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Setting

Key/value pairs storage and retrieval

. Keys are unigue
—> w.l.0.g. keys are uniformly distributed (160-bit)
numbers (e.g. use hashing)

. Keys can have different store and/or retrieve popularity

DHT (Distributed Hash Table)
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Constraints

. Any particular node can disappear at any time

. Nodes should be loaded equally (bandwidth and storage)
Goal

. Quick storage and retrieval, independent from node failures

. Minimize number of control messages
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Node instability

Ideal case

. Once a node joins, it never leaves.

Realistic case

. A randomly selected online node will stay online for
another 1 hour with probability 1/2.
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. Probability of remaining online another hour as a function of
uptime. The x axis represents minutes. The y axis shows the
the fraction of nodes that stayed online at least x minutes that
also stayed online at least x + 60 minutes.
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Common approach

1. Assign random (160-bit) ID to each node

2. Define a metric topology on the 160-bit numbers, i.e. the space
of keys and node IDs

3. Each node keeps contact information to O(log n) other nodes

4. Provide a lookup algorithm, which finds the node, whose ID is
closest to a given key.
—> we need a metric that identifies closest node uniquely

5. Store and retrieve a key/value pair at the node whose ID is
closest to the key
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Chord lookup

Each step halves the topological distance to the target.
So we have expected log n hops to the target.
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Chord routing table basics
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. Contacts in logarithmically distributed regions of the ID space
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Chord routing table rigidity
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. Rigidity
. Complicates recovery from failed nodes and routing table
. Precludes proximity-based routing
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Chord discrepancy
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. In- and out- distribution are exactly opposite

. Prevents from using incoming traffic to re-enforce routing
table
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Fixing Chord has drawbacks

1/4

1/4

. Bi-directional routing table has drawbacks

. Doubles routing table size

. Doubles number of control messages
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Kademlia: a peer-to-peer system

. Flexible routing table

. Allows to benefit from proximity-based routing

. So relaxed, that maintenance is minimal

. In- and out- distributions are the same

. Network re-enforces itself

. Just log n contacts (not counting redundancy)
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Overarching idea

Every hop brings us in a smaller subtree around the target.
Can forward requests to any node in the appropriate subtree.
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Idea: routing table

. No more rigidity: can have any contact in a subtree
. In- and out- distributions are the same
. Routing table size is still log n

. Why do we need a topology?
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The XOR topology

. Definition: d(X,Y) =X @Y

. Intuition: Differences at higher order bits matter much more
than differences at lower order bits.
010101

110001, distance is 4 + 32 = 36

. Geometric intuition: Nodes in the same tree are much closer
together than they are with nodes in other subtrees.
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Complete XOR tree of 5-bit numbers

Points in the same subtree are much closer together than they
are with points in other subtrees.
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Data Structures

Contact
. A pair of node ID and IP:UDP_port

k-bucket
. A container for no more than k contacts (we use k£ = 20)

. Operations place contact and remove contact

Routing table
. Operations place contact and remove contact
. A constrained tree of £-buckets

. Each bucket responsible for a range of the node ID space
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Routing Table Data Structure
(for node, whose pseudo-address is 00...0)

Pseudo-Address Space

11...1 00...0

p!
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Routing Table Data Structure

Pseudo-Address Space

11.. .1 00...0

/_/ x
2-buckets /\J

New York University '02 Slide 19 of 35



Simple lookup

1. 11}\{\/—\/_\ 0..00

- — — —— — — — —

CRDTP
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Lookup algorithm skeleton

. Goal: Find the k& nodes closest to a given target T' € {0, 1}1%Y

. RPC: find_node,, (T) returns all contacts from the (first
non-empty) k-bucket in n’s routing table that is closest to T°

. Lookup:

n, = ourselves (the node that is performing the lookup)
N; = find_node,, (T)
N> = find_node,,, (T)

N; = find_node,,, ,(T),

this completes when N; contains no contacts that haven’t been
called already

. n; IS any contact in V;
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How lookup works?

. On every step, the metric distance between n; and the target
reduces by an exact factor of 1/2.
—> (abstractly) every step reduces the pool of candidates by an
expected factor of 1/2.

. Consequent calls to find_node,, (T") fetch the result from ever
smaller-range k-buckets.
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Concurrent lookup

. . Trade bandwidth for lower latency lookups

. Goals:
. Route through closer/faster machines

. Avoid delays due to timeouts on offline contacts

. Idea: Perform « > 1 calls to find_node,,(T') in parallel.

New York University '02

Slide 23 of 35



Asynchronous Lookup

Round 0 Round 1 Round 2 Round 3 Round 4
0 1 38 14 14
2 9 15 17
3 10 16 18
4 11 17 19
6 12 18
7 13 19
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Why lookup works?

Routing table invariant

. The routing table always contains the k closest to ourselves
nodes

. A k-bucket is only empty if there are no nodes in its range
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Contact accounting

. Whenever we use a contact that doesn’t respond within a
given timeout, we remove it from the routing table

. As a general rule: every node places a contact to each node
that makes an RPC call to it in its routing table

. Due to XOR topology’s symmetry, the distribution of nodes
that call us is going to be the same as the distribution of
contacts that we need for our routing table

. Formally: the probability of being contacted by someone at a
distance [ € [2¢,2'"1], ¢ > 0, from us is a constant, independent
of i
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Joining, Leaving and Refreshes

Node join:
. Borrow some contacts from an already online node
. Lookup self

. Cost of join is O(logn) messages

Node leave: no action

. Very useful for modem connections that may disconnect
multiple times during a long online session

Hourly k-bucket refreshes (only if necessary)
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Routing Table Evolution
(for node, whose pseudo-address is 00...0)

Pseudo-Address Space

11...1 00...0

.
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Key-Value Pairs

. Invariant: Be able to find the key-value pairs on one or more of
the k£ nodes closest to the key

. Publishing and searching is like a lookup
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Key/Value Invariant

. Joining nodes are immediately noticed by their closest

neighbours, and the appropriate key/value pairs are
replicated to them.

. Re-enforce invariant every hour

. Expected Retainment Time (of a key/value pair) is 2* hours.
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Topological caching

Search caching

. When a key starts getting popular, replicate it to more
nodes around its location.

. When searching for a key, stop the lookup as soon as we get
a result.
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Caching principles
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Overpopular nodes

. Nodes tend to be seen only by nearby nodes
. Hard-limit on requests prevents over-popularity

. Flip-side: Natural separation between very-long-staying nodes
and short comers.

New York University '02 Slide 33 of 35



Conclusions

Novel topology:

. Symmetry: If d(X,Y) = d(Y, X). Helps reduce control
messages.

. Uniqueness: For every X € {0,1}!%% and [ € N there is
unique Y € {0,1}1% such that d(X,Y") = I. Identify key
location uniquely.

. Unidirectionality: For a fixed X there are 2¢ Y’s for which
d(X,Y) < 2¢~1, Makes caching efficient.

Asynchronous lookup: avoids slow links
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Further directions

. Non-unique keys.
. Node heterogenity (nodes of different strengths)
. Network heterogenity (take advantage of fast intranets)

. Security models against node, key and lookup attacks.
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