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Terminplanung: Part 2

» 27/05/2009 perceptron, backpropagation
» 28/05/2009 associative memory, self-organizing maps

» 03-04/06/2009 holidays
» 10-11/06/2009 dimensionality reduction
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Backpropagation applications
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Remember: Eight major aspects of a PDP model

>

| 4
>
>
>

a set of processing units

the current state of activation

an output function for each unit

a pattern of connectivity between units

a propagation rule for propagatin patterns of activities through
the network of connectivities

> an activation rule for combining the inputs impinging on a unit

» a learning rule whereby patterns of connectivity are modified by

Hendrich

experience

the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)
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Remember: McCulloch-Pitts model

» binary-valued threshold neurons with unweighted connections
» McCulloch-Pitts networks can compute any Boolean function

» but very similar to standard logic-gates

> network must be designed for a given computation
> no free parameters for adaptation

> learning only by modification of the network topology

> today, we will study weighted networks

Hendrich (=] = = = o> 5
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The classical Perceptron

Hendrich

vV v vV v VvY

proposed by Rosenblatt (1958)

threshold elements with real-valued weights
originally, assuming stochastic connections
and a special learning algorithm

a model for pattern recognition problems

and the human visual processing

» very popular in the 1960s

» comprehensive critical analysis by Minsky and Papert (1969)

» more details and proofs: Rojas, chapter 3

[m] = = = o> 6
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The Perceptron

a binary classifier that maps a real-valued vector x of inputs to a
binary output value f(x)

» binary output function with threshold 6
» similar to the McCulloch-Pitts neuron

» but weighted real-valued inputs
xi(t+1) =1if (3; wj - x(t) > 0), 0 else

» what are the computational limits of this model?

Hendrich (=] = = = o> 7
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Perceptron motivation

responses

projection arca association arca

random
connections

local connections

> abstract model of the retina and local preprocessing
> the association area: feature detection (perceptrons)

> active outputs indicate matched patterns
Hendrich (=] = = = o> 8
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Predicate functions

» arbitrary predicate functions P, possibly non-linear and complex
> but with limited receptive fields
> perceptron applies linear weighting and threshold 6

Hendrich (=] = = = o> 9
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Example predicates

v X) = 1if X is a convex figure,
CONVEX 0if X is not a convex figure;

1 if X is a connected figure,
0 otherwise.

¥ connecren(X) = {

(Minsky and Papert 1969)

Q> 10
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Example task: detection of connected figures?
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Example task: detection of connected figures?

group 1 group 3 group 2

> three receptive fields, combined by a predicate function each
» group outputs fed to a single perceptron
» can the perceptron detect connectedness of the line?

Hendrich [m] = = = o> 12
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Can we detect connected figures?

Hendrich

Proposition: No diameter limited perceptron can decide whether a
geometric figure is connected or not.

>
>
>

assume the perceptron can decide this
construct demo patterns A B C D
scale until figure fills the left/middle/right receptive fields

assume that figures A, B, C are classified correctly
contradiction: figure D is classified incorrectly

(Minsky and Papert, 1969)
(=] = = = o> 13
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Proof

All predicates are connected to a threshold element through weighted edges
which we denote by the letter w with an index. The threshold element decides
whether a figure is connected or not by performing the computation

S= Y wuPit+ Y waPit Y wwPi-020.

Pegroup1 Piegroup2 P,egroup3

If S is positive the figure is recognized as connected, as is the case, for example,
in Figure 3.3.

If the disconnected pattern A is analyzed, then we should have S < 0.
Pattern A can be transformed into pattern B without affecting the output of
the predicates of group 3, which do not recognize the difference since their
receptive fields do not cover the sides of the figures. The predicates of group
2 adjust their outputs by A2S so that now

S+ 2,820 A8 > —S.

If pattern A is transformed into pattern C, the predicates of group 1 adjust
their outputs so that the threshold element receives a net excitation, i.e.,

S+A8>0=A,8> 8.

