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VL Algorithmisches Lernen (SS 2009)

» Part 1 (Wolfgang Menzel)
» Lernen symbolischer Strukturen
> (Instanzenbasierte Verfahren)
> Probabilistische Methoden

» Part 2 (Norman Hendrich)

> Lernen mit konnektionistischen Modellen (Neuronale Netze)
» Dimensionalitatsreduktion, PCA
» Part 3: (Jianwei Zhang, Norman Hendrich)
» Support-Vektor Maschinen
» Funktionsapproximation
» Reinforcement-Lernen
» Anwendungen in der Robotik
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Terminplanung: Part 2
»  20/05/2009 neural networks
» 27-28/05/2009 neural networks

» 10-11/06/2009 dimensionality reduction

Hendrich (=] = = = o> g



UH MIN Facult
iti Department of Informatic:
L2 University of Hamburg

Introduction AL 64-360 2a

Terminplanung: Part 3

17-18/06/2009 support vector machines
24-25/06/2009 function approximation
01-02/07/2009 reinforcement learning (1)
08-09/07/2009 reinforcement learning (2)
15-16/07/2009 applications in robotics

vV v v v Y
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Introduction

Disclaimer

Important note: this is the first version of the neural network
slides, please report all errors and inconsistencies!

hendrich@informatik.uni-hamburg.de
zhangQinformatik.uni-hamburg.de
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Introduction

Outline

Introduction

Connectionism

The human brain

Neurons and the Hodgkin-Huxley model
McCulloch-Pitts model

Summary
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Neural Networks

» a.k.a. Connectionist models
» a.k.a. Parallel Distributed Processing

» in German: Neuronale Netzwerke

» A general paradigm for computation
» based on parallel information processing

» by a large number of simple interconnected units

» both bio-inspired and theoretical models
» sub-symbolic processing and representations

» therefore, long-going conflict with computationalism

Hendrich o =] - = Da >
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Interdisciplinary research

Research on neural networks combines ideas and results from many
different disciplines:

» medical science
neuroscience
cognitive science
psychology
computer science
mathematics

theoretical physics

vV v vV V. vV VY
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Motivation — Why study neural networks?

» understanding the principles of biological information processing

» and especially the human brain

> as an alternative to traditional artificial intelligence
(computationalism)

> attempt to mimic the performance of the human brain with
artifical neural networks

» apply artificial neural networks to application problems:
vision, pattern recognition, associative memory, etc.

» graceful degradation and fault-tolerance

Hendrich (=] = = = o> 9
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Timeline

Hendrich
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ca. 1700 BC: brain first mentioned in Egyptian papyrus
1786: Galvani stimulates frog-muscle with electricity
1873: Golgi silver-nitrate stain

1906: Ramén y Cajal nobel-prize

1909: Brodmann classification of brain areas

1943: McCulloch-Pitts model

1949: Hebb learning hypothesis

1952: Hodgkin-Huxley neuron model

1957: Rosenblatt Perceptron

1960: Widrow and Hoff Adaline

1969: Minsky & Papert Perceptrons book and analysis
1982: Kohonen self-organizing maps

1982: Hopfield model for associative memory

1986: Rumelhart et.al: Backpropagation algorithm
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References: textbooks

» Raul Rojas, Neural Networks — A Systematic Introduction,
Springer (1996)

page.mi.fu-berlin.de/rojas/neural /

» Simon Haykin, Neural Networks and Learning Machines,
Pearson International (2009)

» Kandel, Schwarz, Jessell, Principles of Neural Science,
Prentice Hall (2000)
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References: classics

v

M.L. Minsky, S.A. Papert, Perceptrons, MIT Press (1969)

D.E. Rumelhart, J.L. McClelland, and the PDP research group,
Parallel Distributed Processing — Explorations in the
Microstructure of Cognition (2 volumes), MIT Press (1986)

v

v

J.A. Anderson (Ed.), Neurocomputing — Foundations of
Research, MIT Press (1989)

D.A. Amit, Modeling Brain Function - the world of attractor
neural networks, Cambridge University Press (1989)

T. Kohonen, Self-Organizing Maps, Springer (2001)

v
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References: software

» SNNS: Stuttgart neural network simulator
www.ra.cs.uni-tuebingen.de/SNNS/
www.ra.cs.uni-tuebingen.de/downloads/JavaNNS/

