

Hopfield model: Hebbian learning
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Hopfield model: Minover learning
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Hopfield model: letter recognition
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Hopfield model: letter recognition

I example input patterns and stable attractors

I append additional index bits to patterns
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Hopfield model: Perceptron equivalence
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Hopfield model: applications?

I model works well for associative memory

I other applications?

I in particular, parallel fast computation of difficult problems?

I interest triggered by paper on traveling-salesman problem

(Hopfield 1984)
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Hopfield model: eight rooks problem

I Put n rooks on an nxn chessboard

I so that they cannot take each other

I solve with Hopfield network, nxn neurons

I consider sorted into rows and columns

I active neuron suppresses other neurons in same row/column

I network converges to solution
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Hopfield model: eight rooks problem
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Hopfield model: eight queens problem
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Hopfield model: eight queens problem

I wij = −2 for neurons on same row, column, diagonal

I neuron threshold −1

I problem: this doesn’t work always

I energy function has local minima with less than n queens
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Hopfield model: traveling salesman problem

I use continuous neuron activation functions (e.g. sigmoid)
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Hopfield model: solving the TSP
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Hopfield model: storage capacity
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Hopfield model: stochastic noise

I noise can improve network convergence

I because network can escape from local minima
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