However, if pattern A is transformed into pattern D, the predicates of group
1 cannot distinguish this case from the one for figure C' and the predicates
of group 2 cannot distinguish this case from the one for figure B. Since the
predicates of group 3 do not change their output we have

AS = ApS+ A5 > 25, S+ AS > —S5 >0, so D connected

drich
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Logical functions with Perceptrons

» single McCulloch-Pitts neurons implement monotonous
functions

» McCulloch-Pitts networks can implement any Boolean function

» what can a single Perceptron do?

Geometric interpretation:
» Perceptron implements a thresholded decision
> it separates its input space into two half-spaces

» for points in one half the result is 0, and in the other half 1

Hendrich [m] = = = o> 15
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Geometric interpretation

0,93, +2x, 21

) /
\ x

0.9x; +2x, <1

y <

» basic visualization in the 2D-case: dimensions x; and x»
> a line separating the upper and lower half of the plane

Hendrich (=] = = = o> 16
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Example separations: OR and AND functions

OR AND

Y
Y

» Perceptron computes separable functions

» one line/plane/hyperplane separates the 0- and the 1-values

Hendrich (=] = = = o> 17
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Absolute linear separability

Hendrich

Definition 3. Two sets A and B of points in an n-dimensional space are

called absolutely linearly separable if n + 1 real numbers wy, ..., wpy1 exist
such that every point (z1,xa,...,xn) € A satisfles > o | wiry > Wpyr ond
every point (T1,Ta,...,2Tn) € B satisfies 31, wiT; < Wntt

If a perceptron with threshold zero can linearly separate two finite sets
of input vectors, then only a small adjustment to its weights is needed to
obtain an absolute linear separation. This is a direct corollary of the following
proposition.

Proposition 7. T'wo finite sets of points, A and B, in n-dimensional space
which are linearly separable are also absolutely linearly separable.

[m] = = = o>
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Open half space

Definition 4. The open (closed) positive half-space associated with the n-
dimensional weight vector w is the set of all points x € R™ for which w.-x > 0

(w-x > 0). The open (closed) negative half-space associated with w is the set
of all points x € R™ for which w-x <0 (w-x < 0).

Hendrich (=] = = = o> 19
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Example separations: the 16 functions of 2 variables

1 x2|fo f1 fo fa fa fs fe f7 fs fo fio fi1 fiz fiz fia fis
oo0j01 0101010101 01 01
01j0 01100110011 0011
100000111 100O0UO0ODT1 111
11j0000000O0O1T1T 1 1 1 1 11

» 22" different Boolean with n variables

» table shows all possible functions for n = 2

» 14 functions can be computed with a single Perceptron
» but fz and fy cannot - the XOR and XNOR

Hendrich
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Proof for the XOR problem

Hendrich

>

vV v.v v VY

XOR function cannot be separated with a single Perceptron

must fulfil the following inequalities:

x1=0,x=0 wx+wxx=0 =—=0<40
x1=1,x=0  wixi+wxo=w3 — w >0
x1=0,x=1 wix3x+wxo=wr = wp >0
x1=1,x=1 wixxd+wxo=wi+wr =—=>wi+w <0

contradiction: wy > 6 and wy > 6 and positive, but
wy + wp < 6.

[m] = = = o> 21
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Error function in weight space

» learning should automatically find the weights
> to separate the given input patterns
» with f,(x) =1 for class A and f,,(x) = 0 for class B.

Define the error function as the number of false classifications,
obtained using the current weight vector w:

E(w) = (1—fu(x)+ D fulx)

XEA xeB

» learning should minimize this error function

» at the global minimum, E(w) = 0, the problem is solved

N
N}

Hendrich o =] - = Da >
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Extended weight vector

» proofs and implementation are often easier if threshold 6§ = 0
(so that we can omit it)

> introduce an extra weight, w41 = —60
» and an extra constant input, x,41 =1
> the so-called extended weight vector representation

Hendrich (=] = = = o> 28
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The dual formulation

X3

X3 —0=w,
> the weighting calculation is 3 _; wjx; > 0
» symmetric in w and x

» classification uses inputs x as variables

» dual-problem: use w as the variables

Hendrich (=] = = = o>
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General decision curves

Y

0
\

» original Perceptron allows complex predicates
» what happens with non-linear decision curves/surfaces?

