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VL Algorithmisches Lernen (SS 2009)

I Part 1 (Wolfgang Menzel)
I Lernen symbolischer Strukturen
I (Instanzenbasierte Verfahren)
I Probabilistische Methoden

I Part 2 (Norman Hendrich)
I Lernen mit konnektionistischen Modellen (Neuronale Netze)
I Dimensionalitätsreduktion, PCA

I Part 3: (Jianwei Zhang, Norman Hendrich)
I Support-Vektor Maschinen
I Funktionsapproximation
I Reinforcement-Lernen
I Anwendungen in der Robotik
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Terminplanung: Part 2

I 20/05/2009 neural networks

I 27-28/05/2009 neural networks

I 10-11/06/2009 dimensionality reduction
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Terminplanung: Part 3

I 17-18/06/2009 support vector machines

I 24-25/06/2009 function approximation

I 01-02/07/2009 reinforcement learning (1)

I 08-09/07/2009 reinforcement learning (2)

I 15-16/07/2009 applications in robotics
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Disclaimer

Important note: this is the first version of the neural network
slides, please report all errors and inconsistencies!

hendrich@informatik.uni-hamburg.de
zhang@informatik.uni-hamburg.de
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Outline

Introduction
Connectionism
The human brain
Neurons and the Hodgkin-Huxley model
McCulloch-Pitts model
Summary
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Neural Networks

I a.k.a. Connectionist models

I a.k.a. Parallel Distributed Processing

I in German: Neuronale Netzwerke

I A general paradigm for computation

I based on parallel information processing

I by a large number of simple interconnected units

I both bio-inspired and theoretical models

I sub-symbolic processing and representations

I therefore, long-going conflict with computationalism
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Interdisciplinary research

Research on neural networks combines ideas and results from many
different disciplines:

I medical science

I neuroscience

I cognitive science

I psychology

I computer science

I mathematics

I theoretical physics

I . . .
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Motivation — Why study neural networks?

I understanding the principles of biological information processing

I and especially the human brain

I as an alternative to traditional artificial intelligence
(computationalism)

I attempt to mimic the performance of the human brain with
artifical neural networks

I apply artificial neural networks to application problems:
vision, pattern recognition, associative memory, etc.

I graceful degradation and fault-tolerance
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Timeline

I ca. 1700BC: brain first mentioned in Egyptian papyrus

I 1786: Galvani stimulates frog-muscle with electricity

I 1873: Golgi silver-nitrate stain

I 1906: Ramón y Cajal nobel-prize

I 1909: Brodmann classification of brain areas

I 1943: McCulloch-Pitts model

I 1949: Hebb learning hypothesis

I 1952: Hodgkin-Huxley neuron model

I 1957: Rosenblatt Perceptron

I 1960: Widrow and Hoff Adaline

I 1969: Minsky & Papert Perceptrons book and analysis

I 1982: Kohonen self-organizing maps

I 1982: Hopfield model for associative memory

I 1986: Rumelhart et.al: Backpropagation algorithm
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References: textbooks

I Raul Rojas, Neural Networks — A Systematic Introduction,
Springer (1996)
page.mi.fu-berlin.de/rojas/neural/

I Simon Haykin, Neural Networks and Learning Machines,
Pearson International (2009)

I Kandel, Schwarz, Jessell, Principles of Neural Science,
Prentice Hall (2000)
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References: classics

I M.L. Minsky, S.A. Papert, Perceptrons, MIT Press (1969)

I D.E. Rumelhart, J.L.McClelland, and the PDP research group,
Parallel Distributed Processing — Explorations in the
Microstructure of Cognition (2 volumes), MIT Press (1986)

I J.A. Anderson (Ed.), Neurocomputing — Foundations of
Research, MIT Press (1989)

I D.A. Amit, Modeling Brain Function - the world of attractor
neural networks, Cambridge University Press (1989)

I T.Kohonen, Self-Organizing Maps, Springer (2001)
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References: software

I SNNS: Stuttgart neural network simulator
www.ra.cs.uni-tuebingen.de/SNNS/
www.ra.cs.uni-tuebingen.de/downloads/JavaNNS/

I Matlab neural network toolbox

I UCI Machine Learning Repository
http://archive.ics.uci.edu/ml/

I suggestions welcome!
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Eight major aspects of a PDP model

I a set of processing units

I the current state of activation

I an output function for each unit

I a pattern of connectivity between units

I a propagation rule for propagating patterns of activities
through the network of connectivities