» Matlab neural network toolbox
» UCI Machine Learning Repository

http://archive.ics.uci.edu/ml/

> suggestions welcome!
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Eight major aspects of a PDP model

a set of processing units
the current state of activation
an output function for each unit

a pattern of connectivity between units

vV v. v v Y

a propagation rule for propagating patterns of activities
through the network of connectivities

> an activation rule for combining the inputs impinging on a unit

» a learning rule whereby patterns of connectivity are modified by
experience

» the environment within the system must operate

(Rumelhard, McClelland, et.al. 1986)

Hendrich
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A set of processing units

> the basic elements of any PDP model
» usually called neurons

» N units, up...uy

» often useful to distinguish three basic types:
input, output, hidden units

Two choices of representation:
> one-unit-one-concept representation

» or simply abstract units, and concepts formed by patterns of
unit activity

Hendrich (=] = = = A
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The state of activation

> system state at time t
> a vector of N real numbers a;(t)

> the current (internal) activation states of each unit u;
Different choices:

» continuous values a;(t), bounded or unbounded
» discrete values, e.g. {0,1} or {—1,+1}

Hendrich (=] = = = o> 16



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

AL 64-360 2a

Connectionism

The output function for each unit

» one output function f;(a;(t)) for every unit u;
» the actual output signal of the unit at time t

» summarized as output vector o(t) = (fi(t),..., n(t))

Again, many choices:
» identity function, f(x) = x
» usually, f some sort of threshold function so that a unit has no
affect on other units unless its internal activation exceeds a
certain value

» also possible: f a stochastic function of the internal activation
state

Hendrich [m] = = = o> 17
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The pattern of connectivity

Hendrich

>

specifies how units are connected to each other

> represented as a weight matrix W

wj; represents the strength of the connection from unit u; to
unit u;

> if wj; positive, unit u; excites u;

> if wj; negative, unit u; inhibits u;

wj; = 0 implies no direct connection from u; to u;

» in layered networks, only certain connections exist

more efficient to use different weight-matrices between layers,
instead of a single big matrix with many O-entries

[=] = = = o>
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The propagation rule

> takes the current output values o(t)
» and the connectivity matrix W

» to calculate the net inputs for each unit u;

» most popular choice is the vector product:
net(t) = W - o(t)

» some models use different propagation rules for excitory and
inhibitory connections

Hendrich (=] = = = o>
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The activation rule

» describes the time-evolution of the network

» how to calculate the new activation states a(t + 1) from the
current states and the propagated inputs

» synchronous or asynchronous update of the units

Again, many choices:
» identity function: a(t + 1) = Wo(t) = net(t)
» more general: a(t+ 1) = F(a(t),net(t))
» most popular are non-decreasing differentiable functions,
a(t+ 1) = F(net;(t)) = F(Zj w;joj)
e.g. F(x) =sgn(x) or F(x) = tanh(x)

Hendrich [m] = = = o> 20
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The learning rule

» describes how the connectivity changes

» as a function of experience

» developing of new connections

> loss of existing connections

» modification of connection strength

Hendrich

Hebb learning rule: if units u; and u; are both active,
strengthen their connection w;;

unsupervised or supervised (with teacher input)

[m] = = = o>
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Representation of the environment
» specify the input patterns to the network

> e.g. time-varying stochastic function over the space of possible
input patterns

» many depend on the history of inputs to the system as well as
the network outputs

» typically, environment consist of a set of known training and
test input patterns.

Hendrich
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Putting it all together

> neurons u;, activation states a;
> outputs o; propagated via weights w;;
> net neuron input is ; w;;0;(t)

Hendrich (=] = = = o> 2
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Connectionism

Five models of computation

Ackermann (1928)
Kleene, Church (1936)

Turing (1936)

John von

Computa-
Neumann

bility

Z1to ENIAC

von Neumann
architecture

computer

McCulloch/Pitts (1943)
N. Wiener (1948)

Information theory
Shannon (1940-49)

neural networks

» neural networks equivalent to the other classes
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Three models of learning

» supervised learning (corrective learning)

learning from labelled examples

» provided by a knowledgable external supervisor

» the correct outputs are known for all training samples
> the type of learning usually assumed in NN studies

v

» reinforcement learning:

» no labelled examples
» environment provides a scalar feedback signal
» combine exploration and exploitation to maximize the reward

> unsupervised learning:
» no external feedback at all
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Connectionism

Outlook

We will look at several PDP/NN architectures:
» McCulloch-Pitts model

» Perceptron

» Multilayer perceptron with backpropagation learning

» Recurrent netwoks: Hopfield-model and associative memory
» Self-organizing maps

their units and interconnections
their learning rules

their environment model

vV v v.Y

and possible applications
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Overview of the human brain
a bit of neurophysiology