» example shows a valid solution of the XOR function
» we will come back to this question later (kernel-trick)

Hendrich (=] = = = o> 25
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Feature detection: structure of the retina

receptors

> retina known to use (non-linear) pre-processing

» reconsider the perceptron for visual pattern detection

Hendrich (=] = = = o> Pl
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Low-level convolution operators

B B B |

-1 8 | -1

B B B |

» compare: traditional image-processing / computer-vision
» basic convolution operators for low-level feature detection

» for example, Laplace 3x3 edge-detection operator

> separate neurons can compute those operators in parallel

Hendrich (=] = = = o> 27
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Perceptron as an edge-detector

assume binary or gray-scale images

perceptron connected to input pixels works as feature detector
e.g., 3x3 Laplace operator

use one perceptron centered at every pixel

massively parallel computation
Hendrich (=] = = = o>

vVvyVYyVvyy

AL 64-360



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg H

Perceptron model

AL 64-360

Feature detection

pattern

weights
11111
HL—1] 1 |11
—1-1] 1 |-1}]-1
HL-1] 1 11
H1=1]1 |-1f-1

» classification directly on the raw-pixels?

> not invariant against translation, rotation, etc.

Hendrich (=] = = = o> 29
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Neocognitron network

transformation convolution
T operators

patterns 1T
mm Pl
1]

=+ S

5o iy
S m

> use pre-processing to extract low-level features
» run classification on the features, not the raw pixels

Hendrich [m] = = = o> 30
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Perceptron summary:

binary neurons, internal state is x = 3. w;;x;
threshold output function o(x) = 3(sgn(x) — 1)
single-layer, fully connected to input neurons

continous weights w;;

vV v v v VY

basic learning rule

> single Perceptron cannot solve XOR or connectedness
» non-linear predicate functions might help

a model for low-level feature detection

v

Hendrich (=] = = = o> 31
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Learning algorithms for neural networks

/y network \

test input-output compute the
examples error

fix network parameters

> network self-organizes to implement the desired behaviour

> correction-steps to improve the network error

Hendrich (=] = = = o> 82]
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Three models of learning

» supervised learning (corrective learning)

learning from labelled examples

» provided by a knowledgable external supervisor

» the correct outputs are known for all training samples
> the type of learning usually assumed in NN studies

v

» reinforcement learning:

» no labelled examples
» environment provides a scalar feedback signal
» combine exploration and exploitation to maximize the reward

» unsupervised learning:
» no external feedback at all

Hendrich [m] = = = o> 33
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Perceptron learning

Classes of learning algorithms

cluster3 *®

cluster 1

network

cluster 2

» most general is unsupervised learning

> e.g., classify input-space clusters

&
O_
O_

» but we don't know how many or even which clusters

Hendrich

= o>
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Perceptron learning example

Hendrich

X1~ wy

Xy Wo

> assume a perceptron with constant threshold 6 =1
> look for weights wy and ws to realize the logic AND function
» calculate and plot the error-function E(w) for all weights

» learning algorithm should reach the solution 'triangle’

[m] = = = o>

AL 64-360
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Error surface for the AND function

Hendrich (=] = = = o> 36
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Error surface for the AND function, from above

Wy
| 2
W,
2 WI(/ 0
w AN Wo
0 1
1
wy
2

> areas of the error-function in weight-space
» four steps of weight adjustments during learning
» final state w* is a valid solution with error E(w) =0

Hendrich (=] = = = o> 37
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Solution polytope

> in general, solution area is a polytope in R"

> at given threshold 6, a cut of the solution polytope

Hendrich (=] = = = o> 38
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Perceptron training algorithm

Hendrich

> assume a given classification problem

» set of m training input patterns p; and outputs f(p;)

> try to minimize error-function E(w) in weight-space

vV v v v Y

standard algorithms starts with random weights

pick a training pattern p; randomly

update the weights to improve classification for this pattern
pick the next training pattern

until E(w) =0

o = = = o> 39



UH MIN Facul
iti Department of Informati I
L2 University of Hamburg

Perceptron learning AL 64-360

Perceptron training algorithm

start:  The weight vector wq is generated randomly,
set £: =10

test: A vector x € PUN is selected randomly,

if x € P and w; - x > 0 go to test,
if x€ P and w; - x < 0 go to add,
if x € N and w; - x < 0 go to test,
if x € N and w; - x > 0 go to subtract.