I an activation rule for combining the inputs impinging on a unit

I a learning rule whereby patterns of connectivity are modified by
experience

I the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)
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A set of processing units

I the basic elements of any PDP model

I usually called neurons

I N units, u1 . . . uN

I often useful to distinguish three basic types:
input, output, hidden units

Two choices of representation:

I one-unit-one-concept representation

I or simply abstract units, and concepts formed by patterns of
unit activity
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The state of activation

I system state at time t

I a vector of N real numbers ai (t)

I the current (internal) activation states of each unit ui

Different choices:

I continuous values ai (t), bounded or unbounded

I discrete values, e.g. {0, 1} or {−1,+1}
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The output function for each unit

I one output function fi (ai (t)) for every unit ui

I the actual output signal of the unit at time t

I summarized as output vector o(t) = (f1(t), . . . , fN(t))

Again, many choices:

I identity function, f (x) = x

I usually, f some sort of threshold function so that a unit has no
affect on other units unless its internal activation exceeds a
certain value

I also possible: f a stochastic function of the internal activation
state
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The pattern of connectivity

I specifies how units are connected to each other

I represented as a weight matrix W

I wij represents the strength of the connection from unit uj to
unit ui

I if wij positive, unit uj excites ui

I if wij negative, unit uj inhibits ui

I wij = 0 implies no direct connection from uj to ui

I in layered networks, only certain connections exist

I more efficient to use different weight-matrices between layers,
instead of a single big matrix with many 0-entries
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The propagation rule

I takes the current output values o(t)

I and the connectivity matrix W

I to calculate the net inputs for each unit ui

I most popular choice is the vector product:

net(t) = W · o(t)

I some models use different propagation rules for excitory and
inhibitory connections
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The activation rule

I describes the time-evolution of the network

I how to calculate the new activation states a(t + 1) from the
current states and the propagated inputs

I synchronous or asynchronous update of the units

Again, many choices:

I identity function: a(t + 1) = Wo(t) = net(t)
I more general: a(t + 1) = F (a(t),net(t))
I most popular are non-decreasing differentiable functions,

a(t + 1) = F (neti (t)) = F (
∑

j wijoj)
e.g. F (x) = sgn(x) or F (x) = tanh(x)
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The learning rule

I describes how the connectivity changes

I as a function of experience

I developing of new connections

I loss of existing connections

I modification of connection strength

I Hebb learning rule: if units uj and ui are both active,
strengthen their connection wij

I unsupervised or supervised (with teacher input)
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Representation of the environment

I specify the input patterns to the network

I e.g. time-varying stochastic function over the space of possible
input patterns

I many depend on the history of inputs to the system as well as
the network outputs

I typically, environment consist of a set of known training and
test input patterns.
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Putting it all together
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I neurons ui , activation states ai

I outputs oi propagated via weights wij

I net neuron input is
∑

j wijoj(t)

Hendrich 23



University of Hamburg

MIN Faculty

Department of Informatics

Connectionism AL 64-360 2a

Five models of computation

I neural networks equivalent to the other classes

(Rojas 1996)
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Three models of learning

I supervised learning (corrective learning)
I learning from labelled examples
I provided by a knowledgable external supervisor
I the correct outputs are known for all training samples
I the type of learning usually assumed in NN studies

I reinforcement learning:
I no labelled examples
I environment provides a scalar feedback signal
I combine exploration and exploitation to maximize the reward

I unsupervised learning:
I no external feedback at all
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Outlook

We will look at several PDP/NN architectures:

I McCulloch-Pitts model

I Perceptron

I Multilayer perceptron with backpropagation learning

I Recurrent netwoks: Hopfield-model and associative memory

I Self-organizing maps

I their units and interconnections

I their learning rules

I their environment model

I and possible applications
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Overview of the human brain
a bit of neurophysiology

I total brain weight 1.3 . . . 1.4 kg

I power consumption: ≈ 20 Watt

I about 2% of body weight, 20% of body oxygen, 25% of glucose

I estimated 1011 neurons, many different types

I up to 105 connections per neuron

I roughly 1015 synapses overall

I nerve-pulse propagation roughly 100 m/s

I probably, most complex structure in the universe
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Methods of study

I (neuro-) physiology and pathology

I psychology

I optical microscopy (Golgi stain, fluorescent markers)

I electron microscopy

I functional brain imaging (e.g. PET, NMR)

I EEG, SQUID recordings

I experiments on single neurons

I simulation

I but still no complete picture. . .
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Lateral view of the human brain

(Kandel et.al. 1991)
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Sections of the human brain: views

