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Self-Organizing Maps

» a network to map similar input patterns
(close to each other in input space)

v

onto contiguous locations in output space

v

network based on unsupervised learning

v

often used with 2D output space for data visualization

v

a.k.a Self-organizing feature maps

a.k.a Kohonen network

v

(Kohonen 1981) (Kohonen: Self-Organizing Maps, Springer 2001)
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A third category of neural networks

» Perceptron and MLP feed-forward networks

» recursive feed-back networks

Self-organizing maps:
» neighboring cells in a neural network
compete in their activities
by mutual lateral interactions
and develop adaptively

into specific detectors of signal patterns

vV v.v v VY

unsupervised self-organizing learning
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Self-organizing maps

SOM: relation to neurobiology

Hendrich

» topographical organization of the brain

» location of the neural response often corresponds

> to a specific modality and quality of the sensory signal

vV v. v Y

(primary) visual cortex areas V4 and V,
auditory cortex
somatotopic areas

motor-map areas

> internal representations of the brain organized spatially

» mapping high-dimensional inputs to 2D cortex surface
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A Sensory homunculus B Motor homunculus

Medial Medial Lateral
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Self-organizing maps

SOM: relation to neurobiology

posterior cortex visual field of the
(lobus occipitalis) right eye
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center of the visual field i : .
and corresponding cortex region visual field and corresponding cortex region

» mapping of visual-field (retina coordinates) to brain regions in
the visual cortex
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SOM: relation to neurobiology

» visualization of eye-dominance pattens in the visual cortex
» dark (light) stripes indicate the left (right) eye
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Motivation

Hendrich

In many cases we have experimental data which is coded using n real values,
but whose effective dimension is much lower. Consider the case in which the
data set consists of the points in the surface of a sphere in three-dimensional
space. Although the input vectors have three components, a two-dimensional
Kohonen network will do a better job of charting this input space than a
three-dimensional one. Some researchers have proposed computing the effec-
tive dimension of the data before selecting the dimension of the Kohonen
network, since this can later provide a smoother approximation to the data.

The dimension of the data set can be computed experimentally by mea-
suring the variation in the number of data points closer to another data point
than a given ¢, when ¢ is gradually increased or decreased. If, for example,
the data set lies on a plane in three-dimensional space and we select a data
point ¢ randomly, we can plot the number of data points N(s) not further
away from £ than . This number should follow the power law N(s) ~ 2. If
this is the case, we settle for a two-dimensional network. Normally, the way
to make this computation is to draw a plot of log(N(¢) against log(). The
slope of the regression curve as £ goes to zero is the fractal dimension of the
data set.
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Task

AL 64-360

A B
vy
&

» network maps input space A into output space B

> every region of the input space should be covered
» for an input in a subregion (e.g. a1) only one neuron should fire

» inputs from neighbor subregions in A should be neighbors in B
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Classical vector-quantization

> approximate a given probability density function
» of vector input variables x

» using a finite number of codebook vectors

given the codebook
find the reference vector m. closest to x

e.g. minimize E = [ ||x — mc||"p(x)dx

vV v. v Y

the expected r-th power of the reconstruction-error

» in general, no closed-form solution

> use iterative approximation algorithms
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Components of the self-organizing map

» a distance measure in the n-dimensional input space

» for example, Euclidean distance

a set of M neurons S;
with a real-valued weights-vector w; = (wj1, ..., wj,)
neurons calculate ||w — x||

the neuron closest to a given input x is activated

v

a position in the map space

v

a neighborhood function
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Neighborhood function

> ¢(i, k) represents the strength of the coupling between neurons
i and k during learning

» for example, ¢(i, k) = 1 for units within radius r and 0 outside.

» learning usually starts with large radius, so that the network
can adapt to global structure of the data

» gradually reduce the radius during learning to optimize the
local structure

Hendrich [m] = = = o> 12
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Topological neighborhood functions
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(a) (b) B
Fig. 3.4. a, b. Two examples of topological neighborhood (t1 < t2 < t3)
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Typical neighborhood functions

Hendrich

In the literature, two simple choices for h.;(¢) occur frequently. The sim-
pler of them refers to a neighborhood set of array points around node ¢ (Fig.
3.4). Let their index set be denoted N, (notice that we can define N. = N.(t)
as a function of time), whereby h.(t) = a(t) if ¢ € Ne and he(t) = 0
if ¢ ¢ N.. The value of a(t) is then identified with a learning-rate factor
(0 < a(t) < 1). Both a(t) and the radius of N.(t) are usually decreasing
monotonically in time (during the ordering process).

