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Outlook

I Networks with feedback connections

I Associative memory

I Hopfield model

I Self-organizing maps

I Hardware for neural networks

I Dimensionality reduction

I Principal Component Analysis

I Independent Component Analysis
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Self-Organizing Maps

I a network to map similar input patterns
(close to each other in input space)

I onto contiguous locations in output space

I network based on unsupervised learning

I often used with 2D output space for data visualization

I a.k.a Self-organizing feature maps

I a.k.a Kohonen network

(Kohonen 1981) (Kohonen: Self-Organizing Maps, Springer 2001)
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A third category of neural networks

I Perceptron and MLP feed-forward networks

I recursive feed-back networks

Self-organizing maps:

I neighboring cells in a neural network

I compete in their activities

I by mutual lateral interactions

I and develop adaptively

I into specific detectors of signal patterns

I unsupervised self-organizing learning
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SOM: relation to neurobiology

I topographical organization of the brain

I location of the neural response often corresponds

I to a specific modality and quality of the sensory signal

I (primary) visual cortex areas V1 and V2

I auditory cortex

I somatotopic areas

I motor-map areas

I internal representations of the brain organized spatially

I mapping high-dimensional inputs to 2D cortex surface
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SOM: relation to neurobiology
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SOM: relation to neurobiology

I mapping of visual-field (retina coordinates) to brain regions in
the visual cortex
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SOM: relation to neurobiology

I visualization of eye-dominance pattens in the visual cortex

I dark (light) stripes indicate the left (right) eye
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Motivation
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Task

I network maps input space A into output space B

I every region of the input space should be covered

I for an input in a subregion (e.g. a1) only one neuron should fire

I inputs from neighbor subregions in A should be neighbors in B

Hendrich 9



University of Hamburg

MIN Faculty

Department of Informatics

Self-organizing maps AL 64-360

Classical vector-quantization

I approximate a given probability density function

I of vector input variables x

I using a finite number of codebook vectors

I given the codebook

I find the reference vector mc closest to x

I e.g. minimize E =
∫
||x −mc ||rp(x)dx

I the expected r -th power of the reconstruction-error

I in general, no closed-form solution

I use iterative approximation algorithms
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Components of the self-organizing map

I a distance measure in the n-dimensional input space

I for example, Euclidean distance

I a set of M neurons Si

I with a real-valued weights-vector wi = (wi1, . . . ,win)

I neurons calculate ||w − x ||
I the neuron closest to a given input x is activated

I a position in the map space

I a neighborhood function
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Neighborhood function

I φ(i , k) represents the strength of the coupling between neurons
i and k during learning

I for example, φ(i , k) = 1 for units within radius r and 0 outside.

I learning usually starts with large radius, so that the network
can adapt to global structure of the data

I gradually reduce the radius during learning to optimize the
local structure
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Topological neighborhood functions
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Typical neighborhood functions
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The learning algorithm

I the set of neurons with their weight vectors wi

I the neighborhood function φ in input space

I a learning constant η

I learning constant and neighborhood function are (usually)
changed during the learning

Hendrich 15



University of Hamburg

MIN Faculty

Department of Informatics

SOM: learning algorithm AL 64-360

The learning algorithm
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Learning attracts the weights to the inputs
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Example: 1D chain of neurons
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Learning a triangle with a 1D chain
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Learning a square with a 2D network
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Time evolution
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Mapping square and triangular input-space to 2D
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No general convergence proof. . .
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Mapping irregular input-spaces

(Kohonen 2001)
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Function approximation

I learn a function f (x , y) over a given domain?

I set P = {x , y , f (x , y)|x ∈ [0, 1]} is a surface in 3D space

I use P as the input data for the SOM learning

I adapt a planar grid to the surface

I lookup: find the neuron (i , j) with minimal distance between
the given input (x , y) and its weights (w1,w2).