(Kandel et.al. 1991)
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Sections of the human brain: dorsal

(Kandel et.al. 1991)
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Sections of the human brain: lateral

(Kandel et.al. 1991)
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The human brain AL 64-360 2a

Sections of the human brain: pathways

(Kandel et.al. 1991)
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Sensory and motor homunculus

(Kandel et.al. 1991)
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The human brain AL 64-360 2a

Importance of body regions

(Kandel et.al. 1991)
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Brodmann classification

(Kandel et.al. 1991)(Brodmann 1909)
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Brodmann classification: lateral

(Kandel et.al. 1991)(Brodmann 1909)
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Brodmann classification: hand and foot

(Kandel et.al. 1991)

Hendrich 38



University of Hamburg

MIN Faculty

Department of Informatics

The human brain AL 64-360 2a

Sections of the human brain: language processing

(Kandel et.al. 1991)
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Observations

I brain structure specific for a species

I cortex composed of regions with specific functions

I e.g., visual-, auditory-, somatic sensory-, motor cortex

I microstructure of cortex still not understood

I information encoding? (spikes or averages?)

I function of the associative cortex?

I how does consciousness emerge in humans?

I no method to get high-res data from live brains
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Neuron types and the model neuron

(Kandel et.al. 1991)
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Basic classification of neurons

I cell body

I one axon (bare or myelinated)

I tree of dendrites

I unipolar (invertebrates)

I bipolar (e.g. spinal cord, retina)

I multipolar (mammalian)

(Kandel et.al. 1991) (Ramon y Cajal 1933)
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Neuron schema

(Wikipedia)
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Schwann cell and myelin sheath

(Kandel et.al. 1991)
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Hodgkin-Huxley model

I based on studies on squid giant neurons

I measurements of potentials inside the cells

I results accepted to apply to other types of neurons

I main neural activity is electrical

I rest-potential slowly built-up by ion-pump proteins

I membrane channels open quickly after stimulation

I when total activation (=internal potential) exceeds a threshold

I spike (action potential) propagates along the cell axon

I neuron inactive during recovery interval
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Membrane rest potential

I rest potential of about 60 mV against the extracellular fluid

I generated and maintained by ion pump molecules

I high K+ and low Na+ concentration in the cell

(Kandel et.al. 1991) (Rojas 1996)
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Ion channels

I separate voltage-controlled ion-channels

I when open, fast inflow of Na ions

I changed potential opens neighbor ion-channels

I channel closes and ion-pumps slowly restore rest potential
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Neural activity: action potential and spiking

(Kandel et.al. 1991)
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Typical action potential

Note: action potential propagates left-to-right along the axon. Read right-to-left for time-signal V (t) at constant x

(Rojas 1996)
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Spike frequency depends on cell activation
Example: receptive fields in the visual cortex

(Kandel et.al. 1991)
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Repetitive firing

(Kandel et.al. 1991)
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Synapses: connections between neurons

I between axon and dendrites, but also axon to soma/axon
I special membrane channels and also mechanical connection

I synaptic vesicles filled with neurotransmitters generated in the
axon

I different substances: excitory or inhibitory
I on arrival of an action-potential, vesicles are released into the

synaptic cleft via voltage-gated channels
I transmitters reach channel-proteins on receiving neuron,
I ion-inflow changes the activiation of the receiving neuron

I the actual memory device in the brain
I evidence for synapse changes during learning

(Wikipedia)
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Synapse

(Wikipedia)
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Synapse

(Kandel et.al. 1991) (Rojas 1996)
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Spatial and temporal summation of activation

(Kandel et.al. 1991)
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Summary of neural activity

(Amit, Modeling brain function)
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Example: a reflex

(Kandel et.al. 1991)
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Interconnection patterns: retina

(Kandel et.al. 1991)
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Interconnection patterns: visual cortex

(Kandel et.al. 1991)
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Neurons and the Hodgkin-Huxley model AL 64-360 2a

Interconnection patterns: cerebral cortex

(Kandel et.al. 1991)
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Neurons

I Hodgkin-Huxley model

I rest potential of the neuron built by ion-pumps

I voltage-changes due to cell activation

I action-potential generated when voltage exceeds trigger value

I action-potentials are all-or-nothing and identical

I but duration/repetition specific to the cell type

I neurons interconnected by synapses

I the actual memory and learning devices

I note: about 109 synapses/mm3 in the human cortex
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The McCulloch-Pitts model

I network built from binary neurons
I output values is {0, 1}
I internal threshold θ

I unweighted edges of two types
I excitory connections x1, x2, . . . xn

I inhibatory connections y1, y2, . . . ym (marked with small circle)

I neuron output is zero if any inhibatory input is active
I otherwise, compute total excitation x = x1 + x2 + . . . + xn

I output a = (x ≥ θ): neuron fires if excitation larger than the
threshold

µ

1x

2
x

n
x

.