Another widely applied, smoother neighborhood kernel can be written in
terms of the Gaussian function,

re — il
hei(t) = aft) -exp (7%) 5 (3.4)

where a(t) is another scalar-valued “learning-rate factor,” and the parameter
o(t) defines the width of the kernel; the latter corresponds to the radius of
N.(t) above. Both a(t) and ¢(t) are some monotonically decreasing functions
of time.
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The learning algorithm

Hendrich

> the set of neurons with their weight vectors w;
» the neighborhood function ¢ in input space

> a learning constant 7

» learning constant and neighborhood function are (usually)
changed during the learning

[m] = = = o>
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The learning algorithm
start: The n-dimensional weight vectors wy, wa, ..., W,, of the m computing
units are selected at random. An initial radius r, a learning constant
7, and a neighborhood function ¢ are selected.
step 1: Select an input vector £ using the desired probability distribution over
the input space.
step 2: The unit k£ with the maximum excitation is selected (that is, for which
the distance between w; and £ is minimal, ¢ = 1,...,m).
step 3: The weight vectors are updated using the neighborhood function and
the update rule
w; — w; +no(i k) (E—w;), for i=1,...,m.
step 4: Stop if the maximum number of iterations has been reached; otherwise

Hendrich

modify n and ¢ as scheduled and continue with step 1.
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16



UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

SOM: learning algorithm AL 64-360

Learning attracts the weights to the inputs

The modifications of the weight vectors (step 3) attracts them in the direc-
tion of the input £. By repeating this simple process several times, we expect
to arrive at a uniform distribution of weight vectors in input space (if the
inputs have also been uniformly selected). The radius of the neighborhood is
reduced according to a previous plan, which we call a schedule. The effect is
that each time a unit is updated, neighboring units are also updated. If the
weight vector of a unit is attracted to a region in input space, the neighbors
are also attracted, although to a lesser degree. During the learning process
both the size of the neighborhood and the value of ¢ fall gradually, so that
the influence of each unit upon its neighbors is reduced. The learning constant
controls the magnitude of the weight updates and is also reduced gradually.
The net effect of the selected schedule is to produce larger corrections at the
beginning of training than at the end.

Figure 15.5 shows the results of an experiment with a one-dimensional
Kohonen network. Each unit is represented by a dot. The input domain is
a triangle. At the end of the learning process the weight vectors reach a
distribution which transforms each unit into a “representative” of a small
region of input space. The unit in the lower corner, for example, is the one

o> 17
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Example: 1D chain of neurons

Counsider the problem of charting an n-dimensional space using a one-
dimensional chain of Kohonen units. The units are all arranged in sequence
and are numbered from 1 to m (Figure 15.4). BEach unit becomes the n-
dimensional input x and computes the corresponding excitation. The n-
dimensional weight vectors wy, wy, ..., w,, are used for the computation. The
objective of the charting process is that each unit learns to specialize on dif-
ferent regions of input space. When an input from such a region is fed into
the network, the corresponding unit should compute the maximum excitation.
Kohonen’s learning algorithm is used to guarantee that this effect is achieved.

neighborhood of unit 2 with radius 1

1 2 3 m
w W, w w
Wi 2 3 -1 m
L )
X
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Learning a triangle with a 1D chain

1000 10000 25000
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Learning a square with a 2D network

o> 20
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Time evolution
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Mapping square and triangular input-space to 2D
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Fig. 3.5. Two-dimensional distributions of input vectors (framed areas), and the
networks of reference vectors approximating them
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No general convergence proof. ..
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Mapping irregular input-spaces

Fig. 3.9. SOM for a structured distribution of p(x). For clarity, the three-
dimensional p(z), having uniform density value inside the “cactus” shape and zero
outside it, is shown on the left, whereas the “net” of reference vectors is displayed
on the right in a similar coordinate system

(Kohonen 2001)
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Function approximation
» learn a function f(x, y) over a given domain?
> set P = {x,y, f(x,y)|x € [0,1]} is a surface in 3D space
> use P as the input data for the SOM learning
» adapt a planar grid to the surface
» lookup: find the neuron (i,;) with minimal distance between

the given input (x, y) and its weights (wq, wp).
» network output is the weight ws of the selected neuron

Hendrich [m] = = = o> 25
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Function approximation: pole-balancing

Hendrich

> try to balance the pole by moving the cart

» 6 the current angle between pole and the vertical

» force needed to keep balance is f(6) = asin(6) + 5d6/dt
» constants a and 3 (pole length and weight)

o = = = o> Pl
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Function approximation: learned map for f(x, y)

force

Fig. 15.17. Control surface of the balancing pole [Ritter et al. 1990]

> network to approximate f(x,y) = 5sin(x) + y
» note: map can be updated (automatically) with feedback from
the system itself.
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SOM: examples

Some classification examples
> animals

» finnish speech samples
» world-bank poverty statistics

Hendrich
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SOM: examples

Animals: input data
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Animals: map after learning
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Finnish speech samples
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» note: similar waveforms are kept neighbors