add: set wit1 = wy +x and t:=1t+ 1, goto test

subtract: set wip1 = wy — x and t:= 1t + 1, goto test

Hendrich (=] = = = o> 40
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Hendrich

> algorithm can stop once a first solution is found

» we will study a more robust variant later

(the so-called support-vector machine)

» algorithm converges in finite number of steps
» iff the patterns are linearly separable
» proof: Rojas 4.2.2

» no convergence if problem is not solvable

learning a conflicting pattern can degrade network performance

[=] = = = o>

AL 64-360
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Visualization in input and extended weight space

vectors in P

P2
weight vector

P1

ng— /

vectors in N
n,

o>
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Behaviour of Perceptron learning

1) Initial configuration 2) After correction with x;

X
Wo
Wi
X
&wn 2 Xy

X3 X3
3) After correction with x5 4) After correction with x;
X X1
hE)
o
x; W2 X2
X3 X3
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Worst-case behaviour

1 iterations
ZET0 error

» search direction (in w space) according to last incorrect
classified pattern

» but no information about the shape of the error function

» figure shows 'worst case’ for Perceptron learning

Hendrich (=] = = = o> 44
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Pocket training algorithm

» how to guarantee good behaviour if problem not separable?
> we want the best solution: least total error E(w)

» standard Perceptron algorithm won't converge

Pocket algorithm:
> keep a history of the learning process over a set of patterns
> keep previous best solution in your pocket

> restore previous best solution if E(w) degrades

Hendrich (=] = = = o> 45
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Pocket training algorithm

Hendrich

Algorithm 4.2.2 Pocket algorithm

start: Initialize the weight vector w randomly. Define a “stored” weight
vector wy = w. Set h,, the history of wg, to zero.

iterate: Update w using a single iteration of the perceptron learning algo-
rithm. Keep track of the number A of consecutively successfully tested
vectors. If at any moment i > hg, substitute w, with w and h, with
h. Continue iterating.

» variant of the basic Perceptron learning

> keep previous best solution in your pocket

» restore previous solution if E(w) degrades

» converges to the best possible solution

[m] = = = o> 46
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Linear programming

» solution area bounded by hyperplanes

use linear programming (simplex-algorithm) to find optimal
solution

» worst-case performance is exponential

» but usually, well-behaved

Hendrich (=] = = = o> 47
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Multi-layer networks

» combine multiple threshold elements to larger networks
» can compute any Boolean function

» but we have no learning rule (yet)

Network architecture?

» 2-layer networks

» multi-layer feed-forward networks

» multi-layer networks with shortcut connections

» networks with feedback connections

Hendrich o =] - = Da >
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Network architecture

Hendrich

6.1.1 Network architecture

The networks we want to consider must be defined in a more precise way in
terms of their architecture. The atomic elements of any architecture are the
computing units and their interconnections. Each computing unit collects the
information from n input lines with an integration function ¥ : IR® — IR. The
total excitation computed in this way is then evaluated using an activation
function @ : IR — IR. In perceptrons the integration function is the sum of the
inputs. The activation (also called output function) compares the sum with
a threshold. Later we will generalize @ to produce all values between 0 and
1. In the case of ¥ some funections other than addition can also be considered
[454], [259]. In this case the networks can compute some difficult functions
with fewer computing units.

Definition 9. A network architecture is a tuple (I, N,O,E) consisting of a
set I of input sites, a set N of computing units, a set O of output sites and a
set E of weighted directed edges. A directed edge is a tuple (u,v,w) whereby
welUN,ve NUO and w € IR.