> total brain weight 1.3...1.4kg
» power consumption: =~ 20 Watt

» about 2% of body weight, 20% of body oxygen, 25% of glucose

estimated 10! neurons, many different types
up to 10° connections per neuron

roughly 10%° synapses overall

vV v v VY

nerve-pulse propagation roughly 100 m/s

» probably, most complex structure in the universe
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The human brain

Methods of study

Hendrich

>
>
>
4
>
>
>
| 2

(neuro-) physiology and pathology

psychology

optical microscopy (Golgi stain, fluorescent markers)
electron microscopy

functional brain imaging (e.g. PET, NMR)

EEG, SQUID recordings

experiments on single neurons

simulation

but still no complete picture. ..

[m] = = = o>
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Lateral view of the human brain

Cerebral hemisphere

Corpus callosum

Diencephalon

A

FIGURE 1-3

When the brain is cut between the two hemispheres down the The corpus callosum is a large fiber bundle that interconnects
midline (a midsagittal section] the six main divisions illustrated the left and right hemispheres

in Figure 1-2 can be seen clearly. B. The same section in A is illustrated in this magnetic reso-
A. This schematic midsagittal section shows the position of the ~ nance image of the living brain

six major brain structures in relation to external landmarks.

(Kandel et.al. 1991)
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Sections of the human brain: views

Az Dorsal
(superior)

Rostral
(anterior)

Ventral
(inferior)

Dorsal

(anterior) (posterior)

Caudal

(Kandel et.al. 1991)
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Sections of the human brain: dorsal

A Central sulcus Postcentral gyrus

Precentral gyrus

Prefrontal .
association Primary
cortex visual
cortex
Rostral Caudal

Interhemispheric
fissure

Frontal lobe

(Kandel et.al. 1991)
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Sections of the human brain: lateral

B Primary
motor cortex

Central sulcus Primary somatic sensory cortex

/{ \ntal labe

A

Parietal-temporal-occipital
association cortex

Rostral Caudal

Prefrontal
association

cortex
~——Ap
Lateral /

sulcus

Primary visual
cortex

Preoccipital notch

Primary auditory
cortex

(Kandel et.al. 1991)
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The human brai

Sections of the human brain: pathways

motor cortex Primary somatic
sensory cortex

Visual
cortex

Dorsal column
nucei

FIGURE 19-5

‘The major somatic sensory systems and the motor system co-

operate to carry out most behavioral acts. Sensory input as- Efferent: pathway
cends through the spinal cord to a synaptic relay in the dorsal pathway

column nuclei of the brain stem, then to a synaptic relay in the
thalamus, and eventually reaches the primary somatic sensory
cortex. The direct motor pathway descends from the primary
motor cortex through the brain stem to the motor neurons of
the spinal cord,-and from there to the muscle.

(Kandel et.al. 1991)
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Sensory and motor homunculus

Motor homunculus
A Sensory homunculus B

Lateral Medial Medial Lateral

(Kandel et.al. 1991)
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The human brain

Importance of body regions

Rabbit Monkey Human

FIGURE 26-6 >
The relative importance of body regions in the somatic sensi-

bilities of different species are shown in these drawings, which

were based on studies of evoked potentials in the thalamus and

cortex.

/4

(Kandel et.al. 1991)
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The human brain

Brodmann classification

FIGURE 20-11

The human cerebral cortex was divided into about 50 discrete
cytoarchitectonic areas more than 80 years ago by Korbinian
Brodmann. Distinct areas are represented by different symbols
and numbered as shown (there is no rationale for the number-
ing of the different fields). Brodmann'’s areas have consistently
been found to correspond to distinctive functional fields, each
of which has a characteristic pattern of connections. Area 4,
the primary motor cortex, occupies most of the precentral gy-
rus. The primary somatic sensory cortex includes areas 1, 2,
and 3 in the postcentral gyrus. Area 17 is the primary visual
cortex. Areas 41 and 42 comprise the primary auditory cortex.
The prefrontal association cortex and the parietal-temporal-
occipital association cortex are also composed of a number of
distinct cytoarchitectonic areas.

