
Kademlia: A Peer-to-peer Information
System Based on the XOR Metric

Petar Maymounkov and David Mazières
New York University

http://kademlia.scs.cs.nyu.edu/

New York University ’02 Slide 1 of 35



Setting

Key/value pairs storage and retrieval

� Keys are unique

=) w.l.o.g. keys are uniformly distributed (160-bit)
numbers (e.g. use hashing)

� Keys can have different store and/or retrieve popularity

DHT (Distributed Hash Table)

New York University ’02 Slide 2 of 35



Constraints

� Any particular node can disappear at any time

� Nodes should be loaded equally (bandwidth and storage)

Goal

� Quick storage and retrieval, independent from node failures

� Minimize number of control messages

New York University ’02 Slide 3 of 35



Node instability

Ideal case

� Once a node joins, it never leaves.

Realistic case

� A randomly selected online node will stay online for
another 1 hour with probability 1/2.

New York University ’02 Slide 4 of 35



2500

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000
0

� Probability of remaining online another hour as a function of
uptime. The x axis represents minutes. The y axis shows the
the fraction of nodes that stayed online at least x minutes that
also stayed online at least x+ 60 minutes.

New York University ’02 Slide 5 of 35



Common approach

1. Assign random (160-bit) ID to each node

2. Define a metric topology on the 160-bit numbers, i.e. the space
of keys and node IDs

3. Each node keeps contact information to O(log n) other nodes

4. Provide a lookup algorithm, which finds the node, whose ID is
closest to a given key.

=) we need a metric that identifies closest node uniquely

5. Store and retrieve a key/value pair at the node whose ID is
closest to the key

New York University ’02 Slide 6 of 35



Chord lookup

Each step halves the topological distance to the target.
So we have expected log n hops to the target.

New York University ’02 Slide 7 of 35



Chord routing table basics

1/2

1/4

1/8

1/16

1/16

� Contacts in logarithmically distributed regions of the ID space

New York University ’02 Slide 8 of 35



Chord routing table rigidity

1/2

1/4

1/8

1/16

1/16

� Rigidity

� Complicates recovery from failed nodes and routing table

� Precludes proximity-based routing

New York University ’02 Slide 9 of 35



Chord discrepancy

1/2

1/4

1/8

1/16

1/16

� In- and out- distribution are exactly opposite

� Prevents from using incoming traffic to re-enforce routing
table

New York University ’02 Slide 10 of 35



Fixing Chord has drawbacks

1/4

1/8

1/16

1/16

1/4

1/8

1/16

1/16

� Bi-directional routing table has drawbacks

� Doubles routing table size

� Doubles number of control messages

New York University ’02 Slide 11 of 35



Kademlia: a peer-to-peer system

� Flexible routing table

� Allows to benefit from proximity-based routing

� So relaxed, that maintenance is minimal

� In- and out- distributions are the same

� Network re-enforces itself

� Just log n contacts (not counting redundancy)

New York University ’02 Slide 12 of 35



Overarching idea

01

0

00

0

00

1

1

1

111

Every hop brings us in a smaller subtree around the target.
Can forward requests to any node in the appropriate subtree.

New York University ’02 Slide 13 of 35



Idea: routing table

01

0

00

0

00

1

1

1

111

� No more rigidity: can have any contact in a subtree

� In- and out- distributions are the same

� Routing table size is still log n

� Why do we need a topology?

New York University ’02 Slide 14 of 35



The XOR topology

� Definition: d(X;Y ) = X � Y

� Intuition: Differences at higher order bits matter much more
than differences at lower order bits.

010101

110001, distance is 4 + 32 = 36

� Geometric intuition: Nodes in the same tree are much closer
together than they are with nodes in other subtrees.

New York University ’02 Slide 15 of 35



Complete XOR tree of 5-bit numbers

Points in the same subtree are much closer together than they
are with points in other subtrees.

0

01

1

1 0

0

01

1

1 0

1 0

0

01

1

1 0

0

01

1

1 0

1 0

1 0

New York University ’02 Slide 16 of 35



Data Structures

Contact

� A pair of node ID and IP:UDP port

k-bucket

� A container for no more than k contacts (we use k = 20)

� Operations place contact and remove contact

Routing table

� Operations place contact and remove contact

� A constrained tree of k-buckets

� Each bucket responsible for a range of the node ID space

New York University ’02 Slide 17 of 35



00...011...1

Pseudo-Address Space

k-buckets

Routing Table Data Structure
(for node, whose pseudo-address is 00...0)