I network output is the weight w3 of the selected neuron
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Function approximation: pole-balancing

I try to balance the pole by moving the cart

I θ the current angle between pole and the vertical

I force needed to keep balance is f (θ) = α sin(θ) + βdθ/dt

I constants α and β (pole length and weight)
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Function approximation: learned map for f (x , y)

I network to approximate f (x , y) = 5 sin(x) + y

I note: map can be updated (automatically) with feedback from
the system itself.
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Some classification examples

I animals

I finnish speech samples

I world-bank poverty statistics
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Animals: input data
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Animals: map after learning
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Finnish speech samples

I note: similar waveforms are kept neighbors
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World-bank poverty statistics
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Poverty map: cartesian topology
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Poverty map: hexagonal topology
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Poverty map: traditional Sammon’s projection
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SOM: summary

I a third type of neural network

I map high-dimensional input-space to output-space

I based on distance-measure in input-space

I and neighborhood functions

I unsupervised learning and self-organization

I learning rearranges the neurons

I useful for visualization and data-analysis
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Digression: hardware for neural networks

I unmatched performance of the human/animal brain

I parallel processing of 106 . . . 1011 neurons

I roughly 103 . . . 105 synapses per neuron

I neuron spiking roughly 1 msec.

I reaction-times (humans) about 0.1 seconds

I basic synapse operation is weighted-sum (multiply-accumulate)

I about 109 . . . 1019 MAC operations/second

I at roughly 25 Watt

I compare: Core i7 3 GHz: about 1010 MAC/sec, 200 Watt
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Hardware for neural networks?

I human/animal brain a highly optimized structure

I neurons on micrometer scale, axons up to 10 meters

I synapses on roughly nanometer scale

I fully 3D-interconnection (white matter)

I partly pre-configured, mostly self-organized

I very energy efficient

I very fault-tolerant, immune to noise

I any chance to mimic this with electronics / optics?

I currently: use standard PCs or standard parallel computers

I e.g., IBM blue-gene system for neural-network simulation
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Neural network performance? associative memory

I assume Hopfield-network and un-correlated patterns

I storage-capacity α = 0.14N patterns of N bit (Hebb rule)

I optimal storage capacity α = 2N patterns

I useful range for good association is up to α ≈ 0.5N patterns

I binary-couplings network up to α ≤ 0.4N max

I fully parallel processing, fault-tolerant

I standard algorithm needs one distance-calculation per pattern

I distance-calculations in parallel, plus decision tree

I O(N2) operations
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Hardware for neural networks

I active research topic
I initial interest triggered by 1982/1984 Hopfield papers
I and 1986 PDP/backpropagation papers

I concentrate on accelerating MAC operations
I parallel processing and interconnection topologies
I different base technologies:

I digital electronics / VLSI
I analog electronics / VLSI
I optical processing
I biochemistry / nanomaterials

I lots of interesting architectures
I so far, no mainstream applications
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Hardware for neural networks: digital VLSI

I concentrating on acceleration of MAC operations
I relying on hardware multipliers and adders
I large VLSI chips incorporating multiple (pipelined) MAC units

I dozens of proposals during the 1980’s
I systems also integrating learning rules in hardware
I obsolete since introduction of MAC/DSP hardware into

mainstream processors

I special architectures (e.g. binary couplings) still attractive
I but high one-up engineering effort for design and test
I parallel algorithms often only marginally better than highly

optimized software on standard CPUs
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Hardware for neural networks: analog VLSI

I mimic neurons or synapses

I with highly optimized analog electronic circuits

I analog multipliers, adders, comparators

I imprecise, but very small and extremely fast

I mimic (3D) neuron interconnection structures on (2D) VLSI

I several demo circuits and architectures

I very good performance

I learning very difficult to implement

I usually, hard-coded interconnection patterns

I hard-coded to one specific algorithm/learning-rule
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Hardware for neural networks: optical

I implement neurons with special (non-linear) optical
components

I arrange neurons in 2D-grid across optical axis
I use filters/holograms to implement the couplings/weight-matrix

I in principle, millions of parallel neurons on one optical axis
I enormous theoretical performance
I successful demonstrations of simple algorithms

I currently, hard-coded coupling matrices (filters, holograms)
I no ideas on how to implement/realize learning/adaption
I feedback and complex algorithms impossible
I no fault-tolerance / self-organization
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Hardware for neural networks
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Neural networks: conclusion

I biological motivation

I Huxley/Hodgkin neuron model

I basic neuroscience of the human brain

I McCulloch-Pitts neuron

I Perceptron and classification

I MLP with backpropagation learning

I Hopfield-model and associative memory

I Kohonen-network and self-organizing maps

I hardware acceleration
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