UH MIN Faculty
iti Department of Informatics
L2 University of Hamburg

SOM: examples AL 64-360

World-bank poverty statistics
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Fig. 1.5. The data set used in this illustration consisted of statistical indicators
of 77 countries picked up from the World Development Report published by the
World Bank [1.26]. Each component of the 39-dimensional data vectors describes a
different aspect of the welfare and poverty of one country. Missing data values were
neglected when computing the principal components, and zeroed when forming the
projections. The three-letter codes for the countries, abbreviations of their names,
may be self-explanatory. The data set was projected linearly as points onto the two-
dimensional linear subspace obtained with PCA [1.27]
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Poverty map: cartesian topology
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Fig. 3.30. “Poverty map” of 126 countries of the world. The symbols written in
capital letters correspond to countries used in the formation of the map; the rest
of the symbols (in lower case) signify countries for which more than 11 attribute
values were missing, and which were mapped to this SOM after the learning phase
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Poverty map: hexagonal topology
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Poverty map: traditional Sammon’s projection
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SOM: summary
> a third type of neural network

» map high-dimensional input-space to output-space
» based on distance-measure in input-space

» and neighborhood functions

» unsupervised learning and self-organization
» learning rearranges the neurons

» useful for visualization and data-analysis
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Digression: hardware for neural networks

Hendrich

vV v vV v VvY

unmatched performance of the human/animal brain
parallel processing of 10°...10' neurons

roughly 103...10° synapses per neuron

neuron spiking roughly 1 msec.

reaction-times (humans) about 0.1 seconds

basic synapse operation is weighted-sum (multiply-accumulate)

» about 10°...10° MAC operations/second
> at roughly 25 Watt
» compare: Core i7 3 GHz: about 101® MAC/sec, 200 Watt

o = = = o> 37
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Hardware for neural networks?

human/animal brain a highly optimized structure
neurons on micrometer scale, axons up to 10 meters
synapses on roughly nanometer scale

fully 3D-interconnection (white matter)

partly pre-configured, mostly self-organized

very energy efficient

vV V. vV vV VvV VY

very fault-tolerant, immune to noise

» any chance to mimic this with electronics / optics?
» currently: use standard PCs or standard parallel computers

> e.g., IBM blue-gene system for neural-network simulation

Hendrich
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Neural network performance? associative memory

assume Hopfield-network and un-correlated patterns
storage-capacity a = 0.14/N patterns of N bit (Hebb rule)
optimal storage capacity a = 2N patterns

useful range for good association is up to a ~ 0.5/ patterns

binary-couplings network up to a < 0.4N max

vV v vV v VvY

fully parallel processing, fault-tolerant

» standard algorithm needs one distance-calculation per pattern
» distance-calculations in parallel, plus decision tree
» O(N?) operations

Hendrich
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Hardware for neural networks

Hendrich

v

active research topic
initial interest triggered by 1982/1984 Hopfield papers
and 1986 PDP /backpropagation papers

concentrate on accelerating MAC operations
parallel processing and interconnection topologies
different base technologies:

» digital electronics / VLSI

> analog electronics / VLSI

» optical processing

> biochemistry / nanomaterials

lots of interesting architectures
so far, no mainstream applications

[m] = = = o> 40
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Hardware for neural networks: digital VLSI

v

>

Hendrich

concentrating on acceleration of MAC operations
relying on hardware multipliers and adders
large VLSI chips incorporating multiple (pipelined) MAC units

dozens of proposals during the 1980's

systems also integrating learning rules in hardware
obsolete since introduction of MAC/DSP hardware into
mainstream processors

special architectures (e.g. binary couplings) still attractive
but high one-up engineering effort for design and test
parallel algorithms often only marginally better than highly
optimized software on standard CPUs
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Hardware for neural networks: analog VLSI

> mimic neurons or synapses
» with highly optimized analog electronic circuits

» analog multipliers, adders, comparators
» imprecise, but very small and extremely fast
mimic (3D) neuron interconnection structures on (2D) VLSI

v

several demo circuits and architectures

very good performance

learning very difficult to implement

usually, hard-coded interconnection patterns

vV vyVvYyVyvyy

hard-coded to one specific algorithm /learning-rule

Hendrich
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Hardware for neural networks: optical

Hendrich

vy

vvyyy

implement neurons with special (non-linear) optical
components

arrange neurons in 2D-grid across optical axis

use filters/holograms to implement the couplings/weight-matrix

in principle, millions of parallel neurons on one optical axis
enormous theoretical performance
successful demonstrations of simple algorithms

currently, hard-coded coupling matrices (filters, holograms)
no ideas on how to implement/realize learning/adaption
feedback and complex algorithms impossible

no fault-tolerance / self-organization

[=] = = = o>
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Hardware for neural networks

Hendrich
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Neural networks: conclusion

Hendrich

biological motivation

» Huxley/Hodgkin neuron model
» basic neuroscience of the human brain

McCulloch-Pitts neuron

» Perceptron and classification

MLP with backpropagation learning

» Hopfield-model and associative memory
» Kohonen-network and self-organizing maps

hardware acceleration
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