(Kandel et.al. 1991)(Brodmann 1909)
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Brodmann classification: lateral

Lateral view

l0¢
5

R
0SR20,

10 5
A

(Kandel et.al. 1991)(Brodmann 1909)
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FIGURE 26-7

Each of the four subregions of the primary somatic sensory cor-
tex [Brodmann's areas 3a, 3b, 1, and 2) has its own completc
representation of the body surface. This figure illustrates the
representation for the hand and the foot in areas 3b and 1.
(Adapted from Kaas ct al., 1983,

A. Somatosensory maps in areas 3b and 1 are shown in this
dorsolateral view of the brain of an owl monkey. The two maps
are roughly mirror images. The digits of the hand and foot are
numbered D, to D,

A

Brodmann classification: hand and foot

B. 1. A more detailed illustration of the representation of the
glabrous pads of the palm in arcas 3b and 1. These include the
palmar pads [numbered in order, P, to P,), two insular pads (1),
two hypothenar pads (H), and two thenar pads (T). 2. An ideal-
ized map of the hands based on studics of a large number of
monkeys. The distorted representations of the palm and digits
reflec the extent of innervation of each palmar area in the cor-
tex. The five digital pads (D, to Dy include distal, middle, and
proximal segments (d, m, p)

Area 3b

Dorsal surface
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Sections of the human brain: language processing

Motor area

(Precentral gyrus)

Somatic sensory cortex
(Postcentral gyrus)

Supplementary
motor area
Arcuate fasciculus

Parietal lobe
FIGURE 1-4

This lateral view of the cerebral cortex of the
left hemisphere shows some of the areas in-
volved in language. Wernicke's area, near the
primary auditory cortex, is important to the
understanding of spoken language. Wernicke’s
area lies near the angular gyrus, which com-
bines auditory input with information from
other senses. The arcuate fasciculus is a fiber
tract that connects Wernicke’s area to Broca's Vocalization region
area. Broca's area initiates grammatical speech. of motor area

Angular gyrus

Vocalization
Occipital lobe

Broca's area

Frontal lobe

It, in turn, lies near the vocalization region of Lateral sulcus

the motor area, which issues the specific com- Temporal Igb6 Wernicke's area
mands that cause the mouth and tongue to Primary -auditory

form words. (Adapted from Geschwind, 1979.) cortex

(Kandel et.al. 1991)
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Observations

Hendrich

» brain structure specific for a species

> cortex composed of regions with specific functions

> e.g., visual-, auditory-, somatic sensory-, motor cortex

vV v. v Y

microstructure of cortex still not understood
information encoding? (spikes or averages?)
function of the associative cortex?

how does consciousness emerge in humans?

no method to get high-res data from live brains

[=] = = = o>
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Neuron types and the model neuron

Local
interneuron

Motor
neuron

Sensory
neuron

Component

Conductile

Output

Muscle

FIGURE 2-7

Most neurons, whether they are sensory, motor, interneuronal,
or neuroendocrine, have four functional components in com-
mon: an input component, an integrative component, a conduc-
tile component, and an output component. On the basis of these
common features, the functional organization of neurons in

Projection
interneuron cell

Model
neuron

Neuroendocrine Signal

Excitatory input
signal

Integration
signal

Conduction

(action potential)

Output or
secretory
signal

Capillary

Secretion

general can be represented by a model neuron. The functional
components of the neuron are represented in distinct regions,
with unique shapes and properties, and each produces a charac-
teristic signal. Not all neurons share all of these features; for
example, local interneurons often lack conductile components.

(Kandel et.al. 1991)
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Basic classification of neurons

> cell body ] !
» one axon (bare or myelinated) &
» tree of dendrites g :

» unipolar (invertebrates)
bipolar (e.g. spinal cord, retina)
» multipolar (mammalian)

Soinal motor nouron Hippocampal pyramidal cell Purke cell of cerebellum

(Kandel et.al. 1991) (Ramon y Cajal 1933)
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Neuron schema

o Microtubule

Neurofibrils

Synaptic vesicles
Neurottansmitter

Synapse (o 5
Synaptic cleft -
Axonal terminal =~

Receptor

Rough ER
(Nissl body)

Polyribosomes

Node of Ranvier
Ribosomes \

Golgi apparatus.