01

01

01

01

New York University ’02 Slide 18 of 35



00...011...1

Pseudo-Address Space

2-buckets

Routing Table Data Structure

01

01

01

01

New York University ’02 Slide 19 of 35



Simple lookup

01

0..001..11

New York University ’02 Slide 20 of 35



Lookup algorithm skeleton
� Goal: Find the k nodes closest to a given target T 2 f0; 1g160

� RPC: find noden(T ) returns all contacts from the (first
non-empty) k-bucket in n’s routing table that is closest to T

� Lookup:

no = ourselves (the node that is performing the lookup)

N1 = find nodeno

(T )

N2 = find noden1
(T )

: : :
Nl = find nodenl�1

(T );

this completes when Nl contains no contacts that haven’t been
called already

� ni is any contact in Ni

New York University ’02 Slide 21 of 35



How lookup works?

� On every step, the metric distance between ni and the target
reduces by an exact factor of 1/2.

=) (abstractly) every step reduces the pool of candidates by an

expected factor of 1/2.

� Consequent calls to find noden(T ) fetch the result from ever
smaller-range k-buckets.

New York University ’02 Slide 22 of 35



Concurrent lookup

� : Trade bandwidth for lower latency lookups

� Goals:

� Route through closer/faster machines

� Avoid delays due to timeouts on offline contacts

� Idea: Perform � > 1 calls to find noden(T ) in parallel.

New York University ’02 Slide 23 of 35



0 1

2

3

4

8

9

10

11

12

13

14

15

16

17

14

17

Round 0 Round 1 Round 2 Round 3 Round 4

6

7

18

19

18

19

Asynchronous Lookup

New York University ’02 Slide 24 of 35



Why lookup works?

Routing table invariant

� The routing table always contains the k closest to ourselves
nodes

� A k-bucket is only empty if there are no nodes in its range

New York University ’02 Slide 25 of 35



Contact accounting
� Whenever we use a contact that doesn’t respond within a

given timeout, we remove it from the routing table

� As a general rule: every node places a contact to each node
that makes an RPC call to it in its routing table

� Due to XOR topology’s symmetry, the distribution of nodes
that call us is going to be the same as the distribution of
contacts that we need for our routing table

� Formally: the probability of being contacted by someone at a
distance l 2 [2i; 2i+1], i = 0, from us is a constant, independent
of i

New York University ’02 Slide 26 of 35



Joining, Leaving and Refreshes

Node join:

� Borrow some contacts from an already online node

� Lookup self

� Cost of join is O(log n) messages

Node leave: no action

� Very useful for modem connections that may disconnect
multiple times during a long online session

Hourly k-bucket refreshes (only if necessary)

New York University ’02 Slide 27 of 35



00...011...1

Pseudo-Address Space

Routing Table Evolution
(for node, whose pseudo-address is 00...0)

01

0

0

0

0

0

1

1

1

1

1

New York University ’02 Slide 28 of 35



Key-Value Pairs

� Invariant: Be able to find the key-value pairs on one or more of
the k nodes closest to the key

� Publishing and searching is like a lookup

New York University ’02 Slide 29 of 35



Key/Value Invariant

� Joining nodes are immediately noticed by their closest
neighbours, and the appropriate key/value pairs are
replicated to them.

� Re-enforce invariant every hour

� Expected Retainment Time (of a key/value pair) is 2k hours.

New York University ’02 Slide 30 of 35



Topological caching

Search caching

� When a key starts getting popular, replicate it to more
nodes around its location.

� When searching for a key, stop the lookup as soon as we get
a result.

New York University ’02 Slide 31 of 35



Caching principles

0

01

1

1 0

0

01

1

1 0

1 0

0

01

1

1 0

0

01

1

1 0

1 0

1 0

New York University ’02 Slide 32 of 35



Overpopular nodes

� Nodes tend to be seen only by nearby nodes

� Hard-limit on requests prevents over-popularity

� Flip-side: Natural separation between very-long-staying nodes
and short comers.

New York University ’02 Slide 33 of 35



Conclusions

Novel topology:

� Symmetry: If d(X;Y ) = d(Y;X). Helps reduce control
messages.

� Uniqueness: For every X 2 f0; 1g160 and l 2 � there is
unique Y 2 f0; 1g160, such that d(X;Y ) = l. Identify key
location uniquely.

� Unidirectionality: For a fixed X there are 2i Y ’s for which

d(X;Y ) 5 2i�1. Makes caching efficient.

Asynchronous lookup: avoids slow links

New York University ’02 Slide 34 of 35



Further directions

� Non-unique keys.

� Node heterogenity (nodes of different strengths)

� Network heterogenity (take advantage of fast intranets)

� Security models against node, key and lookup attacks.

New York University ’02 Slide 35 of 35


