
University of Hamburg

MIN Faculty

Department of Informatics

Introduction AL 64-360

Neuronale Netzwerke
VL Algorithmisches Lernen, Teil 2b

Norman Hendrich

University of Hamburg
MIN Faculty, Dept. of Informatics
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Terminplanung: Part 2

I 27/05/2009 perceptron, backpropagation

I 28/05/2009 associative memory, self-organizing maps

I 03-04/06/2009 holidays

I 10-11/06/2009 dimensionality reduction
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Remember: Eight major aspects of a PDP model

I a set of processing units

I the current state of activation

I an output function for each unit

I a pattern of connectivity between units

I a propagation rule for propagatin patterns of activities through
the network of connectivities

I an activation rule for combining the inputs impinging on a unit

I a learning rule whereby patterns of connectivity are modified by
experience

I the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)
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Remember: McCulloch-Pitts model

I binary-valued threshold neurons with unweighted connections

I McCulloch-Pitts networks can compute any Boolean function

I but very similar to standard logic-gates

I network must be designed for a given computation

I no free parameters for adaptation

I learning only by modification of the network topology

I today, we will study weighted networks
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The classical Perceptron

I proposed by Rosenblatt (1958)

I threshold elements with real-valued weights

I originally, assuming stochastic connections

I and a special learning algorithm

I a model for pattern recognition problems

I and the human visual processing

I very popular in the 1960s

I comprehensive critical analysis by Minsky and Papert (1969)

I more details and proofs: Rojas, chapter 3
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The Perceptron

a binary classifier that maps a real-valued vector x of inputs to a
binary output value f (x)

I binary output function with threshold θ

I similar to the McCulloch-Pitts neuron

I but weighted real-valued inputs

xi (t + 1) = 1 if (
∑

j wij · xj(t) ≥ θ), 0 else

I what are the computational limits of this model?

Hendrich 7



University of Hamburg

MIN Faculty

Department of Informatics

Perceptron model AL 64-360

Perceptron motivation

I abstract model of the retina and local preprocessing
I the association area: feature detection (perceptrons)
I active outputs indicate matched patterns
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Predicate functions

I arbitrary predicate functions P, possibly non-linear and complex

I but with limited receptive fields

I perceptron applies linear weighting and threshold θ
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Example predicates

(Minsky and Papert 1969)
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Example task: detection of connected figures?
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Example task: detection of connected figures?

I three receptive fields, combined by a predicate function each

I group outputs fed to a single perceptron

I can the perceptron detect connectedness of the line?

Hendrich 12



University of Hamburg

MIN Faculty

Department of Informatics

Perceptron model AL 64-360

Can we detect connected figures?

Proposition: No diameter limited perceptron can decide whether a
geometric figure is connected or not.

I assume the perceptron can decide this

I construct demo patterns A B C D

I scale until figure fills the left/middle/right receptive fields

I assume that figures A, B, C are classified correctly

I contradiction: figure D is classified incorrectly

(Minsky and Papert, 1969)
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Proof

∆S = ∆2S + ∆1S ≥ −2S , S + ∆S ≥ −S ≥ 0, so D connected
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Logical functions with Perceptrons

I single McCulloch-Pitts neurons implement monotonous
functions

I McCulloch-Pitts networks can implement any Boolean function

I what can a single Perceptron do?

Geometric interpretation:

I Perceptron implements a thresholded decision

I it separates its input space into two half-spaces

I for points in one half the result is 0, and in the other half 1
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Geometric interpretation

I basic visualization in the 2D-case: dimensions x1 and x2

I a line separating the upper and lower half of the plane
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Example separations: OR and AND functions

I Perceptron computes separable functions

I one line/plane/hyperplane separates the 0- and the 1-values
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Absolute linear separability
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Open half space

Hendrich 19



University of Hamburg

MIN Faculty

Department of Informatics

Perceptron model AL 64-360

Example separations: the 16 functions of 2 variables

I 22n
different Boolean with n variables

I table shows all possible functions for n = 2

I 14 functions can be computed with a single Perceptron

I but f6 and f9 cannot - the XOR and XNOR
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Proof for the XOR problem