Sheath
(Schwann cell)
> Axon hillock
Nucleus - \

Nucleolus

Microfilament
Microtubule

3 Axan
Dendrites

(Wikipedia)
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Schwann cell and myelin sheath

Oligodendrocyte
e

mesaxon

(Kandel et.al. 1991)
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Hodgkin-Huxley model

>

based on studies on squid giant neurons

» measurements of potentials inside the cells

> results accepted to apply to other types of neurons

» main neural activity is electrical

v

vV v vyy

Hendrich

rest-potential slowly built-up by ion-pump proteins

membrane channels open quickly after stimulation

when total activation (=internal potential) exceeds a threshold
spike (action potential) propagates along the cell axon

neuron inactive during recovery interval
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Membrane rest potential

intracellular fluid extracellular fluid
(concentration in mM) (concentration in mM)

K+t 5
Na* 120
o125
AT 0

Fig. 1.5. Ion concentrations inside and outside a cell

MIN Faculty
Department of Informatics

AL 64-360 2a

sodium ions

o

® /e ® o *

potassium ions

Fig. 1.8. Sodium and potassium ion pump

> rest potential of about 60 mV against the extracellular fluid

> generated and maintained by ion pump molecules

» high KT and low Na™ concentration in the cell

Hendrich [m] =

(Kandel et.al. 1991) (Rojas 1996)
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lon channels

‘membrane

Hendrich

environment

=2 =3 Ni
N .

cell

closed channel open channel closed channel
interior of the cell

Fig. 1.7. Electrically controlled ionic channels

> separate voltage-controlled ion-channels
» when open, fast inflow of Na ions
» changed potential opens neighbor ion-channels

» channel closes and ion-pumps slowly restore rest potential

[m] = = = o> 47
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Neurons and the Hodgkin-Huxley model

Neural activity: action potential and spiking

Transduction Spike-generating Myelinated
i zone ax

Sensory newron a
terminal

A Receptor (or synaptic) B Integrative action  C Action potential D Output signal
potential (transmitter release)
20
o
Stimulus 20 5"
(stretch) a0 :

Spike threshold

Spike threshold

.

Amplitude
of suetch  ~20

40

-60

-80
L L I
[ 5 70

Membrane potential (mV)
s

Duration

Time (seconds)

(Kandel et.al. 1991)
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Typical action potential

+40
+ 207
X
mV 0

=20 resting
- 40 potential

- 60
- 80

2 milliseconds

Fig. 1.9. Typical form of the action potential

Note: action potential propagates left-to-right along the axon. Read right-to-left for time-signal V/(t) at constant x

(Rojas 1996)
o> 49
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Spike frequency depends on cell activation

Example: receptive fields in the visual cortex

1 Bar stimulus 2 Spot stimulus

" —— - _
S A e —
d*—m_

RN
f‘f—-‘ﬂ* 0 1 2 3sec

h e
TT—r{
0 1 2 Bsec
FIGURE 29-10

Receptive field of a simple cell in the primary visual cortex.

(Kandel et.al. 1991)
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Repetitive firing

-55mV

Delay ~

~asmy P L r—— J 0.5nA

| S
S0mV. 50 msec
5nA

1sec
FIGURE 8-8
Repetitive firing properties vary widely among different types of
neurons.

(Kandel et.al. 1991)
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Synapses: connections between neurons

> between axon and dendrites, but also axon to soma/axon
» special membrane channels and also mechanical connection

> synaptic vesicles filled with neurotransmitters generated in the
axon

» different substances: excitory or inhibitory

» on arrival of an action-potential, vesicles are released into the
synaptic cleft via voltage-gated channels

> transmitters reach channel-proteins on receiving neuron,

» ion-inflow changes the activiation of the receiving neuron

» the actual memory device in the brain
» evidence for synapse changes during learning

Hendrich
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Synapse
. Neurotransmitters
Synaptic
vesicle
Neurotransmitter
Voltage- re-uptake pump tAxoln |
gated Ca'™* ermina
channel Neuro-
transmitter
receptors .
; Synaptic
Post-synaptic o0 o }7jeﬂ
density N
F Dendritic
spine

Hendrich

(Wikipedia)
o = - = o> 55}



[Zozomzex
UH MIN Faculty EEEEEE

Department of Informatics ""." X
—
HOH

it [
L2 University of Hamburg

64-360 2a

Neurons and the Hodgkin-Huxley model

Synapse

FIGURE 11-13

Synaptic contact can occur on the cell body, the dendrites, or
the axon. The synapse names—axosomatic, axodendritic and
axo-axonic—identify the contacting regions of both the pre-
synaptic and postsynaptic neurons (the presynaptic element is
identified first). Note that axodendritic synapses can occur on