[m] = = = o>
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General multi-layered feed-forward network

input layer

output layer

Wi

hidden layers

» input layer (remember: inputs only, no computation here)
» one or more layers of hidden neurons

» one layer of output neurons

Hendrich (=] = = = o> 50
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The XOR in a 2-layer network

> a solution of the XOR function
> based on (x1 A —=x2) V (—x1 A x2)

Hendrich (=] = = = o> 51
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The 16 Boolean two-arg functions, again

fD(-Tl)-rZ) fnuoo($1>$2) =0

fl('rla 2) fnum(ﬁfl, 2) = _‘(J.'»'l v $2)
fa(@1,22) = fooo(T1,@2) = 21 A -2
f3(391, 2) foon(zb 2) = T2
falz1,29) = foroo(1,22) = 21 A2y
f5(331, 2) fmm(Ib 2) =
f6(-T1, 2) fom(ﬁ'ﬁl, 2) =T ¢
f7(.’.t31,.1:2) fmn($1>$2) = _‘(531 A 332)

fa(®1,23) = fiooo(T1,72) = 71 A T2
fg(ﬂJl,.ﬁCg) - fwm (wla LEZ) =T =3
fro(xzl,22) = fioro(T1,22) = 11
fra(zl,29) = fiou (21, 22) = 21 V ~29
flz(Il,Iz) fuoo(Il,Iz) = I3
fra(®1,22) = fiiei (w1, 22) = 21 Vg
Sralzl,22) = fiyo(wy, 22) = 21 V 22
.f15(I1:x2) fuu(-rl,-rZ) =1
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Computation of XOR with three units

o> 53
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The XOR with two neurons

» network with shortcut connections
» only two neurons

» but learning is more complex

Hendrich (=] = = = o> 54
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Geometric interpretation

X=X 2(.5 i
0,1) (L,

X —X220.5

(0,0) (1,0)

> every neuron in the hidden layer defines one separation

> output neuron combines the half-spaces
Hendrich (=] = = = o> 55
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Geometric interpretation

Tegion A

g‘lo 1 region B

region C
10

» output neuron must only learn 3 regions

> feature space has lower dimension that the input space

Hendrich (=] = = = o> 56
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Polytopes

100
110
g 101
1 -
010 ol1 001

» multiple separations delimit a polytope

Hendrich [m] = =
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Counting regions in input and weight space

» how many regions can be delimited with n hyperplanes?

Hendrich (=] = = = A 58
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Visualization of the two-arg functions

f=nx1Ax;2 g=xX AnXp

[m] = = o> 59
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Example error functions

0 1
1 2
2 3 2 3 2 1
1 3 4 3 1 2 4 3 2 0
2 3 2 3 2 i
1 2

> fi111 (left) x1 V xa (right)
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Example error functions

A
S
I A
L A A
EELLLLS

EosSsy
L
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Shatterings

What is the maximum number of elements of an input space which
can be classfied by our networks?

» single two-input Perceptron can classify three points
» but not four (see XOR)

» network with 2 hidden neurons: two dividing lines in feature
space, 14 regions

» how many concepts can be classified by a network with n
hidden units?

Hendrich o =] - = Da >
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Shatterings

SPASPASPANS
SPASPASPASY

» possible colorings of the input space for two dividing lines

D D
T D
AN
T D
T (D
NPANY
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Number of regions in general

How many regions are defined by m cutting hyperplanes of
dimension n — 1 in an n-dimensional space?

» consider only hyperplanes going through the origin
» in 2D: 2m regions

» in 3D: each cut increases the number of regions by a factor of 2

» general case: recursive calculation

Hendrich (=] = = = o>
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Recursive calculation of R(m, n)

dimension

n
h 0 1 2 3 4

W o W =
o o o o O
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Multi-layer networks

Hendrich

Proposition 9. Let R(m,n) denote the number of different regions defined
by m separating hyperplanes of dimension n — 1, in general position, in an
n-dimensional space. We set R(1,n) =2 forn > 1 and R(m,0) = 0,Vm > 1.
Forn>1andm>1

R(m,n)=R(m—1,n)+ R(m —1,n—1).

Proof. The proof is by induction on m. When m = 2 and n = 1 the formula
is valid. If o = 2 and n > 2 we know that R(2,n) = 4 and the formula is

valid again:
R(2,n)=R(l,n)+R(l,n—-1)=24+2=4.