I XOR function cannot be separated with a single Perceptron

I must fulfil the following inequalities:

I x1 = 0 , x2 = 0: w1x1 + w2x2 = 0 =⇒ 0 < θ

I x1 = 1 , x2 = 0: w1x1 + w2x2 = w1 =⇒ w1 ≥ θ

I x1 = 0 , x2 = 1: w1x1 + w2x2 = w2 =⇒ w2 ≥ θ

I x1 = 1 , x2 = 1: w1x1 + w2x2 = w1 + w2 =⇒ w1 + w2 < θ

I contradiction: w1 ≥ θ and w2 ≥ θ and positive, but
w1 + w2 < θ.
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Error function in weight space

I learning should automatically find the weights

I to separate the given input patterns

I with fw (x) = 1 for class A and fw (x) = 0 for class B.

Define the error function as the number of false classifications,
obtained using the current weight vector w :

E (w) =
∑
x∈A

(1− fw (x)) +
∑
x∈B

fw (x)

I learning should minimize this error function

I at the global minimum, E (w) = 0, the problem is solved
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Extended weight vector

I proofs and implementation are often easier if threshold θ = 0
(so that we can omit it)

I introduce an extra weight, wn+1 = −θ

I and an extra constant input, xn+1 = 1

I the so-called extended weight vector representation
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The dual formulation

I the weighting calculation is
∑

j wjxj ≥ 0

I symmetric in w and x

I classification uses inputs x as variables

I dual-problem: use w as the variables
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General decision curves

I original Perceptron allows complex predicates

I what happens with non-linear decision curves/surfaces?

I example shows a valid solution of the XOR function

I we will come back to this question later (kernel-trick)
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Feature detection: structure of the retina

I retina known to use (non-linear) pre-processing

I reconsider the perceptron for visual pattern detection
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Low-level convolution operators

I compare: traditional image-processing / computer-vision

I basic convolution operators for low-level feature detection

I for example, Laplace 3x3 edge-detection operator

I separate neurons can compute those operators in parallel
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Perceptron as an edge-detector

I assume binary or gray-scale images
I perceptron connected to input pixels works as feature detector
I e.g., 3x3 Laplace operator
I use one perceptron centered at every pixel
I massively parallel computation
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Feature detection

I classification directly on the raw-pixels?

I not invariant against translation, rotation, etc.
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Neocognitron network

I use pre-processing to extract low-level features

I run classification on the features, not the raw pixels
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Perceptron summary:

I binary neurons, internal state is x =
∑

j wijxj

I threshold output function o(x) = 1
2(sgn(x)− 1)

I single-layer, fully connected to input neurons

I continous weights wij

I basic learning rule

I single Perceptron cannot solve XOR or connectedness

I non-linear predicate functions might help

I a model for low-level feature detection
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Learning algorithms for neural networks

I network self-organizes to implement the desired behaviour

I correction-steps to improve the network error
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Three models of learning

I supervised learning (corrective learning)
I learning from labelled examples
I provided by a knowledgable external supervisor
I the correct outputs are known for all training samples
I the type of learning usually assumed in NN studies

I reinforcement learning:
I no labelled examples
I environment provides a scalar feedback signal
I combine exploration and exploitation to maximize the reward

I unsupervised learning:
I no external feedback at all
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Classes of learning algorithms

I most general is unsupervised learning

I e.g., classify input-space clusters

I but we don’t know how many or even which clusters
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Perceptron learning example

I assume a perceptron with constant threshold θ = 1

I look for weights w1 and w2 to realize the logic AND function

I calculate and plot the error-function E (w) for all weights

I learning algorithm should reach the solution ’triangle’
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Error surface for the AND function
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Error surface for the AND function, from above

I areas of the error-function in weight-space

I four steps of weight adjustments during learning

I final state w∗ is a valid solution with error E (w) = 0
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Solution polytope

I in general, solution area is a polytope in Rn

I at given threshold θ, a cut of the solution polytope
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Perceptron training algorithm

I assume a given classification problem

I set of m training input patterns pi and outputs f (pi )