Shaft synapse

either the main shaft of a dendrite branch or on a specialized fused

input zone, the spine. . vesicle
presynaptic synapse. -
cell
) acetylcholine—» @ o}
Spine synapse S)’nlal;“c ®

et o @7
73 A ol

membrane

Uo\D
target cell O <«— ionic current

closed channel open channel

Fig. 1.12. Chemical signaling at the synapse

Axosomatic Axodendritic Axo-axonic
synapses synapses synapse

(Kandel et.al. 1991) (Rojas 1996)
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FIGURE 11-12
The effects of temporal and spatial summation on neuronal in-
tegration.
A. Temporal summation of two EPSPs produced consecutively
by a single presynaptic neuron A. The synaptic current flow,
Iopsy, generated by the action of the presynaptic neuron is illus-
trated at the cell body. This same synaptic current will give
rise to very different synaptic potentials depending on whether
the postsynaptic cell has a long or a short time constant. In a
cell with a long time constant the first EPSP will not decay to-
tally by the time the second EPSP is triggered. Therefore the
depolarizing effects of both potentials are additive, bringing the
membrane potential above the threshold and triggering an ac-
tion potential. In a cell with a short time constant the first
EPSP decays to the resting potential before the second EPSP is
triggered. The second EPSP alone does not cause enough depo-
larization to trigger an action potential.
B. Spatial summation of two EPSPs produced by two presynaptic
neurons (A and B| assuming two different length constants for the
cell. In this b ‘ 1 the current
(Lupsp) produced by each of these synaptic contacts is assumed to
be the same. Both synapses are the same distance from the
postsynaptic trigger zone, but in one case the postsynaptic cell
‘has a long length constant, the other a short length constant. In
the cell with a long length constant, the initial segment is only
one length constant away from the site of the synaptic contacts.
Therefore, the EPSPs produced by each of the two presynaptic
neuron will decrease only 37% before reaching the trigger zone.
This results in enough depolarization to exceed threshold, trigger-
ing an action potential. For the cell with a short length constant,
the distance between the synapse and the trigger zone in the

Department of Informatics

Spatial and temporal summation of activation

A Temporal summation B Spatial summation

Recording Recording

PROZoz0z0
MIN Faculty R

R
Booo
]

64-360 2a

Synaptic
current
-10,
[ Ap  J2x10oA

Synaptic
potential
Long time Long length
constant constant
(100 msec) Vin (1 mm) Vi

J2mv

25 msec

Short time Short length
constant constant
(20 msec) Vg ©1mm)  Vp—~< j2my

initial axon segment is equal to three length constants. Therefore,
each synaptic potential is barely detectable when it arrives in the
postsynaptic cell body, and even the summation of two potentials
is not sufficient to trigger an action potential.

o>

(Kandel et.al. 1991)
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Summary of neural activity

0 AP 1 AP
Axons

3
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AL 64-360 2a

(Amit, Modeling brain function)
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Neurons and the Hodgkin-Huxley model

Example: a reflex

FIGURE 2-9

This diagram summarizes the sequence of signals that produces
a reflex action. Graded stretching of a muscle produces a graded
(proportional) receptor potential in the terminal fibers of the
sensory neuron (the dorsal root ganglion cell). This potential
then spreads passively to the integrative segment, or trigger
2zone, at the first node of Ranvier. If the receptor potential is
sufficiently large, it will trigger an action potential at the inte-
grative segment, and the action potential will propagate actively
and without change along the axon to the terminal region. At the
terminal of the afferent neuron the action potential leads to an
output signal: the release of a transmitter substance. The trans-

mitter diffuses across the synaptic cleft and interacts with re-
ceptor molecules on the external membranes of the motor neu-
rons that innervate the stretched muscle. This interaction
initiates a synaptic potential in the motor cell. The synaptic
potential then spreads passively to the axon hillock or initial
segment of the motor neuron axon, where it may initiate an
action potential that propagates actively to the terminal of the
motor neuron. At the terminal the action potential causes
transmitter release, which triggers a synaptic potential in the
muscle. This signal produces an action potential in the muscle,
causing contraction of the muscle fiber.