.

(Rojas 1996), (McCulloch and Pitts, 1943)
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McCulloch-Pitts neuron

I neuron fully inactivated by any inhibatory input:
also the case for some real neurons

I otherwise acting as a threshold gate: capable of implementing
many logical functions of n inputs

I in particular, monotonic functions

I some examples on the next slides
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Elementary functions: AND and OR

AND

2
1
x

2x

1

OR

2x

1
x

4x
3x
2x

OR4

3x

AND3

32x

1x

1
1x

Hendrich 64



University of Hamburg

MIN Faculty

Department of Informatics

McCulloch-Pitts model AL 64-360 2a

Negated functions: NOT

0

NOR

1x 0

NOT

2x

1x

I uninhibited McCulloch-Pitts units can only implement
monotonic logical functions

I inhibited connections allow realization of NOT, NOR, etc.
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Decoder

 1); 0;) = (13x ;2x ;1x(2
3x

2x

1x

I unit fires only for input-vector (1, 0, 1)

I a decoder for a specific bit-pattern (minterm)
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Construction of arbitrary functions

3x

2
x

1x

1

1

1

I equivalent to DNF (disjunctive normal form) logic synthesis

I any logical function F : {0, 1}n 7→ {0, 1} can be realized with a
two-layer McCulloch-Pitts network
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Arbitrary logical functions

I two-layer construction implements any given function

I but very many units for most functions (one per minterm)

I use multi-layer network to reduce the costs (number of neurons
and inputs per neuron)

I logic-minimization problem and algorithms, e.g.
Karnaugh-Veitch diagrams, Quine-McCluskey, etc.
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Absolute and relative inhibition

1
m

nx

y

2x
1
x

+1m

m
nx

y

2x
1x

I absolute inhibition used in McCulloch-Pitts model

I use above network to simulate relative inhibition,
any input reduces the excitation by one

I to replace relative inhibition with weight w ,
use m + w in the upper unit
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Weighted and unweighted networks

4:0

2:0

3:0

0.7 7

3x

2x

1x
1x

2x

3x

I left model uses weight neurons, computes
I 0.2x1 + 0.4x2 + 0.3x3 ≥ 0.7

I rescale to integer factors
I 2x1 + 4x2 + 3x3 ≥ 7
I corresponding McCulloch-Pitts neuron shown on the right
I positive rational weights can be simulated by neurons with

fan-out
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Recurrent networks

I feed-forward networks can implement any logical function

I so far, no memory or internal state of the network

I assume discrete time-steps t = (t0, t1, t2, . . .)

I assume that output calculation of a unit takes one time-step

I connect (some) outputs back to inputs of other units

I any finite automata can be implemented with a network of
McCulloch-Pitts units
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Fault-tolerance

I systems with large number of components must consider faults

I e.g. defective units and connections

I distributed representations

I duplicated units to overrule defective units

I multiple parallel connections for reliable transmission

I the neuron threshold operation inherently is a majority/voting
operation

I networks can be designed to tolerate faulty components

I see Rojas, section 2.5.3
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McCulloch-Pitts model

I network with simple binary units
I excitory weightless connections (wij ∈ {0, 1})
I absolutely inhibatory connections can inactivate the unit
I if not inhibited, simple threshold calculation
I proposed in 1943

I single unit can calculate many monotonic functions
I non-monotonic functions possible with inhibitory connections
I two-layer network can implement any logic function
I feedback-connections and time-delays allow information storage
I rational weights can be simulated

I but we have no learning, yet
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Coming soon

I Rosenblatt Perceptron model

I Perceptron learning

I limitations of the perceptron

I multi-layer feed-forward networks

I backpropagation

I techniques to speed-up the learning
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Summary: Neural Networks (1)

I motivation

I connectionism as a paradigm for computation

I biological inspiration

I non-linear processing elements

I lots of them, interconnected in interesting ways

I fully parallel processing

I overview of the human brain

I basic function of single neurons

I Hodgin-Huxley model and the standard neuron

I McCulloch-Pitts model

Hendrich 75


	Introduction
	Connectionism
	The human brain
	Neurons and the Hodgkin-Huxley model
	McCulloch-Pitts model
	Summary