I try to minimize error-function E (w) in weight-space

I standard algorithms starts with random weights

I pick a training pattern pi randomly

I update the weights to improve classification for this pattern

I pick the next training pattern

I until E (w) = 0
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Perceptron training algorithm

Hendrich 40



University of Hamburg

MIN Faculty

Department of Informatics

Perceptron learning AL 64-360

Perceptron training algorithm

I algorithm can stop once a first solution is found

I we will study a more robust variant later
(the so-called support-vector machine)

I algorithm converges in finite number of steps

I iff the patterns are linearly separable

I proof: Rojas 4.2.2

I no convergence if problem is not solvable

I learning a conflicting pattern can degrade network performance
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Visualization in input and extended weight space
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Behaviour of Perceptron learning
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Worst-case behaviour

I search direction (in w space) according to last incorrect
classified pattern

I but no information about the shape of the error function

I figure shows ’worst case’ for Perceptron learning
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Pocket training algorithm

I how to guarantee good behaviour if problem not separable?

I we want the best solution: least total error E (w)

I standard Perceptron algorithm won’t converge

Pocket algorithm:

I keep a history of the learning process over a set of patterns

I keep previous best solution in your pocket

I restore previous best solution if E (w) degrades
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Pocket training algorithm

I variant of the basic Perceptron learning

I keep previous best solution in your pocket

I restore previous solution if E (w) degrades

I converges to the best possible solution
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Linear programming

I solution area bounded by hyperplanes

I use linear programming (simplex-algorithm) to find optimal
solution

I worst-case performance is exponential

I but usually, well-behaved
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Multi-layer networks

I combine multiple threshold elements to larger networks

I can compute any Boolean function

I but we have no learning rule (yet)

Network architecture?

I 2-layer networks

I multi-layer feed-forward networks

I multi-layer networks with shortcut connections

I networks with feedback connections
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Network architecture
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General multi-layered feed-forward network

I input layer (remember: inputs only, no computation here)

I one or more layers of hidden neurons

I one layer of output neurons
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The XOR in a 2-layer network

I a solution of the XOR function

I based on (x1 ∧ ¬x2) ∨ (¬x1 ∧ x2)
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The 16 Boolean two-arg functions, again
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Computation of XOR with three units
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The XOR with two neurons

I network with shortcut connections

I only two neurons

I but learning is more complex
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Geometric interpretation

I every neuron in the hidden layer defines one separation
I output neuron combines the half-spaces
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Geometric interpretation

I output neuron must only learn 3 regions

I feature space has lower dimension that the input space
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Polytopes

I multiple separations delimit a polytope
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Counting regions in input and weight space

I how many regions can be delimited with n hyperplanes?
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Visualization of the two-arg functions
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Example error functions

I f1111 (left) x1 ∨ x2 (right)
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Example error functions

I error-function for OR

Hendrich 61



University of Hamburg

MIN Faculty

Department of Informatics

Multi-layer networks AL 64-360

Shatterings

What is the maximum number of elements of an input space which
can be classfied by our networks?

I single two-input Perceptron can classify three points

I but not four (see XOR)

I network with 2 hidden neurons: two dividing lines in feature
space, 14 regions

I how many concepts can be classified by a network with n
hidden units?
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Shatterings

I possible colorings of the input space for two dividing lines
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Number of regions in general

How many regions are defined by m cutting hyperplanes of
dimension n − 1 in an n-dimensional space?

I consider only hyperplanes going through the origin

I in 2D: 2m regions

I in 3D: each cut increases the number of regions by a factor of 2

I general case: recursive calculation
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Recursive calculation of R(m, n)
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Number of Boolean and threshold functions of n inputs
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Number of threshold functions grows polynomially
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Learnability problems
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Learning in multi-layer networks

I we now need learning algorithms for our multi-layer networks

I minimization of the error-funtion

I gradient-descent algorithms look promising

I but error-functions of binary threshold neurons are flat

I use neurons with smooth output functions

I instead of the step-function

I accept small/large values (e.g. 0.1, 0.9) for classification
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Sigmoid function

sc(x) =
1

1 + e−cx

S(x) = 2s(x)− 1 =
1− e−x

1 + e−x
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Generalized error function
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Error function with sigmoid transfer function

I smooth gradients instead of steps
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Error function with local minima

I possibly, exponential number of local minima
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Two sides of a computing unit

I our output function is differentiable
I calculate and use f (x) and f ′(x)
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Backpropagation idea

I present a training pattern to the network

I compare the network output to the desired output,
calculate the error in each output neuron

I for each neuron, calculate what the output should have been.
Calculate a scaling factor required to reach the desired output.