Input Integration Conduction Output  Input Integration Conduction Output  Input Integration Conduction Behavior
Action potential Action potential
Graded Acon  Action (ransmitter release) - transimitter
receptor potential |~ potential Action Action 1elease) | acion potential
potential 4 Synaptic |~ potential |~ potential | ~Action pf
Synaptic potential

\ | potential Synaptic

j\ < potential

Stretch — Receptor — Trigger —— AX0N 3 Synapse—— Trigger
zone

zone

3= Contraction

AXON e Synapse

(Kandel et.al. 1991)
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Neurons and the Hodgki

Interconnection patterns: retina

information
flow

Amacrine
cell

L

Proximal

Light

FIGURE 286
The retina has five major classes of neurons arranged into three
‘nuclear layers: photoreceptors (rods and cones), bipolar cells,
horizontal cells, amacrine cells, and ganglion cells. Photorecep-
tors, bipolar, and horizontal cells make synaptic connections
with each other in the outer plexiform layer. The bipolar, ama-
crine, and ganglion cells make contact in the inner plexiform

Outer
nudlear
layer

Outer plexiform
layer

Inner
nuclear
Amacrine {ayer
cell

Inner
plexiform
layer

Lateral information flow l

Ganglion

Ganglion
coll cell layer

To optic nerve.

Layer. Bipolar cells bridge the two layers. Derails of these con-
nections are illustrated in Figure 28-11. Information flows ver-
tically from photoreceptors to bipolar cells to ganglion cells
Information also flows laterally, mediated by horizontal cells in
the outer plexiform layer and amacrine cells in the inner plexi-
form layer. [Adapted from Dowling, 1979.)
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(Kandel et.al. 1991)
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A F

Inputs B Resident cells
from lateral geniculate nucleus

Interconnection patterns: visual cortex

C Local information flow and outputs

Pyramidal

> To other (extrastriate)
> cortical areas

(e.g.V2,3,4,5,MT)

To subcortical areas

To superior colliculus,

> Pulvinar, pons

> To LGN, claustrum

FIGURE 29-8

The primary visual cortex has distinct anatomical layers, each
‘with characteristic synaptic connections.

A. Most afferent fibers from the lateral geniculate nucleus
terminate in layer 4. Axons of type P cells (in the parvocellular
layers| terminate primarily in layer 4CB, with minor inputs to 4A
and 1, while axons from type M cells (in the magaocellular layer)
terminate primarily in layer 4Ca. Collaterals of both types of cells
also terminate in layer 6. Cells of the intralaminar regions of the
lateral geniculate mucleus terminate in layers 2 and 3.

B. Several types of resident neurons make up the primary vi-
sual cortex. Spiny stellate and pyramidal cells, both of which
have spiny dendrites, are excitatory. Smooth stellate cells are in-
hibitory. Pyramidal cells project out of the cortex, whereas both
types of stellate cells are local neurons.

From LGN

C. Afferents from M and P cells in the lateral geniculate nucleus
end on spiny stellate cells in layer 4C, and these cells project
axons to layer 4B and the upper layers 2 and 3. Cells from the
interlaminar zones (I) in the lateral geniculate nucleus project
directly to layers 2 and 3. From there, pyramidal cells project axon
collaterals to layer 5 pyramidal cells, whose axon collaterals
project both to layer 6 pyramidal cells as well as back to cells in
layers 2 and 3. Axon collaterals of layer 6 pyramidal cells then
make a loop back to layer 4C onto smooth stellate cells. Each
layer, except for 4C, has different outputs. The cells in layers 2, 3,
and 4B project to higher visual cortical areas. Cells in layer §
project to the superior colliculus, the pons, and the pulvinar.
Cells in layer 6 project back to the lateral geniculate nucleus
and the claustrum, (Adapted from Lund, 1988.)
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(Kandel et.al. 1991)
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Huxley model

Neurons and the Hodgki

Interconnection patterns: cerebral cortex

L}
Specifcafforent |

FIGURE 50-5

The principal neuron types and their interconnections are similar
in the various regions of the cerebral cortex. Note that the two
large pyramidal cells (white) in layers 3 and 5 receive multiple
synaptic contacts from the star-shaped intemeuron [stellate cell,
stippled) in layer 4. The inhibitory action of the basket cells
(black) is directed o the cell bodies of cortical neurons (gray).

Association or callosal afferent

Major input to the cortex derives from specific thalamic relay
nuclei [specific afferents) and is dirccted mostly to layer 4;
association and callosal input fassociation and callosal afferents)
is, in large par, directed to more superficial layers. Adapted
from Szentagothai, 1969.)
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Neurons

Hodgkin-Huxley model

rest potential of the neuron built by ion-pumps
voltage-changes due to cell activation

action-potential generated when voltage exceeds trigger value

action-potentials are all-or-nothing and identical

vV v vV v VvY

but duration/repetition specific to the cell type

» neurons interconnected by synapses
» the actual memory and learning devices
» note: about 10° synapses/mm3 in the human cortex