[m] = = = o>
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Number of Boolean and threshold functions of n inputs

Table 6.2. Comparison of the number of Boolean and threshold functions of n
inputs and two different bounds

n 22" T(2",n) R(2",n) (2% T1/n!|
1 4 1 4 4
2 16 14 14 16
3 256 104 128 170
4 65,53 1,882 3,882 5,461
543 x10° 04,572 412,736 559, 240
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Number of threshold functions grows polynomially

Hendrich

Flirst consequence. The number of threshold functions in an n-dimensional
space grows polynomially whereas the number of possible Boolean func-
tions grows exponentially. The number of Boolean functions definable on
n Boolean inputs is 22", The number of threshold functions is a function
of the form 21, since the 2" input vectors define at most R(2™,n)
regions in weight space, that is, a polynomial of degree n — 1 on 2™. The
percentage of threshold functions in relation to the total number of logical
functions goes to zero as n increases.

[m] = = = o>
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Second consequence. In networks with two or more layers we also have
learnability problems. Each unit in the first hidden layer separates input
space into two halves. If the hidden layer contains m units and the input
vector is of dimension n, the maximum number of classification regions is
R(m,n). If the number of input vectors is higher, it can happen that not
enough classification regions are available to compute a given logical func-
tion. Unsolvable problems for all networks with a predetermined number
of units can easily be fabricated by increasing the number of input lines
into the network.

[m] = = = o>
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Learning in multi-layer networks

Hendrich

» we now need learning algorithms for our multi-layer networks

» minimization of the error-funtion

» gradient-descent algorithms look promising

» but error-functions of binary threshold neurons are flat

» use neurons with smooth output functions
> instead of the step-function

> accept small/large values (e.g. 0.1, 0.9) for classification

[=] = = = o>
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Sigmoid function

1
1 2 0 2 "
1
SC(X) = 1 + e_CX
1—e~%
S =2 — =
() =2s() ~1= 1
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Generalized error function

2
Oy = L)
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Error function with sigmoid transfer function

» smooth gradients instead of steps

Hendrich (=] = = = o> 73
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Error function with local minima

L7
(75 .’.
LEZFL AL
?-:;“,'I?d‘b\\\ {7

N

» possibly, exponential number of local minima
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Two sides of a computing unit

R

Fig. 7.7. The two sides of a computing unit

Fig. 7.8. Separation of integration and activation function

» our output function is differentiable
» calculate and use f(x) and f/(x)

Hendrich [m] = = = o > 75
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Backpropagation idea

> present a training pattern to the network

» compare the network output to the desired output,
calculate the error in each output neuron

» for each neuron, calculate what the output should have been.
Calculate a scaling factor required to reach the desired output.

» Adjust the weights of each neuron to lower the local error

> Assign “blame” for the local error to neurons at the previous
level, giving greater responsibility to neurons connected by
stronger weights

> repeat for every previous layer, using the “blame” as the local
error

(Wikipedia)

Hendrich
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Backpropagation pseudocode

Initialize the weights in the network (often randomly)
Do
For each example e in the training set
O = neural-net-output(network, e) forward pass
T = teacher output for e
Calculate error (T — O) at the output units
; backward pass
Compute dw; for all weights from hidden layer to output layer
Compute dw; for all weights from input layer to hidden layer
Update the weights in the network
Until all examples classified correctly or stopping criterion satisfied
Return the network

(Wikipedia)
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Backpropagation algorithm

Algorithm 7.2.1 Backpropagation algorithm.

Consider a network with a single real input = and network function F'. The
derivative F'(z) is computed in two phases:

Feed-forward: the input z is fed into the network. The primitive func-
tions at the nodes and their derivatives are evaluated at
each node. The derivatives are stored.

Backpropagation: the constant 1 is fed into the output unit and the network
is run backwards. Incoming information to a node is added
and the result is multiplied by the value stored in the left
part of the unit. The result is transmitted to the left of the
unit. The result collected at the input unit is the derivative
of the network function with respect to z.

Hendrich
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Four phases of the algorithm

After choosing the weights of the network randomly, the backpropagation
algorithm is used to compute the necessary corrections. The algorithm can be
decomposed in the following four steps:

i) Feed-forward computation

ii) Backpropagation to the output layer
iii) Backpropagation to the hidden layer
iv) Weight updates

The algorithm is stopped when the value of the error function has become
sufficiently small.