I Adjust the weights of each neuron to lower the local error

I Assign “blame” for the local error to neurons at the previous
level, giving greater responsibility to neurons connected by
stronger weights

I repeat for every previous layer, using the “blame” as the local
error

(Wikipedia)
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Backpropagation pseudocode

Initialize the weights in the network (often randomly)
Do

For each example e in the training set
O = neural-net-output(network, e) forward pass
T = teacher output for e
Calculate error (T − O) at the output units
; backward pass
Compute δwi for all weights from hidden layer to output layer
Compute δwi for all weights from input layer to hidden layer
Update the weights in the network

Until all examples classified correctly or stopping criterion satisfied
Return the network

(Wikipedia)
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Backpropagation algorithm
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Four phases of the algorithm
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Function composition
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Backpropagation composition

I
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Schema

I in both directions, values weighted with wij
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Connections for the 3-layer network
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Calculation of the output layer
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Backpropagation of the error
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Calculation of hidden units
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Time evolution of the error function
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Backpropagation with momentum term
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Typical backpropagation experiment

I find an interesting problem
I prepare a pattern set

I normalize, pre-process if necessary
I select training patterns
I select validation patterns

I select the network architecture
I number of layers and neurons per layer
I select input and output encodings
I select neuron activation and output functions
I select the learning algorithm and parameters

I run the learning algorithm on the training patters

I check network performance on the validation patterns

I repeat until convergence
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Online vs. offline learning

Online-learning:
I for each training pattern:

I apply pattern to the input layer
I propagate the pattern forward to the output neurons
I calculate error
I backpropagate errors to the hidden layers

I patterns selected randomly or in fixed order
I usual strategy for BP learning

Offline-learning (batch-learning):
I apply all training patterns to the network
I accumulate the error over all patterns
I one backpropagation step
I very slow when large training set
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Applications of backpropagation

I NETtalk

I function approximation
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NETtalk: speech synthesis

I text-to-speech synthesis?

I commercially available for many years

I most spoken languages based on a small set of fixed phonemes

I so, transform a string of input characters into (a string of)
phonemes

I usually, built around hand-crafted linguistic rules

I and transformation rules

I plus dictionaries to handle exceptions from the rule

I can neural networks be taught to speak?
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NETtalk

I English speech synthesis
I without linguistic knowledge or transformations

I 3-layer feed-forward network
I input is 7-character sliding window of text
I 7 · 29 input sites: 1-hot encoding of the 26 letters plus

punctuation
I 80 hidden units
I 26 output units: 1-hot encoding of the phonemes
I network generates the phoneme corresponding to the middle of

the seven input characters

(Sejnowski and Rosenberg 1980)
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NETtalk

I corpus of several hundred works together with their phonetic
transcription used as training pattersn

I backpropagation learning used to set the network weights
(7 · 29 · 80 + 26 · 80 = 18320)

I the output neuron with the highest activation is used to select
the output phoneme

I phoneme speech-synthesizer drivers the speaker

(Sejnowski and Rosenberg 1980)
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NETtalk architecture
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NETtalk demo

I initially, network errors similar to children’s errors

I final network performance acceptable but not outstanding

I increasing the network size does not really help

I analysis of the final learning network is difficult

I evidence that some of the hidden units encode well-known
linguistic rules

I damaging some of the weights produces specific deficiencies

I demo
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Outlook

We will look at several PDP/NN architectures:

I McCulloch-Pitts model

I Perceptron

I Multilayer perceptron with backpropagation learning

I Recurrent netwoks: Hopfield-model and associative memory

I Self-organizing maps

I their units and interconnections

I their learning rules

I their environment model

I and possible applications
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