Hendrich [m] = = = o> 61
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The McCulloch-Pitts model

v

v

Hendrich

network built from binary neurons )
output values is {0,1} p
internal threshold 6 :
unweighted edges of two types o,

excitory connections xi, X, ... Xp
inhibatory connections yi, ya, ... ym (marked with small circle)

neuron output is zero if any inhibatory input is active
otherwise, compute total excitation x = x3 +x2 + ... + X,
output a = (x > 6): neuron fires if excitation larger than the
threshold

(Rojas 1996), (McCulloch and Pitts, 1943)
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McCulloch-Pitts neuron

» neuron fully inactivated by any inhibatory input:
also the case for some real neurons

» otherwise acting as a threshold gate: capable of implementing
many logical functions of n inputs

» in particular, monotonic functions

» some examples on the next slides

Hendrich (=] = = = o> 63
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Elementary functions: AND and OR

AND OR

T x

1\ 1\
/ /

Ty Ty
AND3 OR4
z T
' T~ :c;
z
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Negated functions: NOT

NOT NOR

K1

2

» uninhibited McCulloch-Pitts units can only implement
monotonic logical functions

» inhibited connections allow realization of NOT, NOR, etc.

Hendrich [m] = = = o> 65
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Decoder

Hendrich

2 (xla CL’2, 373) = (17 07 1)

» unit fires only for input-vector (1,0, 1)

> a decoder for a specific bit-pattern (minterm)

o = = = o> 66
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Construction of arbitrary functions

Z

x

» equivalent to DNF (disjunctive normal form) logic synthesis

» any logical function F : {0,1}" — {0,1} can be realized with a
two-layer McCulloch-Pitts network

Hendrich
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Arbitrary logical functions

> two-layer construction implements any given function

» but very many units for most functions (one per minterm)

» use multi-layer network to reduce the costs (number of neurons
and inputs per neuron)

» logic-minimization problem and algorithms, e.g.
Karnaugh-Veitch diagrams, Quine-McCluskey, etc.

Hendrich o =] - = Da >
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Absolute and relative inhibition

Hendrich

Zy
Ty
ol

absolute inhibition used in McCulloch-Pitts model

use above network to simulate relative inhibition,
any input reduces the excitation by one

to replace relative inhibition with weight w,
use m+ w in the upper unit

[=] = = = o>
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Weighted and unweighted networks

o 0.2 Zy

1

z, h\ z,
/

T3 0.3 z

v

left model uses weight neurons, computes
0.2x; + 0.4x, + 0.3x3 > 0.7

v

rescale to integer factors

2x1+4x0 +3x3 > 7

corresponding McCulloch-Pitts neuron shown on the right
positive rational weights can be simulated by neurons with

fan-out
Hendrich [m] = = = o> (o
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McCulloch-Pitts model

Recurrent networks

Hendrich

> feed-forward networks can implement any logical function

» so far, no memory or internal state of the network

» assume discrete time-steps t = (tp, t1, t2, . . .)
> assume that output calculation of a unit takes one time-step

» connect (some) outputs back to inputs of other units

any finite automata can be implemented with a network of
McCulloch-Pitts units

[=] = = = o>
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Fault-tolerance

» systems with large number of components must consider faults
> e.g. defective units and connections

» distributed representations

» duplicated units to overrule defective units
» multiple parallel connections for reliable transmission

» the neuron threshold operation inherently is a majority/voting
operation

» networks can be designed to tolerate faulty components

> see Rojas, section 2.5.3

Hendrich o =] - = Da >
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McCulloch-Pitts model

vvYyyvyy

vvyyvyyvyy

Hendrich

network with simple binary units

excitory weightless connections (w;; € {0,1})

absolutely inhibatory connections can inactivate the unit
if not inhibited, simple threshold calculation

proposed in 1943

single unit can calculate many monotonic functions
non-monotonic functions possible with inhibitory connections
two-layer network can implement any logic function
feedback-connections and time-delays allow information storage
rational weights can be simulated

but we have no learning, yet
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Coming soon

Hendrich
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Rosenblatt Perceptron model
Perceptron learning

limitations of the perceptron
multi-layer feed-forward networks

backpropagation
techniques to speed-up the learning

[m] = = = o>
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Summary: Neural Networks (1)

motivation

connectionism as a paradigm for computation
biological inspiration

non-linear processing elements

lots of them, interconnected in interesting ways

vV v vV v VvY

fully parallel processing

overview of the human brain

basic function of single neurons
Hodgin-Huxley model and the standard neuron
McCulloch-Pitts model

vV v vy

Hendrich [m] = = = o> 75
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