Hendrich
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Function composition

Fig. 7.9. Network for the composition of two functions

Sfunction composition

L

Fig. 7.10. Result of the feed-forward step
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Backpropagation composition

backpropagation

f(g(x)g’ (x) 1
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Schema

feed-forward

XO O wx

backpropagation
-

w (O O 1

> in both directions, values weighted with w;;
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Connections for the 3-layer network

k hidden units

output units

connection matrix connection matrix
Wi Wa
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Calculation of the output layer

output units

Ko —1)

i~th hidden
unit

Hendrich [m] = =
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Backpropagation of the error

backpropagation

backpropagated error up to unit j

(2) @)y, @)
o0 (1=07")0;" —t))

]

i-th hidden unit quadratic error of the

J-th component

J-th output unit
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Calculation of hidden units

backpropagated error

)

5

backpropagated error to the j-th hidden unit
[ 1) @
g} a _0; ))q);‘lw;;)S; )

input site i

hidden unit j

backpropagation
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Time evolution of the error function

0,7 +
0.6+ XOR experiment

05 +

04 4
error
03
02 1

0,1 ]

0
0 300 600

iterations
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Backpropagation with momentum term

iteration path
/ \

2y

(a) (b)
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Typical backpropagation experiment

» find an interesting problem

> prepare a pattern set
» normalize, pre-process if necessary
> select training patterns
» select validation patterns

» select the network architecture

» number of layers and neurons per layer

» select input and output encodings

» select neuron activation and output functions
> select the learning algorithm and parameters

» run the learning algorithm on the training patters
» check network performance on the validation patterns

> repeat until convergence

Hendrich
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Online vs. offline learning

Online-learning:

» for each training pattern:
> apply pattern to the input layer
» propagate the pattern forward to the output neurons
» calculate error

» backpropagate errors to the hidden layers
> patterns selected randomly or in fixed order
» usual strategy for BP learning

Offline-learning (batch-learning):

» apply all training patterns to the network
» accumulate the error over all patterns

» one backpropagation step

> very slow when large training set
Hendrich [m] = = = o> 90
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Applications of backpropagation

» NETtalk

» function approximation
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NETtalk: speech synthesis

Hendrich

vV v vY

v

text-to-speech synthesis?
commercially available for many years
most spoken languages based on a small set of fixed phonemes

so, transform a string of input characters into (a string of)
phonemes

usually, built around hand-crafted linguistic rules

» and transformation rules

» plus dictionaries to handle exceptions from the rule

can neural networks be taught to speak?

[=] = = = o>
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English speech synthesis
without linguistic knowledge or transformations

3-layer feed-forward network

input is 7-character sliding window of text

7 -29 input sites: 1-hot encoding of the 26 letters plus
punctuation

80 hidden units

26 output units: 1-hot encoding of the phonemes

network generates the phoneme corresponding to the middle of
the seven input characters

(Sejnowski and Rosenberg 1980)
[=] = = = o>
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NETtalk

» corpus of several hundred works together with their phonetic
transcription used as training pattersn

> backpropagation learning used to set the network weights
(7-29-80+ 26 - 80 = 18320)

» the output neuron with the highest activation is used to select
the output phoneme

» phoneme speech-synthesizer drivers the speaker

(Sejnowski and Rosenberg 1980)
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NETtalk architecture

{I} — {H} — {0} —
T 7%29 80 26
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NETtalk demo

» initially, network errors similar to children’s errors

v

final network performance acceptable but not outstanding

> increasing the network size does not really help

» analysis of the final learning network is difficult

» evidence that some of the hidden units encode well-known
linguistic rules

» damaging some of the weights produces specific deficiencies

» demo
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We will look at several PDP/NN architectures:
» McCulloch-Pitts model

» Perceptron

» Multilayer perceptron with backpropagation learning

» Recurrent netwoks: Hopfield-model and associative memory
» Self-organizing maps

their units and interconnections
their learning rules

their environment model

vV v v.Y

and possible applications
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